首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In a 30‐day experiment, Farfantepenaeus brasiliensis PL25 (25 ± 10 mg; 17.9 ± 1.6 mm) were raised in nine circular floating cages with a stocking density of 1000 shrimp m?3. Three treatments were evaluated: (1) culture in BFT system plus a commercial feed supply (BFT+CF); (2) culture in BFT system without feed supply (BFT) and (3) culture in clear water with feed supply (control). Post‐larvae (PL) final weight (218.9, 236.5 and 176.0 mg, for BFT+CF, BFT and control respectively), final biomass (17.9, 15.7 and 8.2 g) and weight gain (193.9, 211.5 and 151.0 mg) were similar in the BFT regardless of whether they were fed a commercial diet (P>0.05), but were both significantly higher than the control (P<0.05). Survival (81.5%, 67.0% and 84.8% respectively) and final length did not differ between treatments (P>0.05). The biofloc analysis identified five main microorganism groups: protozoa (ciliate and flagellate), rotifers, cyanobacteria (filamentous and unicellular) and pennate diatoms. Free living bacteria and attached bacteria in bulk were 25.73 ± 8.63 and 0.86 ± 3.17 × 106 mL?1 respectively. Proximate analysis in the biofloc indicated high levels of crude protein (30.4%). Results confirmed favourable nutritional quality of biofloc, and enhanced growth and production of F. brasiliensis PL in biofloc systems.  相似文献   

2.
This study evaluated the toxicity of ammonia and nitrite to different larval stages of Macrobrachium carcinus. Three replicated groups of larvae in the zoea stages II, V, and VIII (hence named Z2, Z5, and Z8, respectively) were exposed separately to five ammonia (5, 10, 20, 40, and 80 mg total ammonia nitrogen [TAN]/L) and six nitrite concentrations (5, 10, 20, 40, 80, and 160 mg NO2‐N/L), plus a control treatment with no addition of ammonia and nitrite, at a salinity of 20 g/L. The ammonia LC50 values at 96 h for Z2, Z5, and Z8 were 8.34, 13.84, and 15.03 mg TAN/L (0.50, 0.71, and 0.92 mg NH3‐N/L), respectively, and the nitrite LC50 values at 96 h for Z2, Z5, and Z8 were 3.28, 9.73, and 34.00 mg NO2‐N/L, respectively. The estimated LC50 values for NO2‐N were lower than those for TAN in most of the stages evaluated. This observation suggests that M. carcinus larvae are more tolerant to ammonia, except at Z8, in which larvae had a higher tolerance to nitrite. Based on the lethal concentrations at 96 h, it may be concluded that the tolerance of M. carcinus to ammonia and nitrite increases with larval development. Safe levels were estimated to be 0.834 mg TAN/L (0.05 mg NH3‐N/L) and 0.328 mg NO2‐N/L; therefore, efforts should be made to maintain lower concentrations of these compounds throughout the larval rearing of M. carcinus.  相似文献   

3.
Nitrogen (N) and phosphorus (P) budgets in a bioflocs technology (BFT) aquaculture system and a recirculation aquaculture system (RAS) during over-wintering of tilapia (GIFT Oreochromis niloticus)for 64 d were compared in the current study. Fish feed was the major input of N in both systems, specifically, 94±0 % and 82±4 % for the RAS and BFT aquaculture system, respectively. The rate of N recovery in the BFT aquaculture systems was estimated to be 48±5 % of input N, which was significantly different from that of the RAS (37±4 %). There was no significant difference between the RASs and BFT aquaculture systems in terms of P recovery rate. The regular backwashing of the drum filter and biological filter in RAS accounted for 41 ± 2 % of input N and 39 ± 2 % of input P. Approximately 54 % of unassimilated nitrogen N was removed by nitrification in the BFT aquaculture systems. The results from the present study suggest that nitrification may be the dominant pathway for ammonia removal in a BFT aquaculture system rather than by heterotrophic bacterial assimilation.  相似文献   

4.
Stringent environmental legislation in Europe, especially in the Baltic Sea area, limits the discharge of nutrients to natural water bodies, limiting the aquaculture production in the region. Therefore, cost-efficient end-of-pipe treatment technologies to reduce nitrogen (N) discharge are required for the sustainable growth of marine land-based RAS. The following study examined the potential of fed batch reactors (FBR) in treating saline RAS effluents, aiming to define optimal operational conditions and evaluate the activated sludge denitrification capacity using external (acetate, propionate and ethanol) and internal carbon sources (RAS fish organic waste (FOW) and RAS fermented fish organic waste (FFOW)). The results show that between the evaluated operation cycle times (2, 4, and 6 h), the highest nitrate/nitrite removal rate was achieved at an operation cycle time of 2 h (corresponding to a hydraulic retention time of 2.5 h) when acetate was used as a carbon source. The specific denitrification rates were 98.7 ± 3.4 mg NO3-N/(h g biomass) and 93.2 ± 13.6 mg NOx-N/(h g biomass), with a resulting volumetric denitrification capacity of 1.20 kg NO3-N/(m3 reactor d). The usage of external and internal carbon sources at an operation cycle time of 4 h demonstrated that acetate had the highest nitrate removal rate (57.6 ± 6.6 mg N/(h g biomass)), followed by propionate (37.5 ± 6.3 mg NO3-N/(h g biomass)), ethanol (25.5 ± 6.0 mg NO3-N/(h g biomass)) and internal carbon sources (7.7 ± 1.6–14.1 ± 2.2 mg NO3-N/(h g biomass)). No TAN (Total Ammonia Nitrogen) or PO43- accumulation was observed in the effluent when using the external carbon sources, while 0.9 ± 0.5 mg TAN/L and 3.9 ± 1.5 mg PO43--P/L was found in the effluent when using the FOW, and 8.1±0.7 mg TAN/L and 7.3 ± 0.9 mg PO43--P/L when using FFOW. Average sulfide concentrations varied between 0.002 and 0.008 mg S2-/L when using the acetate, propionate and FOW, while using ethanol resulted in the accumulation of sulfide (0.26 ± 0.17 mg S2-/L). Altogether, it was demonstrated that FBR has a great potential for end-of-pipe denitrification in marine land-based RAS, with a reliable operation and a reduced reactor volume as compared to the other available technologies. Using acetate, the required reactor volume is less than half of what is needed for other evaluated carbon sources, due to the higher denitrification rate achieved. Additionally, combined use of both internal and external carbon sources would further reduce the operational carbon cost.  相似文献   

5.
This study aims to develop a hybrid zero water discharge (ZWD) - recirculating aquaculture system (RAS) system to improve water quality, as well as the growth, survival, and productivity, of the super-intensive white shrimp culture under low salinity conditions at semi-mass and the industrial level. The study consisted of two parts: (1) a semi-mass trial for the optimization of shrimp production using a hybrid ZWD-RAS system with a total volume of 2.7 m3 at the different shrimp stocking densities of 500 PL/m3, 750 PL/m3, and 1,000 PL/m3 and (2) an industrial trial at a commercial shrimp urban farming facility in Gresik, East Java, with total volume of 110 m3 at the optimum shrimp stocking density from the semi-mass trial. Both the semi-mass and industrial trials were performed in five steps: (1) preparation and installation of the RAS and ZWD system components; (2) preparation of microbial components including nitrifying bacteria, the microalgae Chaetoceros muelleri, and the probiotic heterotrophic bacteria Bacillus megaterium; (3) acclimatization of white shrimp post larvae from the salinity level of 32 ppt to 5 ppt; (4) conditioning of the biofilter used in the RAS and shrimp tank (microbial loop manipulation in ZWD); and (5) shrimp grow-out rearing for 84 days and 60 days for the semi-mass trial and the industrial trial, respectively. The hybrid system combined a ZWD system and an RAS. Shrimp tanks were conditioned with the addition of microbial components for ZWD at the beginning of the culture period. The RAS was operated when NH4+ and NO2-N levels in shrimp culture reached above 1 ppm until the levels decreased to 0–0.5 ppm. The culture performance in the semi-mass trial at 500 PL/m3, 750 PL/m3, and 1,000 PL/m3 stocking densities was not significantly different for final mean body weight (12.06 ± 5.72, 11.84 ± 3.58, 12.04 ± 3.71 g/ind, respectively) and productivity (4.205 ± 0.071, 4.691 ± 0.025, 4.816 ± 0.129 kg/m3, respectively). Significant differences in survival (70 ± 7%, 53 ± 3%, 40 ± 4%, respectively) and feed conversion ratios (1.54 ± 0.01, 1.82 ± 0.00, 2.16 ± 0.03, respectively) were observed between the three different stocking densities. Water quality parameters and microbial loads during the semi-mass trial were similar for all stocking densities and were within the tolerance levels for white shrimp grow-out production. The results of the semi-mass trial showed that the hybrid ZWD-RAS system can maintain water quality and a microbial load up to a 1,000 PL/m3 stocking density; however, the optimum performance based on survival, feed conversion ratio, and productivity was reached at the 500 PL/m3 stocking density. The industrial trial of the application of the hybrid ZWD-RAS system using the optimal stocking density of 500 PL/m3 resulted in a comparable shrimp survival of 78% with a total production of 298 kg shrimp biomass (equal to a productivity level of 2.7 kg/m3). The overall results of both the semi-mass and industrial trials showed that the application of a hybrid ZWD-RAS system allows optimal shrimp survival and growth at the stocking density of 500 PL/m3 and has high potential for application in commercial shrimp grow-out production at low salinity levels.  相似文献   

6.
Biofloc rearing media provides a potential food source for shrimp reared in limited or zero water exchange systems. This culture system is environmentally friendly as it is based on limited water use and minimal effluent is released into the surrounding environment. In this study, we evaluated the survival, growth performance and salinity stress tolerance of pink shrimp Farfantepenaeus paulensis postlarvae reared from PL10 to PL25 in a biofloc technology limited water exchange system. PL (mean ± SD weight and length of 14 ± 10 mg and 8.10 ± 0.7 mm, respectively) were reared in nine 40-L plastic tanks with a stocking density of 10PL/L. Three culture treatments were applied (1) culture in the presence of bioflocs and commercial feed supply (FLOC + CF); (2) culture in the presence of biofloc without feed supply (FLOC) and (3) culture in clear water with feed supply (control). Final biomass and survival were significantly higher in FLOC + CF treatment than the control (P < 0.05), but did not differ from FLOC. PL reared in the FLOC + CF treatment achieved a significantly higher final weight, weight gain and length in comparison with the other two treatments (P < 0.05). No significant difference (P > 0.05) between treatments was found for salinity tolerance over 24 and 48 h durations. The proximate analysis of floc shown high levels of crude protein (30.4%), but low levels of crude lipids (0.5%). The continuous availability of bioflocs had a significant effect on growth and survival of F. paulensis postlarvae cultured in BFT nursery systems.  相似文献   

7.
A 13-day nursery trial was conducted to evaluate the performance of young Litopenaeus vannamei post-larvae (from PL6 to PL18) reared in both biofloc and microalgae-based systems at a stocking density of 67 PLs L−1. The effects of different concentrations of total suspended solids (TSS) on PL performance were also evaluated. One experimental group was reared in a conventional microalgae-based system with daily water exchange and daily addition of microalgae (herein called microalgae treatment). The other two experimental groups were reared using biofloc technology (BFT) with daily dextrose addition and no water exchange, but in the “Biofloc-500” treatment, TSS were maintained at around 500 mg L−1, while in the “Biofloc-700” treatment, TSS were maintained at around 700 mg L−1. Water quality variables remained within the appropriate range for larval culture. In microalgae treatment, ammonia control was likely associated with its assimilation into microalgae biomass and daily water exchange. In biofloc tanks, however, the addition of dextrose stimulated the production of bacterial biomass from ammonia. This system required only 12.9% of the water used by the microalgae treatment since water was not exchanged during the culture. The nursery of young PLs resulted in similar (P > 0.05) performance in all treatments: survival >94%, PL length ∼ 11.5 mm, and PL dry weight ∼ 1.2 mg. In addition, the salinity stress test (>90.0%) was not significantly different among treatments. Our results indicate that BFT can be as effective as the microalgae-based system for the nursery of young L. vannamei post-larvae. We also found that post-larvae performance was similar (P > 0.05) between biofloc treatments, indicating that organisms can tolerate environments with large quantities of solids.  相似文献   

8.
African catfish (Clarias gariepinus) and lemon fin barb hybrid (LFBH) (Hypsibarbus wetmorei ♂ × Barbodes gonionotus ♀) were cultured in either a biofloc technology (BFT) system or an individual recirculating aquaculture system (RAS) and their survival, growth, feeding efficiencies and biochemical composition were then compared after 8 weeks. LFBH and African catfish were chosen based on their different feeding habits. In the BFT treatments, glycerol was added to create a carbon to nitrogen ratio of 15, while the RAS system consisted of a fine mesh mechanical and biological filter. Each of the four treatments was triplicated, with each replicate consisting of 20 African catfish (0.98 ± 0.05 g) or LFBH (1.77 ± 0.02 g). Water quality and biofloc formation were examined weekly while the biofloc proximate composition was measured in weeks 5 and 8. During weeks 6, 7 and 8 the total viable bacterial colony forming units (CFU) were quantified. Regardless of species, biofloc formation was similar but the crude protein, lipid and ash significantly decreased from week 5 to week 8. However, biofloc crude protein and ash were significantly higher in the LFBH treatment. Total viable CFU were significantly higher (P < 0.05) in BFT compared to RAS, with LFBH having significantly more (P < 0.05) than African catfish. The proximate composition of the fish were unaffected by either system. Implementing BFT significantly (P < 0.05) improved both African catfish and LFBH growth, but this improvement was substantially higher for LFBH (41.6%) than for African catfish (7.6%). This may be due to a better ability of LFBH to consume smaller particles. Preliminary results also indicate that the nutritional composition of bioflocs could be influenced by biofloc age, which could have implications to solids management.  相似文献   

9.
The objectives of this study were: (1) Compare two systems for pre‐maturation of Litopenaeus vannamei in terms of spermatophore and sperm quality, (2) Compare the effect of feeds with different protein levels on reproductive quality of males reared in a biofloc‐dominated system. Animals (36.40 ± 3.13 g) reared under biofloc technology (BFT) were used in the 30‐day experiment, which involved four treatments: one in a clear water system (CW) and other three in a BFT system. The BFT treatments were differentiated by feed: mix of fish, squid and crab (BFT+FF) composed of 68.48% dietary protein (DP); broodstock feed (BFT+BF) composed of 52.51% DP; and juvenile feed (BFT+JF) composed of 39.91% DP. Feed in the CW was also the mix of fresh food. Spermatophore and sperm quality were analyzed at the beginning and end of the experiment. Higher normal sperm rate was recorded in the CW compared with the BFT+FF. Among the BFT treatments, the BFT+FF had the lowest normal sperm rate. Thus, the use of BFT for pre‐maturation of L. vannamei allowed the reduction in dietary protein levels from 68.48% (BFT+FF) to 39.91% (BFT+JF) and the maintenance of spermatophore and sperm quality compared to the system based on high daily exchange rate.  相似文献   

10.
Commercial production of Atlantic salmon smolts, post-smolts, and market-size fish using land-based recirculation aquaculture systems (RAS) is expanding. RAS generally provide a nutrient-rich environment in which nitrate accumulates as an end-product of nitrification. An 8-month study was conducted to compare the long-term effects of “high” (99 ± 1 mg/L NO3-N) versus “low” nitrate-nitrogen (10.0 ± 0.3 mg/L NO3-N) on the health and performance of post-smolt Atlantic salmon cultured in replicate freshwater RAS. Equal numbers of salmon with an initial mean weight of 102 ± 1 g were stocked into six 9.5 m3 RAS. Three RAS were maintained with high NO3-N via continuous dosing of sodium nitrate and three RAS were maintained with low NO3-N resulting solely from nitrification. An average daily water exchange rate equivalent to 60% of the system volume limited the accumulation of water quality parameters other than nitrate. Atlantic salmon performance metrics (e.g. weight, length, condition factor, thermal growth coefficient, and feed conversion ratio) were not affected by 100 mg/L NO3-N and cumulative survival was >99% for both treatments. No important differences were noted between treatments for whole blood gas, plasma chemistry, tissue histopathology, or fin quality parameters suggesting that fish health was unaffected by nitrate concentration. Abnormal swimming behaviors indicative of stress or reduced welfare were not observed. This research suggests that nitrate-nitrogen concentrations  100 mg/L do not affect post-smolt Atlantic salmon health or performance under the described conditions.  相似文献   

11.
Data on operation and performance of cost-effective solutions for end-of-pipe removal of nitrate from land-based saltwater recirculating aquaculture systems (RAS) are scarce but increasingly requested by the aquaculture industry. This study investigated the performance of a (semi)commercial-scale fixed-bed denitrification unit using single sludge for treating effluent from a commercial, saltwater RAS used for production of Atlantic salmon (Salmo salar). A fixed-bed denitrification reactor was fed continuously with 3-days hydrolyzed sludge from the commercial RAS, and was operated at different hydraulic retention times (HRTs; 1.82, 3.64, 5.46, or 7.28 h) or influent C/N ratios (3, 5, 7, or 10). Twenty-four h pooled samples were collected from the inflowing RAS water and the hydrolyzed sludge as well as from the denitrification reactor outlet, and samples were analyzed for nutrients and organic matter content.Nitrate removal rates increased consistently with decreasing HRT (from 64.3 ± 5.2–162.7 ± 22.0 g NO3-N/m3/d within the HRTs tested) at non-limiting C/N ratios, while nitrate removal efficiencies decreased (from 99.6 ± 0.3–58.2 ± 8.9 %). With increasing influent C/N ratios at constant HRT (3.64 h), nitrate removal rates increased until the removal efficiency was close to 100 % and nitrate concentration in the denitrification reactor became rate-limiting. A maximum nitrate removal rate of 162.7 ± 2.0 g NO3-N/m3/d was achieved at a HRT of 1.82 h and an influent C/N of 6.6 ± 0.5, while the most efficient use of hydrolyzed sludge (0.19 ± 0.02 g NO3-N removed/g sCOD supplied) was obtained with a HRT of 3.64 h and a C/N ratio of 2.9. Removal rates of organic matter significantly and consistently increased with decreasing HRT and increasing C/N ratio. In addition, reducing HRT and increasing C/N ratios significantly improved removal of total phosphorus (TP) and PO4-P.In conclusion, optimal management of the operating parameters (HRT and C/N ratio) in a single-sludge denitrification process can significantly reduce the discharge of nitrogen, organic matter, and phosphorous from land-based saltwater RAS and thus contribute to increased sustainability.  相似文献   

12.
Biofloc technology (BFT) has been used to rear white shrimp, Litopenaeus vannamei. In this culturing system, the absence of aeration causes a rapid drop in dissolved oxygen levels, and hydrogen peroxide (H2O2) can be used as an emergency source of oxygen. This study aimed to determine the lethal concentration and safe level of H2O2 applied as a source of oxygen for juvenile white shrimp L. vannamei in a BFT system. Juveniles (1.39 ± 0.37 g) were exposed for 2 h to different concentrations of H2O2 [29 (100), 58 (200), 116 (400), 174 (600), 232 (800), 290 (1,000) and 348 (1,200) μL H2O2/L (ppm H2O2-29 %/L)] in addition to a control group without addition of H2O2, and the survival rates were monitored for 96 h. The LC50 values and 95 % confidence intervals at 24, 48, 72 and 96 h were 235.5 (207–268), 199.1 (172–229), 171.1 (146–198) and 143.3 (120–170) μL H2O2/L, respectively. The safe level was 14.3 μL H2O2/L, and the highest concentration with survival rates similar to the control group (NOAEC) was 29 μL H2O2/L. In these concentrations, H2O2 can be used as a safe source of oxygen for L. vannamei reared in BFT systems.  相似文献   

13.
Previous research and experience has linked elevated dissolved carbon dioxide (CO2) to reduced growth performance, poor feed conversion, and a variety of health issues in farm-raised fish, including Atlantic salmon Salmo salar. Supplemental control measures in water recirculation aquaculture systems (RAS) to reduce CO2 accumulation, however, such as increased water pumping to decrease tank hydraulic retention time, can represent significant costs for operators. We exposed post-smolt S0 Atlantic salmon (197 ± 2 g, 423 days post-hatch) to either high (20 ± 1 mg/L) or low (8 ± <1 mg/L) dissolved CO2 in six replicated freshwater RAS for 384 days to investigate differences in performance and health as the salmon were grown to harvest size. All RAS were operated at moderate water exchange rates (1.0% of the total recirculating flow), a 24-h photoperiod was provided, fish were fed to satiation, and densities were maintained between 40 and 80 kg/m3. Over the study period, dissolved oxygen was kept at saturation, mean water temperature was 14.1 ± 0.1 °C, and alkalinity averaged 237 mg/L as CaCO3. At study’s end, no significant differences in fish weight (high CO2 mean weight = 2879 ± 35 g; low CO2 mean weight = 2896 ± 12 g), feed conversion ratio (1.14 ± 0.12 vs. 1.22 ± 0.13, respectively), or thermal growth coefficient (1.45 ± 0.01 vs. 1.46 ± 0.01, respectively), were observed. No significant differences in survival (high CO2 mean survival = 99.1 ± 0.4%; low CO2 mean survival = 98.9 ± 0.3%) or culls due to saprolegniasis (3.5 ± 1% vs. 3.0 ± 1%, respectively) were determined, and no nephrocalcinosis was observed through histopathological evaluation. Blood gas and chemistry evaluation revealed higher pCO2, bicarbonate, and total CO2, and lower chloride and glucose, in the high CO2 cohort. Molecular analyses of gill enzyme regulation showed significantly higher expression of Na+/K+ ATPase α1a in high CO2 fish at 3-weeks post-challenge, indicating physiological adaptation to the higher CO2 environment without any noticeable long-term impacts on health or performance. Overall, the results of this study suggest that, at 237 mg/L as CaCO3 mean alkalinity, post-smolt Atlantic salmon can be raised in freshwater RAS to harvest size with up to 20 mg/L CO2 without significantly impacting fish health and performance.  相似文献   

14.
Aquatic animals raised in recirculating aquaculture systems (RAS) can develop preharvest “off-flavors” such as “earthy” or “musty” which are caused by the bioaccumulation of the odorous compounds geosmin or 2-methylisoborneol (MIB), respectively, in their flesh. Tainted aquatic products cause large economic losses to producers due to the inability to market them. Certain species of actinomycetes, a group of filamentous bacteria, have been attributed as the main sources of geosmin and MIB in RAS. Previous studies have demonstrated that certain nutritional factors can stimulate or inhibit bacterial biomass and geosmin production by certain actinomycetes. In the current study, the effects of two nitrate-nitrogen (NO3--N) levels (20–40 mg/L and 80–100 mg/L) on geosmin and MIB levels in culture water and the flesh of rainbow trout (Oncorhynchus mykiss) raised in RAS were monitored. Water and fish tissue samples were collected over an approximately nine-week period from six RAS, three replicates each of low and high NO3--N, and analyzed for geosmin concentrations using solid phase microextraction–gas chromatography–mass spectrometry. Results indicated no significant difference in geosmin concentrations in water or fish flesh between the low and high NO3--N RAS. Therefore, higher NO3--N levels that may occur in RAS will not adversely or beneficially impact geosmin-related off-flavor problems.  相似文献   

15.
The nematode Panagrolaimus sp. was tested as live feed to replace Artemia nauplii during first larval stages of whiteleg shrimp Litopenaeus vannamei. In Trial 1, shrimp larvae were fed one of four diets from Zoea 2 to Postlarva 1 (PL1): (A) Artemia nauplii, control treatment; (NC) nematodes enriched in docosahexaenoic acid (DHA) provided by the dinoflagellate Crypthecodinium cohnii; (N) non‐enriched nematodes; and (Algae) a mixture of microalgae supplemented in C. cohnii cells. In Trial 2, shrimp were fed (A), (NC) and a different treatment (NS) with nematodes enriched in polyunsaturated fatty acids (PUFAs) provided by the commercial product S.presso®, until Postlarva 6 (PL6). Mysis 1 larvae fed nematodes of the three dietary treatments were 300 μm longer (3.2 ± 0.3 mm) than control larvae. At PL1, control shrimp were 300 μm longer (4.5 ± 0.3 mm) than those fed DHA‐enriched or PUFAs‐enriched nematodes. No differences were observed in length and survival at PL6 between control larvae and those fed DHA‐enriched nematodes (5.1 ± 0.5 mm; 33.1%–44.4%). Shrimp fed microalgae showed a delay in development at PL1. This work is the first demonstration of Panagrolaimus sp. suitability as a complete substitute for Artemia in rearing shrimp from Zoea 2 to PL6.  相似文献   

16.
The effects of ambient nitrite concentrations on larval development of giant river prawn Macrobrachium rosenbergii were evaluated. The trials were conducted in two phases: phase 1, larvae from stages I through VIII and phase 2, larvae from stage VIII until post-larvae. In both phases larvae were kept in water with nitrite (NO2-N) concentrations of 0, 2, 4, 8 and 16 mg/L. Oxygen consumption was analyzed for larvae in stage II at nitrite concentrations of 0, 4, and 8 mg/L. Survival, weight gain, larval stage index and metamorphosis rate decreased linearly with increasing ambient nitrite concentration. However, there was no significant difference between larvae subjected to 0 and 2 mg/L NO2-N. In phase 1, there was total mortality at 16 mg/L NO2-N, while in phase 2 larval development stopped at stage X in this treatment. The oxygen consumption in stage II increased significantly at NO2-N concentration from 0 to 4 mg/L, but there was no difference between 4 and 8 mg/L NO2-N. In conclusion, increasing ambient nitrite up to 16 mg/L NO2-N delays larval development, reduces larval growth rate and causes mortality, whereas no significant effect occurs for levels below 2 mg/L NO2-N. However, the establishment of a general safe level of nitrite to M. rosenbergii hatchery may be difficult due to the great variability in larvae individual sensitivity.  相似文献   

17.
False clownfish, Amphiprion ocellaris, is one of the most commercialized fish species in the world, highly produced to supply the aquarium market. The high stocking densities used to maximize fish production can increase ammonia and nitrite to toxic levels. In this study, A. ocellaris juveniles (1.20 ± 0.34 g) were exposed to six concentrations of ammonia ranged from 0.23 to 1.63 mg/L NH3-N and eight concentrations of nitrite (26.3–202.2 mg/L NO2 ?-N). The LC50- 24, LC50-48, LC50-72 and LC50-96 h were estimated to be 1.06, 0.83, 0.75 and 0.75 mg/L for NH3-N and 188.3, 151.01, 124.1 and 108.8 mg/L for NO2 ?-N. Analysis of gill lesions caused by sublethal concentrations of these nitrogenous compounds showed that both nitrogenous compounds induced tissue lesions such as hyperplasia of epithelium cells, hypertrophy of chloride cells and lamellar lifting to all concentrations tested. However, histopathological alterations were more conspicuous accordingly the increase of ammonia or nitrite in fish exposed to 0.57 mg/L NH3-N or 100 mg/L NO2 ?-N. Based on our results, we recommend to avoid concentrations higher than 0.57 mg/L of NH3-N and 25 mg/L of NO2-N in water.  相似文献   

18.
Temperature and salinity are two factors known to influence the growth potential and survival of the Pacific white shrimp, Litopenaeus vannamei, acclimated to low salinity waters. In west Alabama, farmers suspect low water temperatures at stocking, in conjunction with low salinity and suboptimal ionic profiles, might be responsible for reduced survival and production at harvest. To determine the influence of temperature and salinity on post‐larval (PL) L. vannamei, a series of bioassays were conducted at the E.W. Shell Fisheries Research Station in Auburn, Alabama and Claude Peteet Mariculture Center in Gulf Shores, Alabama. PL L. vannamei of ages 11, 13, and 20 (PL11, PL13, and PL20) were acclimated down to salinities of 12, 4, 2, 1, 0.5, and 0.2 ppt at different temperatures ranging from 17.6 to 24.0 C. During the acclimation bioassays survivals were assessed at 24 and 48 h. PL survival of the three age groups examined were significantly reduced at salinities of 1, 0.5, and 0.2 ppt. These results correspond well to those reported at higher temperatures confirming that across the tested temperature range salinity endpoint was the driving factor in determining survival and that suboptimal temperatures had a minimal influence on survival.  相似文献   

19.
The risk of hydrogen sulfide (H2S) production can be a challenge in marine land-based recirculating aquaculture systems (RAS). Hydrogen sulfide is a toxic gas that can cause massive fish mortality even at low concentrations, and in addition, serious odour problems in the surroundings. It is a bacterial by-product originating from the degradation of organic matter in sulfur-rich waters such as marine waters. In order to hinder H2S production in marine land-based RAS, more information on the H2S production conditions and the associated microbiology is needed. In this study, the production of H2S from rainbow trout (Oncorhynchus mykiss) organic waste was examined using a novel H2S measurement method under a range of salinities (0, 5, 10, 15, 25 and 35 g/L) in anaerobic mixed reactors, and the microbial communities as well as abundance of sulfate reducing bacteria (SRB) were characterized. The maximum H2S concentration increased from 23.1 ± 8.2 mg H2S/L at 0 g/L salinity to 153.9 ± 34.1 mg H2S/L at 35 g/L salinity. Similarly, the H2S production rate increased from 5.6 ± 0.2 at 0 g/L salinity to 26.4 ± 12.7 mg of H2S produced per day at 35 g/L salinity. The highest H2S production was recorded after increased availability of volatile fatty acids, which were produced by fermentative bacteria from phyla Firmicutes and Bacteroidetes that dominated the microbial communities after day 5. The traditional sulfate reducing bacteria (SRB) were found only at 0 and 5 g/L salinity, while at higher salinities, H2S production was carried out by novel unquantifiable SRB. The results demonstrate that H2S can be a pronounced problem in marine RAS, although it can be controlled through preventing anaerobic conditions within the system.  相似文献   

20.
The initial stages of rearing marine shrimp using biofloc technology (BFT) involve the biofloc formation process. At the same time, there is an increase in the levels of total suspended solids and a decrease in alkalinity and pH. This reduction of alkalinity and pH occurs due to the consumption of inorganic carbon by the autotrophic bacteria present in the bioflocs and biofilms. The aim of this study was to evaluate the effects of different alkalinities on water quality and the zootechnical performance of the marine shrimp Litopenaeus vannamei in a BFT system. The experiment consisted of four treatments, with three replicates each: 75, 150, 225 and 300 mg CaCO3/L. To maintain the alkalinity at the established level, sodium bicarbonate was applied. For the experiments, twelve experimental units (area = 0.20 m2) with an effective volume of 50 L were stocked with 30 juvenile L. vannamei (0.20 ± 0.07 g), to achieve a stocking density of 150 shrimps/m2 and were maintained for an experimental period of 49 days. The 75 treatment presented the highest levels of ammonia and nitrite throughout the study, compared to the 150 and 300 treatments. The results showed that higher alkalinity favors biofloc formation and the establishment of nitrifying bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号