首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of varying levels of dietary n-3 highly unsaturated fatty acid (HUFA) and docosahexaenoic acid/eicosapentaenoic acid (DHA/EPA) ratios on growth, survival and osmotic stress tolerance of Eriocheir sinensis zoea larvae was studied in two separate experiments. In experiment I, larvae were fed rotifers and Artemia enriched with ICES emulsions with 0, 30 and 50% total n-3 HUFA levels but with the same DHA/EPA ratio of 0.6. In experiment II, larvae were fed different combinations of enriched rotifers and Artemia, in which, rotifers were enriched with emulsions containing 30% total n-3 HUFA, but different DHA/EPA ratio of 0.6, 2 and 4; while Artemia were enriched with the same emulsions, but DHA/EPA ratio of 0.6 and 4. In both experiments, un-enriched rotifers cultured on baker's yeast and newly-hatched Artemia nauplii were used as control diets. Larvae were fed rotifers at zoea 1 and zoea 2 stages; upon reaching zoea 3 stage, Artemia was introduced.Experiment I revealed no significant effect of prey enrichment on the survival of megalopa among treatments, but higher total n-3 HUFA levels significantly enhanced larval development (larval stage index, LSI) and resulted in higher individual dry body weight of megalopa. Furthermore higher dietary n-3 HUFA levels also resulted in better tolerance to salinity stress. Experiment II indicated that at the same total n-3 HUFA level, larvae continuously receiving a low dietary DHA/EPA ratio had significantly lower survival at the megalopa stage and inferior individual body weight at the megalopa stage, but no negative effect was observed on larval development (LSI). The ability to endure salinity stress of zoea 3, zoea 5 and megalopa fed diets with higher DHA/EPA ratio was also improved.  相似文献   

2.
Abstract. Two experiments were carried out to study the effect of n -3 HUFA levels in rotifers on survival, growth, activity and fatty acid composition of gilthead bream, Sparus aurata (L.), larvae. From the third to the 15th day after hatching, gilthead bream larvae received one of the three kinds of rotifers containing different percentages of n –3 HUFA. Moisture, crude lipid, saponifiable matter and fatty acid composition of total lipids of rotifers and larvae were determined.
A good correlation was found between larval growth and n –3 HUFA levels in rotifers. Larval survival was also significantly improved by the elevation of the n –3 HUFA levels in rotifers. A high occurrence of hydrops was registered in larvae fed with EFA-deficient rotifers. The n –3 HUFA levels in the larvae were increased by the elevation of n –3 HUFA contents in rotifers. However, n –9 fatty acids in the larvae remained almost constant, regardless of the different 18:1 n –9 contents in rotifers. Therefore, the ratio of oleic acid to n –3 HUFA, known to be an indicator of the EFA deficiency in fish, was reduced by the elevation of the n –3 HUFA levels in rotifers.  相似文献   

3.
The arachidonic acid (20:4n-6,AA) requirements of larval summer flounder weredetermined for the rotifer- and Artemia-feeding stages. Experimental emulsionscontained adequate n-3 highly unsaturated fattyacid (HUFA) ratios and emulsion levels of AAwere set at 0, 3, 6, 9, and 12% (AA0, AA3,AA6, AA9, and AA12). Examination of fatty acidlevels in live feeds and larval tissuesconfirmed the physiological incorporation offatty acids relative to dietary levels. In thefirst experiment, survival, growth, andsalinity tolerance (2-h in 70) were measuredat 18 days after hatch (dah) after feeding thelarvae the various levels of AA. Larvae fedAA6-enriched rotifers were better able tosurvive the salinity tolerance test. AAenrichment up to 12% had no effect on growthand survival. In the second experiment, larvaewere fed AA0- or AA6-enriched rotifers until 23dah, followed by unenriched 24- and 48-h Artemia nauplii until 32 dah. These larvaethen were subdivided and fed AA-enriched Artemia from 33-45 dah. At the end of thisexperiment, larvae fed AA6-enriched rotifershad higher survival, increased growth, andsurvived better in the salinity tolerance test(2-h in 80). The enrichment of Artemiadid not have any effect on these variables.Thus, the provision of AA6-enriched rotifers(10 mg AA g–1 DW) early in larvaldevelopment may serve to enhance larval stresstolerance at the rotifer stage while alsoincreasing larval survival, growth, and stresstolerance later in the Artemia stage.  相似文献   

4.
Interest in the culture of flatfishes has increased globally due to high consumer demand and decreased commercial landings. The Southern flounder Paralichthys lethostigma inhabit South Atlantic and Gulf of Mexico waters and support important commercial and recreational fisheries. In spring, 1996, a two-part larval rearing study was performed with Southern flounder to examine the effects of three larval diets and two light intensities on survival, growth, and pigmentation. The first part of the study consisted of feeding 6 d post-hatch (dph) (3.0 ± 0.1 mm TL) larvae three diets: 1) rotifers Brachionus plicatilis at a rate of 10/mL from day 1–9 and Artemia nauplii (3/mL) from day 7 through metamorphosis; 2) rotifers fed day 1 through metamorphosis and Artemia fed day 7 through metamorphosis; or 3) same diet as treatment 1 plus a commercial larval diet added day 13 through metamorphosis. The second part of the study examined the effects of two light levels: low-light (mean 457 lux) and high-light (mean 1362 lux). At 24 C, metamorphosis began on day 23 (mean fish size 8.2 ± 0.6 mm TL) in all treatments and was completed by day 30. Analysis of survival, size, and pigmentation data indicated there were no significant differences among feed treatments or between light treatments. Overall survival was 33.4% (±15.9) and mean length was 11.5 mm TL ± 1.3. Only 35% of the larvae were normally pigmented. Reexamination of the pigmentation on day 37 indicated fish reared at the low light intensity through metamorphosis (day 30) but exposed to high light intensity for 1 wk post-metamorphosis had become significantly more pigmented.  相似文献   

5.
用3种营养强化剂强化的轮虫和卤虫无节幼体投喂牙鲆仔鱼,研究牙鲆仔鱼的生长、成活、体脂肪酸的组成。结果表明:用强化的轮虫和卤虫无节幼体投喂牙鲆仔鱼,成活率、增重均显著高于对照组(p<0 01),其中V号强化剂的效果最好,成活率为29 34%,比对照组提高100%;增重倍数为217 90,比对照组提高68 61%;这是由于V号强化剂强化的卤虫无节幼体体内含有较多的AA的缘故,饵料中AA含量的提高,可以提高牙鲆仔鱼的成活率、促进其生长。牙鲆摄食强化过的轮虫、卤虫无节幼体后,其EPA、DHA、n-3HUFA、PUFA的含量随着饵料中含量的升高而升高,这也是牙鲆仔鱼生长速度和成活率提高的重要因素之一。  相似文献   

6.
Three experiments were carried out to test the effects of enrichment of live food (rotifers) with varying levels of n-3 highly unsaturated fatty acids (HUFA) on the growth rate and fatty acid composition of red drum larvae. Additionally, the fatty acid compositions of red drum eggs and day-1 larvae were compared. The enrichment techniques were successful in that the levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were elevated in the rotifers fed the enrichment diet. Red drum larvae fed the control rotifers produced the highest growth rate of the three experiments. Larvae fed rotifers with no HUFA supplement (NHUFA) had a significantly lower growth rate than the controls for that experiment. The fatty acid compositions of the eggs and day-1 larvae did not vary significantly and contained high levels of 16:0, 16:1 n-7 and DHA (22:6 n-3). Based on these data, the lack of DHA in the diet significantly reduced the growth rates of larval red drum. The 10-day-old red drum larvae had similar fatty acid profiles at the end of the experiments regardless of the diet they were fed, indicating that dietary inputs have little effect on the fatty acid composition of larvae during the first ten days of growth. Red drum larvae appear to have the ability, though limited, to bioconvert EPA to DHA since there was a significant increase in the levels of DHA from day 1 to day 10 in the NHUFA larvae. However, the efficiency of this bioconversion is not sufficient for optimal growth and supplemental DHA at least to the level found in the control rotifers (0.3–0.4mg/100mg tissue) is necessary to maximize growth. The exact role of EPA could not be determined from this study due to the inability to produce an EPA-free rotifer.  相似文献   

7.
Taurine is an essential or conditionally essential nutrient for many species of marine fish, especially during early development. There is growing evidence that marine fish larvae benefit from taurine‐enriched rotifers; however, it is unknown if larvae benefit from taurine‐enriched Artemia. We investigated the effects of taurine‐enriched rotifers (Brachionus plicatilis) and Artemia franciscana on the growth and whole‐body taurine concentrations of California yellowtail (Seriola lalandi; CYT) larvae. The approach used in this study was to encapsulate taurine within microparticles (liposomes), which were then fed to rotifers and Artemia. We found that feeding taurine liposomes to rotifers and Artemia resulted in taurine concentrations in these prey species that were similar to or above those previously reported in copepods. At the end of the rotifer phase, CYT larvae fed taurine‐enriched rotifers showed increased growth (final dry weights; DW) and had higher whole body taurine concentrations when compared to larvae fed unenriched rotifers. At the end of the Artemia phase, CYT whole body taurine concentrations varied among dietary treatments. Larval lengths and DWs were not significantly different among treatments at the end of the Artemia phase, suggesting that the taurine concentrations of unenriched Artemia were sufficient to support the growth of CYT larvae.  相似文献   

8.
Abstract— The purpose of this study was to examine the effect of varying dietary levels of highly unsaturated fatty acids (HUFA) in Live prey on the standard length, specific growth rate, survival, and fatty acid composition of yellowtail snapper Ocyurus chrysurus larvae. Two experiments were conducted utilizing rotifers and Artemiu enriched with live algae ( Isochrysis galbana or Nannochloris oculata ) or commercial preparations (Aquagrow Advantage, Aquagrow Advantage plus Aquagrow arachidonic acid, and Algarnac 2000). Larval growth and fatty acid composition were evaluated during the rotifer, B rachionus plicatilis , and Artemia feeding periods and survival rates were calculated at the termination of each trial (18 or 20 d after hatching). In general, prey enriched with the commercial products contained higher levels of docosahexaenoic acid, eicosapentaenoic acid, n-3 HUFA, and × HUFA than those enriched with live algae. The addition of arachidonic acid to the Aquagrow Advantage enrichment medium significantly increased the amount of this fatty acid in rotifers but not in Artemia . At the end of the growth trials, larval standard length was highest when larvae were fed prey enriched with I. galbanu (6.4 mm) or commercial preparations (6.7–7.1 mm) versus N. oculatu (5.2 mm). Furthermore, larvae fed prey enriched with commercial preparations had significantly ( P < 0.05) higher survival rates (2.2-5.9%) than those fed prey enriched with live algae (1.1-1.4%). These results suggest that yellowtail snapper larvae require dietary levels of HUFA beyond those achieved by enriching prey with live N. oculata or I. galbana  相似文献   

9.
采用乳化油直接添加法,用n-3高度不饱和脂肪酸(n-3HUFA)含量不等的4种乳化油分别强化轮虫、卤虫活饵料,培育4组黑鲷仔鱼和稚鱼,各自历时15d,结果表明,n-3HUFA对黑鲷仔鱼和稚鱼的生长和存活均有重要影响。在该条件下,轮虫体内n-3HUFA含量为0.233%(湿重计),卤虫体内n-3HUFA含量为4.273%(湿重计)时,仔鱼和稚鱼达到最佳生长和成活率。  相似文献   

10.
Effects of two weaning diets that differed in phospholipid (PL) classes on growth, survival and deformities of cod larvae and early juveniles were evaluated. Cod larvae were fed rotifers until 21 days post hatch (dph) and then weaning onto dry diet started. One group of larvae were fed a control diet with low levels of phosphatidylcholine (PC), PE and phosphatidylinositol (PI) and the other group of larvae were fed with an experimental diet containing higher levels of PC, PE and PI. Larvae fed with the control diet were significantly smaller than larvae fed with the experimental diet at the end of the experiment. Swim bladder abnormalities were significantly higher in larvae fed with control diet at 35 dph than the larvae fed with experimental diet; however, no significant difference was evident at 42 dph. Vertebral deformities were significantly higher in larvae fed with control diet and scoliosis was significantly different between the treatments. Survival was also significantly higher in the experimental group. Our results indicate that dietary levels of PL, PC and PI may affect the cod larval growth, survival and deformities. More detail studies are needed to find out the optimal levels of these important PL classes in larval cod diets.  相似文献   

11.
We investigated the effect of high levels of n−3 highly unsaturated fatty acids (n−3 HUFA) in broodstock diet on egg quality and chemical composition of eggs of Japanese flounder. The broodstock were fed diets containing three levels of n−3 HUFA (2.1%, 4.8% or 6.2%) 2 months before and during the spawning period. No significant difference was found for weight gain of broodstock among the treatments. Egg production was highest in fish fed the highest level of n−3 HUFA. However, egg quality parameters, such as percentage of buoyant eggs, hatching rate and percentage of normal larvae, were significantly higher in the group fed the lowest n−3 HUFA diet. The fatty acid composition of eggs was influenced more markedly in the neutral lipid fraction than in the polar lipid fraction by dietary n−3 HUFA levels. Arachidonic acid (AA; 20:4n−6) and egg quality parameters both decreased with increasing dietary n−3 HUFA levels. The results suggest that a high level of n−3 HUFA in broodstock diet negatively affects egg quality of Japanese flounder.  相似文献   

12.
Importance of Docosahexaenoic Acid in Marine Larval Fish   总被引:28,自引:0,他引:28  
Marine finfish require n-3 HUFA such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) as essential fatty acids (EFA) for their normal growth. But it remained unclear as to which of the n-3 HUFA, either EPA or DHA, was important. Unlike the freshwater species, the EFA efficiency of EPA and DHA may vary in marine fish. The developing eggs rapidly utilize DHA either for energy or for production of physiologically important substances like prostaglandin.
This report reveals that in marine larval fish DHA is superior to EPA as EFA. In the case of red seabream, feeding rotifers incorporating EPA and DHA or an n-3 HUFA mixture prevented many of the ill-effects observed when the rotifers were low in n-3 HUFA. Apart from the best growth and survival in an activity test for the larvae fed on DHA-rotifer, the incidence of hydrops seemed to be totally prevented dietetically by DHA. Similar results were obtained in larval yellowtail, striped jack, striped knifejaw and flounder. There seems to exist a functional difference between EPA and DHA.  相似文献   

13.
The role of dietary ratios of docosahexaenoic acid (DHA, 22:6n−3), eicosapentaenoic acid (EPA, 20:5n−3) and arachidonic acid (AA, 20:4n−6) on early growth, survival, lipid composition, and pigmentation of yellowtail flounder was studied. Rotifers were enriched with lipid emulsions containing high DHA (43.3% of total fatty acids), DHA+EPA (37.4% and 14.2%, respectively), DHA+AA (36.0% and 8.9%), or a control emulsion containing only olive oil (no DHA, EPA, or AA). Larvae were fed differently enriched rotifers for 4 weeks post-hatch. At week 4, yellowtail larvae fed the high DHA diet were significantly larger (9.7±0.2 mm, P<0.05) and had higher survival (22.1±0.4%), while larvae fed the control diet were significantly smaller (7.3±0.2 mm, P<0.05) and showed lower survival (5.2±1.9%). Larval lipid class and fatty acid profiles differed significantly among treatments with larvae fed high polyunsaturated fatty acid (PUFA) diets having higher relative amounts of triacylglycerols (18–21% of total lipid) than larvae in the control diet (11%). Larval fatty acids reflected dietary levels of DHA, EPA and AA while larvae fed the control diet had reduced amounts of monounsaturated fatty acids (MUFA) and increased levels of PUFA relative to dietary levels. A strong relationship was observed between the DHA/EPA ratio in the diet and larval size (r2=0.75, P=0.005) and survival (r2=0.86, P=0.001). Following metamorphosis, the incidence of malpigmentation was higher in the DHA+AA diet (92%) than in all other treatments (50%). Results suggest that yellowtail larvae require a high level of dietary DHA for maximal growth and survival while diets containing elevated AA exert negative effects on larval pigmentation.  相似文献   

14.
《水生生物资源》1999,12(1):31-36
Larvae of the coral reef damselfish Acanthochromis polyacanthus (Bleeker) were fed either unenriched Artemia nauplii or nauplii which had been enriched by pre-feeding with microcapsules containing either squid oil (SQO) or cod liver oil (CLO). Enriched nauplii contained elevated levels of the n-3 highly unsaturated fatty acids (HUFA) eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) which made up 5.22 ± 0.34 and 2.62 ± 0.28 %, respectively, of total fatty acids in nauplii enriched with CLO, and 10.48 ± 0.36 and 3.43 ± 0.33 %, respectively, in nauplii enriched with SQO. In contrast, unenriched nauplii contained EPA (5.03 ± 1.04 %) but did not contain DHA. Survival differed significantly between treatments over the 18-d study; larvae receiving CLO enriched nauplii showed 100 % survival and those receiving SQO enriched nauplii showed 93.3 ± 6.6 % survival. In contrast, only 46 ± 6.7 % of larvae receiving unenriched nauplii survived to the end of the 18-d study. Wet weight, dry weight and proximate biochemical composition did not differ significantly between treatments at the end of the study. Mean standard length of larvae fed CLO enriched nauplii was significantly smaller than that of larvae fed SQO enriched nauplii; however, neither differed significantly from larvae fed unenriched nauplii. The fatty acid composition of A. polyacanthus larvae was significantly influenced by the fatty acid composition of the diet. The results indicate that A. polyacanthus larvae are unable to synthesise DHA from available dietary precursors and, as such, dietary DHA is required to maximise survival. Development of appropriate culture techniques for the larvae of coral reef fishes will allow controlled laboratory studies with these species and may eventually reduce pressure on wild populations exploited for the aquarium trade.  相似文献   

15.
The aim of this study was to compare the nutritional composition and effects of short periods with cultivated copepod nauplii versus rotifers in first‐feeding. Atlantic cod (Gadus morhua) and ballan wrasse (Labrus bergylta) larvae were given four different dietary regimes in the earliest start‐feeding period. One group was fed the copepod Acartia tonsa nauplii (Cop), a second fed enriched rotifers (RotMG), a third fed unenriched rotifers (RotChl) and a fourth copepods for the seven first days of feeding and enriched rotifers the rest of the period (Cop7). Cod larvae were fed Artemia sp. between 20 and 40 dph (days posthatching), and ballan wrasse between 36 and 40 dph, with weaning to a formulated diet thereafter. In addition to assessing growth and survival, response to handling stress was measured. This study showed that even short periods of feeding with cultivated copepod nauplii (7 days) had positive long‐term effects on the growth and viability of the fish larvae. At the end of both studies (60 days posthatching), fish larvae fed copepods showed higher survival, better growth and viability than larvae fed rotifers. This underlines the importance of early larval nutrition.  相似文献   

16.
Larval growth and survival of marine finfish in mass seed production are affected by the nutritional value of live feeds such as rotifers and Artemia. Thus far, many studies have been conducted to develop effective methods for the enrichment of live feeds with essential fatty acids and vitamins. In this study, a practical method for enrichment of rotifers with zinc was investigated. Changes in the concentrations of other minerals when zinc was added to the rotifer-enrichment tanks were also studied. The mineral composition of rotifers and Chlorella after zinc enrichment revealed that the direct addition of zinc to the culture media was not effective because rotifers cannot efficiently accumulate waterborne zinc. The ability of Chlorella to absorb waterborne zinc is much higher than that of rotifers, and hence, zinc was pre-accumulated in Chlorella, which was then fed to the rotifers. The maximum zinc content of the rotifers was 585.0 μg g? 1 (dry matter) when the rotifers were enriched with zinc alone. This zinc concentration is comparable to that found in natural zooplankton. In rotifers simultaneously enriched with zinc and n?3 highly unsaturated fatty acids (HUFAs), the zinc content increased, but the n?3 HUFA content did not. Therefore, separate enrichment with zinc and fatty acids was adopted. The zinc content of rotifers fed zinc-enriched Chlorella was significantly higher than that of rotifers fed unenriched Chlorella. After zinc enrichment, rotifers were enriched with fatty acids, and the docosahexaenoic acid (DHA) and n?3 HUFA levels in rotifers were higher than the levels obtained after simultaneous enrichment with zinc and fatty acids. With regard to the concentration of other minerals in rotifers after zinc enrichment, the manganese content tended to decrease when the zinc content increased.The results of this study demonstrated that zinc enrichment of rotifers was successfully performed by using microalgae that had accumulated zinc, and the enrichment of rotifers with fatty acids was also achieved after the completion of zinc enrichment and before feeding the larvae. This method could be utilized for the enrichment of zooplankton with other minerals as well.  相似文献   

17.
ABSTRACT

The Japanese flounder, Paralichthys olivaceus, is one of the most common finfish cultured in Japan and Korea. Despite the relatively high production of fingerlings, some problems remain, mainly related to the larval feeding and cost of maintaining microalgae and rotifers. In order to determine the effects of different diets on the Japanese flounder larval growth and survival, a series of experiments was carried out related to the size and nutritional value of different live feeds. The larvae culture conditions were at 10 or 20 larvae/L in 50 to 2,000 L tanks, with aeration and with or without “green water,” and a temperature range of 18.5 to 22.5°C. The live foods used were microalgae (Chlorella ellipsoidea and Nannochloris oculata), baker's yeast, experimental n-yeasts, oyster trochophore larvae, three strains of rotifer Brachionus plicatilis (L-type, S-type and U-type) and Artemia nauplii. Variations were detected in size, dry weight, and chemical composition of the three strains of rotifers used. The maximum number of rotifers ingested by flounder larvae increased steadily from 7 individuals, at first feeding (3.13 mm), to 42 individuals at 5.25 mm of total length (6 days after first feeding). There was a relationship between larval total length and size of the rotifers ingested. The effect of rotifer size on larval growth and survival appeared to be limited to the first two days of feeding. Of the diets tested in the growth and survival of larval flounder during 14 days after hatching, rotifers fed on C. ellipsoidea and raised in green-water gave the best results. Rotifers cultured on enriched N. oculata and n-yeasts did not support larval growth and caused higher mortalities. The n-yeasts used as rotifer enrichment appeared to satisfy, partially, the nutritional requirement of 7-day-old flounder larvae, as did n-yeast squid wintering oil the requirements of 14-day-old larvae. From 7-9-days after hatching and throughout the second 14-day period, rotifers and Artemia cultured on N. oculata improved the survival of flounder compared with those fed on rotifers cultured on C. ellipsoidea. Moreover, the larval growth did not vary significantly between both microalgae-rotifer feedings. No clear relation was found between total protein, lipid, amino acids and fatty acids of live feeds with the growth and survival of flounder larvae, although the total lipid was higher in C. ellipsoidea than in N. oculata. The Artemia nauplii San Francisco strain appeared to be more suitable for the growth and survival of flounder larvae, than the Utah strain. The nutritional value of Artemia nauplii (Utah strain) for flounder larvae remained unchanged despite the use of either microalgae as nauplii enrichment.  相似文献   

18.
A 44-day rearing trial was conducted to examine the enrichment of Artemia urmiana nauplii with vitamin E and highly unsaturated fatty acid (HUFA) and its effects on the growth performance, survival and stress resistance of great sturgeon, Huso huso , larvae. Cod liver oil (EPA 18% and DHA 12%) and α-tocopherol acetate were used as lipid and vitamin E sources. Beluga larvae at the first exogenous feeding with 69±5.9 mg body weight were randomly distributed into four treatments and three tanks were assigned to each diet. The test treatments were as follows: larvae fed with HUFA+20% and HUFA+50% (w/w) vitamin E-enriched Artemia nauplii (E1 and E2 groups, respectively), HUFA without vitamin E (HUFA group) and non-enriched Artemia (control group). All treatments fed non-enriched Artemia for the initial 5 days after first feeding and then fed enriched Artemia for 7 days. After the period of enrichment, larvae were fed with daphnia from the 13th to the 40th day. At day 40, submersion in salt water (6 ppt for 4 days and 12 ppt for 2 days) and warm water (33 °C for 2 days) was performed to evaluate larvae resistance to salinity and temperature stress. Final weight, daily growth rate, specific growth rate and weight gain were higher in beluga fed with enriched Artemia . The highest growth rates were observed in E1, whereas survival was not significantly different between groups. Use of vitamin E and HUFA significantly increased fish resistance to a salinity of 12 ppt and the lowest stress resistance was observed in the control group. Stress tolerance was not significantly different at 6 ppt and 33 °C between groups. There was no comparable difference in the haematocrit index under stress conditions. These results indicated that the enrichment of Artemia with essential fatty acids and vitamin E can affect some growth and stress tolerance factors in great sturgeon, Huso huso , larvae.  相似文献   

19.
The effect of varying levels of dietary n-3 highly unsaturated fatty acid (HUFA) content in Artemia sp. on survival, the number of days required to reach each larval stage, and the growth and morphogenesis of larvae of the horsehair crab Erimacrus isenbeckii were examined. Artemia enriched with materials of six types [condensed Nannochloropsis sp., ethyl oleate, two enrichment levels of eicosapentaenoic acid (EPA), and those of docosahexaenoic acid], and unenriched Artemia were fed to larvae. Newly hatched larvae were reared in groups of 50 individuals in two 2-l beakers until they reached the first crab stage. No significant difference was found in survival rate, growth, or morphogenesis of larvae, but fewer days tended to be required to reach the first crab stage in the group enriched with high EPA compared to the other groups. Results show that, although the amount of n-3 HUFA in unenriched Artemia might meet the demands of horsehair crab larvae for their survival, growth, and morphogenesis, Artemia should be enriched with high EPA to improve the rate of larval development.  相似文献   

20.
制备3种基本组成相同、添加不同类型鱼油的微粒饲料。将3种微粒饲料分别投喂真鲷(Pagrus major)仔鱼,探讨了微粒饲料中鱼油n—3HUFA的不同分子结构对真鲷仔、稚鱼生长、存活的影响。25d的养殖试验结果表明,虽然饲料2中n-3HUFA的含量高于饲料1中n—3HUFA的含量,饲料3中n—3HUFA的含量同饲料1中n—3HUFA的含量相等,但是用饲料1投喂的真鲷仔、稚鱼的全长、成活率要优于分别用饲料2和饲料3投喂的真鲷仔、稚鱼的全长、成活率。而且,用饲料1投喂的真鲷仔、稚鱼体内n-3HUFA和DHA的含量高于用饲料2和饲料3投喂的真鲷仔、稚鱼体内n—3HUFA和DHA的含量,这说明真鲷仔、稚鱼对天然鱼油的消化、吸收要优于对乙酯化鱼油的消化、吸收。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号