首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
2.
Different Shewanella species are isolated both from healthy and from diseased fish. To date, contemporary methods do not provide sufficient insight to determine species and detail differentiation between tested strains. Bacteria isolated from cultured (n = 33), wild (n = 12) and ornamental (n = 6) fish, as well as several reference strains, were tested by 16S rRNA gene sequencing, ERIC‐PCR and pulsed‐field gel electrophoresis (PFGE) assays. Our study indicates that isolates collected from freshwater fish were genetically diverse. Based on 16S rRNA gene sequences, bacteria were clustered into groups S. putrefaciens, S. xiamenensis and S. oneidensis. Some isolates were classified only to genus Shewanella; thus, 16S rRNA gene analyses were not enough to determine the species. ERIC‐PCR revealed 49 different genotype profiles indicating that the method might be useful for differentiation of Shewanella isolates irrespectively to species identification, contrary to PFGE which is not suitable for Shewanella typing.  相似文献   

3.
This is the first study to isolate, identify and characterize Streptococcus iniae as the causative disease agent in two tilapia (Oreochromis aureus) populations. The populations were geographically isolated, of distinct origins, and did not share water sources. Affected fish showed various external (e.g., exophthalmia and cachexia, among others) and internal (e.g., granulomatous septicaemia and interstitial nephritis, among others) signs. All internal organ samples produced pure cultures, two of which (one from each farm, termed S‐1 and S‐2) were subjected to biochemical, PCR and 16S rRNA sequencing (99.5% similarity) analyses, confirming S. iniae identification. The two isolates presented genetic homogeneity regardless of technique (i.e., RAPD, REP‐PCR and ERIC‐PCR analyses). Pathogenic potentials were assessed through intraperitoneal injection challenges in rainbow trout (Oncorhynchus mykiss) and zebrafish (Danio rerio). Rainbow trout mortalities were respectively 40% and 70% at 104 and 106 CFU per fish with the S‐1 isolate, while 100% mortality rates were recorded in zebrafish at 102 and 104 CFU per fish with the S‐2 isolate. The obtained data clearly indicate a relationship between intensified aquaculture activities in Mexico and new disease appearances. Future studies should establish clinical significances for the tilapia industry.  相似文献   

4.
Biochemical test, pulsed‐field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus sequence PCR (ERIC‐PCR) were used to compare 42 strains of Lactococcus garvieae isolated from different regions of Turkey, Italy, France and Spain. Twenty biotypes of L. garvieae were formed based on 54 biochemical tests. ERIC‐PCR of genomic DNA from different L. garvieae strains resulted in amplification of multiple fragments of DNA in sizes ranging between 200 and 5000 bp with various band intensities. After cutting DNA with ApaI restriction enzyme and running on the PFGE, 11–22 resolvable bands ranging from 2 to 194 kb were observed. Turkish isolates were grouped into two clusters, and only A58 (Italy) strain was connected with Turkish isolates. Similarities between Turkish, Spanish, Italian and French isolates were <50% except 216‐6 Rize strain. In Turkey, first lactococcosis occurred in Mugla, and then, it has been spread all over the country. Based on ERIC‐PCR, Spanish and Italian strains of L. garvieae were related to Mugla strains. Therefore, after comparing PFGE profiles, ERIC‐PCR profiles and phenotypic characteristics of 42 strains of L. garvieae, there were no relationships found between these three typing methods. PFGE method was more discriminative than the other methods.  相似文献   

5.
This study reports on the characterization of Vagococcus salmoninarum using phenotypic, serological, antigenic, genetic and proteomic methods. All strains of V. salmoninarum were resistant to most of the antimicrobials tested, and only 10% of strains were sensitive to florfenicol. Serological analysis demonstrated a high antigenic homogeneity within the species. No cross‐reaction was detected with other fish pathogenic species causing streptococcosis (Lactococcus garvieae, Streptococcus parauberis, Streptococcus iniae, Streptococcus agalactiae, Carnobacterium maltaromaticum) using serum against V. salmoninarum CECT 5810. Electrophoretic analysis of cell surface proteins and immunoblot supported the antigenic homogeneity within V. salmoninarum strains. Moreover, limited diversity was detected using genomic (RAPD, ERIC‐PCR and REP‐PCR) and MALDI‐TOF‐MS analyses. The phenotypic, genomic and proteomic methods tested allowed the rapid differentiation of V. salmoninarum from the other species causing streptococcosis. However, MALDI‐TOF‐MS is the most promising method for typing and characterization of V. salmoninarum.  相似文献   

6.
7.
Streptococcus agalactiae is a Gram‐positive facultative intracellular bacterium that leads to severe economic loss of tilapia worldwide. Previous studies demonstrated that CD40 contributes to host protection against intracellular injection. In this study, CD40 was characterized from Nile tilapia (Oreochromis niloticus), named OnCD40. Sequence analysis showed that open reading frame of OnCD40 was 933 bp, containing a single peptide, a transmembrane domain and four cysteine‐rich domains. The qRT‐PCR revealed that OnCD40 was expressed in all examined tissues with the most abundant ones in spleen and thymus. After S. agalactiae stimulation, the expression of OnCD40 was significantly induced in most of the detected organs. Moreover, OnCD40‐overexpressing fish elicited significant protection against subsequent S. agalactiae challenge; approximately 10000‐fold fewer bacteria were detected in spleen of OnCD40‐overexpressing fish in comparison with control fish. Thus, CD40 had protecting function in Nile tilapia against intracellular pathogens.  相似文献   

8.
Streptococcus iniae is an important bacterial pathogen of fish, causing up to 50% mortality in stocks, which has recently been associated with human infections. To determine whether S. iniae isolates from humans and fish are similar, the present authors examined the biochemical profiles and genetic relatedness of these isolates by random amplified polymorphic DNA (RAPD) analysis and repetitive primer polymerase chain reaction(REP PCR). The biochemical profiles differentiated between the human and fish isolates of S. iniae using pyrrolidonyl arylamidase, arginine dehydrogenase, ribose, β-glucoronidase and glycogen as markers. These biochemical results suggest that the fish and human S. iniae isolates are genetically different. However, RAPD and REP PCR do not have the discriminatory power to differentiate between these streptococcus isolates using five different RAPD primers and BoxA primer.  相似文献   

9.
The intraspecific variability of E. ictaluri isolates from different origins was investigated. Isolates were recovered from farm‐raised catfish (Ictalurus punctatus) in Mississippi, USA, tilapia (Oreochromis niloticus) cultured in the Western Hemisphere and zebrafish (Danio rerio) propagated in Florida, USA. These isolates were phenotypically homologous and antimicrobial profiles were largely similar. Genetically, isolates possessed differences that could be exploited by repetitive‐sequence‐mediated PCR and gyrB sequence, which identified three distinct E. ictaluri genotypes: one associated with catfish, one from tilapia and a third from zebrafish. Plasmid profiles were also group specific and correlated with rep‐PCR and gyrB sequences. The catfish isolates possessed profiles typical of those described for E. ictaluri isolates; however, plasmids from the zebrafish and tilapia isolates differed in both composition and arrangement. Furthermore, some zebrafish and tilapia isolates were PCR negative for several E. ictaluri virulence factors. Isolates were serologically heterogenous, as serum from a channel catfish exposed to a catfish isolate had reduced antibody activity to tilapia and zebrafish isolates. This work identifies three genetically distinct strains of E. ictaluri from different origins using rep‐PCR, 16S, gyrB and plasmid sequencing, in addition to antimicrobial and serological profiling.  相似文献   

10.
Streptococcus agalactiae is an emerging pathogen of fish and has caused significant morbidity and mortality worldwide. The main objective of this study is to assess whether pathogenic differences exist among isolates from different geographic locations. Nile tilapia (Oreochromis niloticus L.) were administered an intraperitoneal injection of suspension containing USA, Brazil, Honduras, Israel, or Kuwait S. agalactiae isolates at concentrations ranging from 102 to 107 cfu mL?1. The LD50 values 7 days after challenge were as follows: USA (1.0 × 102 cfu mL?1), Brazil (1.5 × 103 cfu mL?1), Honduras (6.8 × 103 cfu mL?1), Israel (1.0 × 104 cfu mL?1) and Kuwait (7.2 × 105 cfu mL?1). Fish from all groups exhibited lethargy, anorexia, exophthalmia, corneal opacity, erratic swimming, petechiae and mortality. Opercular clearing and ascites were only found after infection with certain geographic isolates. The findings in this study indicate that S. agalactiae isolates of different geographic origin can cause significant mortalities after experimental challenge and can have different pathogenic capacities. Isolates from the Americas (USA, Brazil and Honduras) were more pathogenic to Nile tilapia than isolates from the Middle East/Asia (Israel and Kuwait).  相似文献   

11.
Francisella noatunensis subsp. orientalis is a causative agent of systemic granulomatous disease in tilapia. The present study was designed to understand the genetic and phenotypic diversities among Taiwanese Fno isolates obtained from tilapia (n = 17) and green Texas cichlid (Herichthys cyanoguttatus) (n = 1). The enzymatic profiles of the isolates were studied using the API ZYM system. Phylogenetic tree analysis of the 16S rRNA and housekeeping gene and pulsed‐field gel electrophoresis (PFGE) were carried out to determine the genotypic characters of all isolates. The phylogenetic tree showed similarity of 99%–100% nucleotide sequences of 16S rRNA and housekeeping genes compared to the Fno references genes from GenBank database. Comparatively, the results revealed an identical profile of enzymatic and PFGE pattern which was distincted from that of F. philomiragia. To understand the pathogenicity, the isolates were intraperitoneal injected to tilapia the gross lesions were observed concomitant with natural outbreak. Median lethal dose upon Nile tilapia and red tilapia were 9.06 × 103 CFU/fish and 2.08 × 102 CFU/fish, respectively. Thus, our data provide understanding the epidemiology of Taiwanese Fno isolates, and help in development of future control and prevention.  相似文献   

12.
For the sustainable farming of tilapia, proper maintenance of their health and adequate treatment for infections at appropriate time are inevitable. The indiscriminate use of antibiotics in aquaculture, as a part of treatment and as growth promoters, accelerates antimicrobial resistance (AMR) among the fish pathogens. In the present study, we have isolated diverse aeromonads from Nile tilapia and studied their antibiogram and plasmid profiling. Aeromonas hydrophila, Aeromonas veronii, Aeromonas sobria, Aeromonas dhakensis, Aeromonas caviae, Aeromonas jandaei and Aeromonas aquatica were isolated from infected tilapia (n = 150), and their Shannon wiener diversity index was calculated as 1.926. A. veronii was found to be the most multiple antibiotic‐resistant pathogen with the MAR index of 0.46, and A. aquatica was noticed as the least resistant isolate. The minimum inhibitory concentration of resistant antibiotics was shown as >256 mcg/ml for most of the isolates. The virulent genes such as aerolysin and hemolysin were identified in all the isolates except A. aquatica. The detection of class 1 integrons, plasmid profiling and plasmid curing studies confirmed that AMR exhibited by most of the Aeromonas species is of plasmid mediated. This challenges the risk of wide spread of AMR among the pathogens and subsequent treatment of the infection.  相似文献   

13.
Identifying candidate genes involved into osmoregulation provides a basis for developing molecular markers for breeding of saline tilapia. In this study, we characterized and conducted a functional analysis of the Enhancer of Polycomb Homolog 1 (EPC1) gene in Nile tilapia. The length of the EPC1CDS sequence was 1161 bp, including 14 exons encoding 386 amino acid residues. The expression for EPC1 was investigated in the gill, brain and intestine tissues of Nile tilapia that challenged by 0 ppt, 10 ppt, 15 ppt and 20 ppt of salinity content by qRT‐PCR. We found that the gene was significantly down‐regulated at 20 ppt of high salinity stress. We also detected significant evidence of 5 SNP association in the EPC1 gene with salt tolerance trait by genotyping 192 extreme individuals from a full‐sib tilapia family (N = ~500). The individuals with heterozygous SNP genotypes in the population (with an average survival time of 3,064 s) were significantly less tolerant than the other individuals with the homozygote genotypes (with an average survival time of 5,986 s). Further functional analysis on the EPC1 protein sequences from 31 fish species inhabiting different salinity environments identified seven amino acid sites as significantly associated sites (α < 0.01) with salinity content. These data suggested that the EPC1 gene may be a candidate gene related to osmoregulation process in tilapia. Our findings could contribute to selection of the saline tilapia by using marker‐assisted selection technique.  相似文献   

14.
Streptococcus agalactiae is an important pathogen in fish, causing great losses of intensive tilapia farming. To develop a potential live attenuated vaccine, a re‐attenuated S. agalactiae (named TFJ‐ery) was developed from a natural low‐virulence S. agalactiae strain TFJ0901 through selection of resistance to erythromycin. The biological characteristics, virulence, stability and the immunization protective efficacy to tilapia of TFJ‐ery were determined. The results indicated that TFJ‐ery grew at a slower rate than TFJ0901. The capsule thickness of TFJ‐ery was significantly less (p < 0.05) than TFJ0901. When Nile tilapia were intraperitoneally (IP) injected with TFJ‐ery, the mortality of fish was decreased than that injected with TFJ0901. The RPS of fish immunized with TFJ‐ery at a dose of 5.0 × 107 CFU was 95.00%, 93.02% and 100.00% at 4, 8 and 16 weeks post‐vaccination, respectively. ELISA results showed that the vaccinated fish produced significantly higher (p < 0.05) antibody titres compared to those of control at 2 or 4 weeks post‐vaccination. Taken together, our results suggest that erythromycin could be used to attenuate S. agalactiae, and TFJ‐ery is a potent attenuated vaccine candidate to protect tilapia against S. agalactiae infections.  相似文献   

15.
Since 2012, low‐to‐moderate mortality associated with an Erysipelothrix sp. bacterium has been reported in ornamental fish. Histological findings have included facial cellulitis, necrotizing dermatitis and myositis, and disseminated coelomitis with abundant intralesional Gram‐positive bacterial colonies. Sixteen Erysipelothrix sp. isolates identified phenotypically as E. rhusiopathiae were recovered from diseased cyprinid and characid fish. Similar clinical and histological changes were also observed in zebrafish, Danio rerio, challenged by intracoelomic injection. The Erysipelothrix sp. isolates from ornamental fish were compared phenotypically and genetically to E. rhusiopathiae and E. tonsillarum isolates recovered from aquatic and terrestrial animals from multiple facilities. Results demonstrated that isolates from diseased fish were largely clonal and divergent from E. rhusiopathiae and E. tonsillarum isolates from normal fish skin, marine mammals and terrestrial animals. All ornamental fish isolates were PCR positive for spaC, with marked genetic divergence (<92% similarity at gyrB, <60% similarity by rep‐PCR) between the ornamental fish isolates and other Erysipelothrix spp. isolates. This study supports previous work citing the genetic variability of Erysipelothrix spp. spa types and suggests isolates from diseased ornamental fish may represent a genetically distinct species.  相似文献   

16.
Lactococcus garvieae infection in cultured Nile tilapia, Oreochromis niloticus (L.), and pintado, Pseudoplathystoma corruscans (Spix & Agassiz), from Brazil is reported. The commercial bacterial identification system, Biolog Microlog®, confirmed the identity of L. garvieae . Infectivity trials conducted in Nile tilapia using Brazilian Nile tilapia L. garvieae isolates resulted in a median lethal dose-50 of 1.4 × 105 colony-forming units (CFU)/fish. This is the first evidence of the presence of this pathogen from Brazilian fish. In addition, this is the first report of L. garvieae infection in either Nile tilapia or pintado. Collectively, this evidence expands the geographical range of fish hosts, number of fish hosts harbouring L. garvieae and carbon source utilization by L. garvieae fish isolates. Furthermore, the Biolog system may be an alternative technique to polymerase chain reaction for the identification of L. garvieae and discrimination between closely related bacterial species.  相似文献   

17.
Disease outbreaks occurred during 2007–2013 in Taiwan with 2.5–10% mortality among the cage cultured cobia, Rachycentron canadum (L.), characterized by the presence of polyserositis, pericarditis and peritonitis. The micro‐organisms isolated from internal organs were Gram‐positive cocci. The isolates were confirmed as Streptococcus dysgalactiae by a polymerase chain reaction assay that yielded the expected specific 259 bp amplicon. Additionally, partial sequence of the 16S–23S rDNA intergenic spacer region of the GCS strain isolates from fish was also compared and produced 100% sequence identity with S. dysgalactiae (GenBank accession number AB252398 ). The genetic characterization was then determined by pulsed‐field gel electrophoresis (PFGE) analysis. Based on PFGE, the Apa I or Sma I digestion patterns of chromosomal DNA of these isolates were grouped into three main clusters. Taiwanese strains were divided into two clusters, and the tet(M) gene was detected in cluster 1 (pulsotypes: A1–A2 and S1–S3), but not in cluster 2 strains (pulsotypes: A3–A4 and S4–S5). Three Japanese strains from amberjack, Seriola dumerili (Risso), were grouped into cluster 3 (pulsotypes: A5–A7 and S6–S8) and displayed no mortality to cobia in the challenge experiment. Conversely, Taiwanese strains from cobia and snubnose pompano, Trachinotus blochii (L.), displayed a mortality rate of 50–87.5% in cobia.  相似文献   

18.
Aeromonas hydrophila and Gyrodactylus cichlidarum are common pathogens that induce significant economic losses in farm‐reared Nile tilapia. Nowadays, the sudden appearance of fish mortalities was exaggerated due to mixed and multiple infections. During summer 2016, mass mortality among earthen pond‐farmed Nile tilapia was reported. Clinico‐pathological, bacteriological and parasitological examinations have been demonstrated. As well, the water quality parameters were assessed. The clinical and histopathological findings of the moribund and recently dead fish were characterized by generalized septicaemic signs. The water quality parameters were significantly elevated over the permissible levels, whereas there was an elevation in nitrite (0.04 mg/L), un‐ionized ammonia (0.8 mg/L), hydrogen sulphide levels (153.1 mg/L) and organic matter content (3.79 mg/L). A. hydrophila was identified based on phenotypic characterization, API 20E features and the homology of 16S rRNA gene sequence analysis. In addition, PCR data confirmed the presence of aerolysin (aerA) and haemolysin (hly) genes in the identified A. hydrophila isolates. Gene sequencing and phylogenetic analysis based on 16S rRNA sequence confirmed that A. hydrophila H/A (accession No. MN726928) of the present study displayed 98%–99% identity with the 16S rRNA gene of A. hydrophila. Furthermore, the monogenetic trematode, G. cichlidarum was identified in the wet mounts from the skin and gills of the examined fish with a high infestation rate. In this context, it was reported that the synergistic co‐infection of A. hydrophila and G. cichlidarum with deteriorated water quality parameters could induce exaggerated fish mortalities during hot weather.  相似文献   

19.
Streptococcus agalactiae infections in fish are predominantly caused by beta‐haemolytic strains of clonal complex (CC) 7, notably its namesake sequence type (ST) 7, or by non‐haemolytic strains of CC552, including the globally distributed ST260. In contrast, CC23, including its namesake ST23, has been associated with a wide homeothermic and poikilothermic host range, but never with fish. The aim of this study was to determine whether ST23 is virulent in fish and to identify genomic markers of fish adaptation of S. agalactiae. Intraperitoneal challenge of Nile tilapia, Oreochromis niloticus (Linnaeus), showed that ST260 is lethal at doses down to 10cfu per fish, whereas ST23 does not cause disease at 10cfu per fish. Comparison of the genome sequence of ST260 and ST23 with those of strains derived from fish, cattle and humans revealed the presence of genomic elements that are unique to subpopulations of S. agalactiae that have the ability to infect fish (CC7 and CC552). These loci occurred in clusters exhibiting typical signatures of mobile genetic elements. PCR‐based screening of a collection of isolates from multiple host species confirmed the association of selected genes with fish‐derived strains. Several fish‐associated genes encode proteins that potentially provide fitness in the aquatic environment.  相似文献   

20.
Streptococcus dysgalactiae strains have been isolated from cultured amberjack Seriola dumerili and yellowtail Seriola quinqueradiata in Japan. To characterize the fish isolates, we performed genetic analysis and compared the biochemical properties of these isolates with those of the S. dysgalactiae subsp. dysgalactiae and S. dysgalactiae subsp. equisimilis strains isolated from mammals. The genetic analysis revealed that the fish isolates were genetically very similar to each other with high DNA–DNA relatedness (>95.4%) and sequence homology. Meanwhile, the DNA relatedness between mammalian isolates and the fish isolates was 73.4–82.6%. In biased sinusoidal gel electrophoresis (BSFGE) analysis, the restriction patterns of mammalian isolates were different from those of fish isolates. The fish isolates did not show streptokinase activity in plasminogen obtained from mammals. These characteristics enabled us to distinguish between the fish isolates and the Sdd and Sde strains isolated from mammals. In order to obtain epidemiological information on the fish isolates, BSFGE patterns from 284 S. dysgalactiae strains from fish in Japan were examined. Based on the results of BSFGE analysis, the fish isolates were classified into 16 groups (AP1–AP16) with restriction enzyme ApaI. The dendrogram based on BSFGE analysis indicated that all fish isolates using in this study were closely related.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号