首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
I examined the age, growth, maturity, mortality, and body condition of walleye pollock, Theragra chalcogramma, in the northeastern Japan Sea (northern Japan Sea population) and evaluated their resilience to exploitation. Walleye pollock were collected in pre-spawning (October 1991-1995) and post-spawning (April 1990-1996) seasons. Estimated ages ranged from 3 to 18 years for both sexes. A von Bertalanffy growth model showed that females had longer asymptotic fork length (460 mm) than males (425 mm). Fifty percent of females and males were mature at 348 mm (4.6 years) and 322 mm (3.9 years), respectively. The instantaneous natural mortality rate was estimated to be 0.22. These life-history traits in the northern Japan Sea population were compared to those in the Bering Sea, the Gulf of Alaska, and the Japan Pacific populations. As a result, female walleye pollock in this population matured at small body sizes, grew rapidly toward small maximum sizes, and had short reproductive lifespans with low size-specific fecundity and poor body condition. Low prey availability and habitat temperatures are considered as a possible mechanism for the small maximum sizes in this population. The potential rate of population increase of both the northern Japan Sea population and other pollock populations tended to be lower than other exploited populations of non-viviparous marine fishes, suggesting potentially lower resilience to exploitation in this population and walleye pollock populations in general.  相似文献   

2.
Mortality rates of larval walleye pollock Theragra chakogramma were estimated from larval survey data from 1988 to 1991. Mortality estimates were based on cohort-specific losses between occupations of survey grids. Interannually, estimates of early feeding stage larval mortality rates ranged over an order of magnitude, from 0.045–0.43 day-1, and declined sharply with age. There is some evidence that mortality rates of early feeding larvae tend to be negatively correlated with temperature and postively correlated with wind mixing.  相似文献   

3.
Immunological detection of yolk protein was used to assess predation by pelagic amphipods (gammarid and hyperiid), mysids, and euphausiids on eggs and yolk-sac larvae of walleye pollock Theragra chalcogramma during 1988 and 1989. Consumption estimates were made on the basis of frequency of positive immunoassays, assay detection times (gut clearance time), predator abundance, and spatial overlap of predators and prey. From our results gammarid amphipods and euphausiids were important predators on eggs and yolk-sac larvae, respectively. Gammarid amphipods alone consumed about 14% of the standing stock of pollock eggs in 1989. These results were compared with those from clearance rate experiments of predators feeding on pollock eggs in 300-1 bags. In general, clearance rate estimates of egg consumption were lower than those determined from gut contents.  相似文献   

4.
A study of common minke and Bryde's whales was conducted in the western North Pacific in the 2000 and 2001 summer seasons to estimate prey selection of cetaceans as this is an important parameter in ecosystem models. Whale sighting and sampling surveys and prey surveys using quantitative echosounder and mid‐water trawl were carried out concurrently in the study. Biomasses of Japanese anchovy, walleye pollock and krill, which were major prey species of common minke and Bryde's whales, were estimated using an echosounder. The results suggested that common minke whale showed prey selection for Japanese anchovy while they seemed to avoid krill in both the offshore and coastal regions and walleye pollock in the continental shelf region. Selection for shoaling pelagic fish was similar to that in the eastern North Atlantic. Bryde's whale showed selection for Japanese anchovy in August 2000 and July 2001, while it showed prey selection for krill in May and June in 2001.  相似文献   

5.
A three-dimensional biophysical nutrient–phytoplankton–zooplankton model was used to investigate the spatial and temporal dynamics of food resources for young walleye pollock in the western Gulf of Alaska, to further understanding of recruitment processes for pollock. We modeled nitrogen, phytoplankton, a large herbivorous grazer parameterized as Neocalanus spp. (the biomass dominant copepod in the Gulf), and the 13 stages (egg, naupliar and copepodite) of Pseudocalanus spp. (a major constituent of the diet of pollock) so that the appropriate size class of food for each size of larval pollock was represented. Model results identified an area between the Semidi and Shumagin Islands that may not be suitable as a nursery area early in the year due to low prey abundance. Modeled mesoscale eddies, previously hypothesized to be important for larval pollock retention in Shelikof Strait, contained higher prey concentrations than the surrounding waters when they were cyclonic. This work also help to understand the consistency of pollock spawning in time and space in Shelikof Strait, by examining the timing and location of prey availability which, along with transport, narrows the window for optimal spawning.  相似文献   

6.
A key assumption of hypotheses that link the production of prey for larval fish with year-class strength of fish is that larval growth and condition is food-limited. We tested this assumption by comparing whole-body RNA-DNA ratios of individual Pacific herring, Clupea pallasi , larvae and Pacific sand lance, Ammodytes hex-apterus , larvae from Port Moller, a subarctic Alaskan estuary, with prey concentration and temperature. RNA-DNA ratios were correlated with larval length, but not with prey concentration or temperature. Ratios were not significantly different between a warm, well-mixed station with low prey concentrations and a colder, stratified station with higher prey concentrations. Using RNA-DNA ratios, we classified as starving 11 to 23% of first-feeding (< 13 mm long) herring larvae and 45% of first-feeding (< 7 mm long) sand lance larvae. However, starvation could not have been caused by low concentrations of prey because micro-zooplankton prey concentrations were high enough (16 to 84 prey L_l) to support relatively high rates of growth. Therefore, starving larvae were either abnormal or they were stIII learning to forage. We conclude that the magnitude of starvation among first-feeding herring and sand lance larvae, and, therefore, the total contribution of starvation to year-class strength, is dependent not only on prey concentration, but on the proportion of a population of larvae that can feed effectively.  相似文献   

7.
Walleye pollock Theragra chalcogramma is the most popular fish in Korea, often being used in a variety of food delicacies. However, since 2000, production of walleye pollock from distant-water fishing has been rapidly decreasing, and its domestic production is slowly dying out. Therefore, supply of walleye pollock to the Korean market has become heavily dependent on imports. Based on the supply–demand situation of walleye pollock in the Korean market and analyses of its production and markets, it can be undoubtedly predicted that there is a large potential for consumption of walleye pollock. From past records of walleye pollock consumption, Korea’s potential walleye pollock consumption can be estimated to be around 500,000 tons. However, it seems that the prospect of supplying such a high demand is not very bright.  相似文献   

8.
Here we investigate processes affecting productivity of capelin and walleye pollock in the Gulf of Alaska. We examine pelagic habitat selection by comparing the distribution of juvenile fish and their prey with oceanographic properties and we evaluate the potential for interspecific competition by comparing diets and measures of foraging. The primary field study was conducted in Barnabus Trough, Kodiak Island, Alaska, during September 2005. The distribution of fish was assessed acoustically and trawls were used to collect individual fish for stomach content analyses. Physical and biological data were collected with conductivity–temperature–depth probes and zooplankton tows. Age‐0 pollock were distributed in cool waters offshore of a mid‐trough front, coincident with the distribution of euphausiids, their preferred prey. In contrast, capelin and their prey (copepods) were distributed throughout the trough. We observed that sympatric capelin (occurring with pollock) often had reduced foraging success compared to allopatric capelin (occurring alone). Results of a bioenergetic model also suggest that the exclusion of capelin from foraging on euphausiids can have negative consequences for capelin growth.  相似文献   

9.
Acoustic survey data were used to estimate the abundance and distribution of age-0 walleye pollock and zooplankton near the Pribilof Islands, Bering Sea, nursery area at two time periods in two consecutive years: the beginning of August, and mid-September, of 1996 and 1997. The 1996 pollock year class ultimately produced a large adult cohort in the eastern Bering Sea, while the 1997 year class produced a below-average adult cohort. Acoustic densities of age-0 pollock were significantly lower in August – and declined more strongly from August to September – in 1997 than in 1996, indicating that the trend to adult cohort strength was already set by August. Diet composition analyses revealed that age-0 pollock ate a much higher proportion of euphausiids in 1997 than in 1996, despite lower acoustic abundance of euphausiids in 1997. We infer that in 1996, age-0 pollock experienced greater feeding success by August, with high concentrations of copepods available for smaller fish to consume, and high concentrations of euphausiids available for larger individuals. In 1997, age-0 pollock had lower body condition in August and may have been limited by the availability of small (<2 mm) copepods. Bioenergetic modeling of prey consumption did not indicate a likelihood that age-0 pollock would begin to deplete euphausiids until late August in 1996, and not at all between August and mid-September in 1997.  相似文献   

10.
We review the stock assessment strategies and management procedures for walleye pollock Theragra chalcogramma in Japan. In Japan, walleye pollock is classified into 4 stocks. Because biological data, fishing conditions, etc. are different for each stock, the stocks are assessed by different methods. Harvest strategies aiming at stock recovery are proposed for the Northern Japan Sea stock and the Nemuro Strait stock, which are currently in poor condition. For the Japanese Pacific stock and the Southern Okhotsk Sea stock, which are in good condition, harvest strategies for current fishery operations are proposed. In Japan, fisheries co-management has traditionally been carried out, and in recent years a total catch limitation system called the total allowable catch, a resource recovery plan, and a resource management plan have also been implemented. Although a plan is devised that accounts for the stock conditions of walleye pollock, it is also necessary to consider socioeconomic factors, ecosystem factors, and so on. However, we consider that the main focus of stock management for walleye pollock will still be maintaining fishing pressure at an appropriate level, which includes regulating fish size and price during the fishing season.  相似文献   

11.
In this paper, we examine the structure and change of the walleye pollock industry from a marketing and distribution perspective. Our focus is not only on industrial internationalisation, but also on local industry and community utilisation of walleye pollock. This is a subject of interest because its diverse utilisation has the potential to promote industrial management as well as the livelihood of local communities. We reason that Japan’s weakness in marketing, distribution and price setting of walleye pollock is largely due to its lack of competitiveness in the world market. Given the rapid decline of walleye pollock utilisation by local industry and society, it is of critical importance to take steps towards a long-term solution considering the rapid decline of walleye pollock use by our local industry and society. Our analysis indicates that Japan’s walleye pollock industry is inherently resilient, with diverse commodity chains, business flexibility and traditional food culture. However, as local industry and community have been reducing use of walleye pollock over time, there is a need to restore and reactivate the local society.  相似文献   

12.
To clarify relationships between year‐class strength and larval growth of walleye pollock (Gadus chalcogrammus), and oceanographic conditions in the Pacific stock off Hokkaido and Tohoku, Japan, we undertook conductivity/temperature/depth (CTD) observations and investigated larval densities, larval otolith increment widths and larval prey densities (of copepod nauplii) of the 2008, 2009, 2010 and 2011 yr classes in Funka Bay. Oyashio Coastal Water (OCW) flowed into the bay in late February in 2008, 2010 and 2011, and the mean water temperatures decreased to 1.9–3.1 °C in March. OCW was not observed in 2009, and it was warm in late February (≥3.4 °C). Increment widths of lapillar otoliths during the yolk‐sac stage were wide in 2009 and 2011, medium in 2010 and narrow in 2008. Increment widths during the first‐feeding stage tended to become wider as the hatch month progressed, and the annual variation during the first‐feeding stage was larger than that of the yolk‐sac stage. The densities of the primary food for the larvae were high in 2008 when larval increment widths were narrowest, so the effect of prey abundance on larval growth appeared to be small. The ranking of the larval abundance in March was nearly coincident with that of the increment width during the larval stage. We, therefore, suggest that the larval growth rate is associated with the mortality rate and that the growth–mortality hypothesis may be applicable to walleye pollock in Funka Bay. Feeding success under warm water conditions may be an important factor that contributes towards high growth rates.  相似文献   

13.
ABSTRACT: Stocks of walleye pollock Theragra chalcogramma collected from: (i) the Sea of Japan (off Rebun Island and Kumaishi); (ii) the Pacific coast (off Shikabe and eastern Hokkaido); and (iii) Nemuro Strait off Hokkaido, northern Japan, were examined for anisakid nematodes during December 1999 to February 2000, and the prevalence and abundance of Anisakis simplex and Contracaecum osculatum larvae were compared among the various sampling sites for fish of the same size and age. Anisakis simplex was generally more abundant than C. osculatum . Infection by A. simplex varied between the aforementioned stocks of walleye pollock as well as within stocks, whereby fish from off Rebun Island and Nemuro Strait were infected the most, followed by those from off the Pacific coast and Kumaishi. Infection by C. osculatum differed between the host stocks, and C. osculatum was the most abundant among the fish from Nemuro Strait. The infection variations seemed to be due to differences in host growth rate, host feeding habit, and the distribution of marine mammal final hosts. The results indicate that these two larval nematodes are useful biological indicators for the population study of walleye pollock in Japanese waters.  相似文献   

14.
In 2003, the Alaska walleye pollock industry reported product quality issues attributed to an unspecified parasite in fish muscle. Using molecular and histological methods, we identified the parasite in Bering Sea pollock as Ichthyophonus. Infected pollock were identified throughout the study area, and prevalence was greater in adults than in juveniles. This study not only provides the first documented report of Ichthyophonus in any fish species captured in the Bering Sea, but also reveals that the parasite has been present in this region for nearly 20 years and is not a recent introduction. Sequence analysis of 18S rDNA from Ichthyophonus in pollock revealed that consensus sequences were identical to published parasite sequences from Pacific herring and Yukon River Chinook salmon. Results from this study suggest potential for Ichthyophonus exposures from infected pollock via two trophic pathways; feeding on whole fish as prey and scavenging on industry‐discharged offal. Considering the notable Ichthyophonus levels in pollock, the low host specificity of the parasite and the role of this host as a central prey item in the Bering Sea, pollock likely serve as a key Ichthyophonus reservoir for other susceptible hosts in the North Pacific.  相似文献   

15.
Ecosystem‐based fisheries management requires the development of physical and biological time series that index ocean productivity for stock assessment and recruitment forecasts for commercially important species. As recruitment in marine fish is related to ocean condition, we developed proxies for ocean conditions based on sea surface temperature (SST) and biometric measurements of chum salmon (Oncorhynchus keta) captured in the walleye pollock (Gadus chalcogrammus) fishery in the eastern Bering Sea in three periods (July 16–30, September 1–15 and September 16–30). The main purpose of this paper was to evaluate Pacific salmon (Oncorhynchus spp.) growth as a possible indicator of ocean conditions that, in turn, may affect age‐1 walleye pollock recruitment. Marine growth rates of Pacific salmon are the result of a complex interplay of physical, biological and population‐based factors that fish experience as they range through oceanic habitats. These growth rates can, therefore, be viewed as indicators of recent ocean productivity. Thus, our hypothesis was that estimated intra‐annual growth in body weight of immature and maturing age‐4 male and female chum salmon may be used as a biological indicator of variations in rearing conditions also experienced by age‐0 walleye pollock; consequently, they may be used to predict the recruitment to age‐1 in walleye pollock. Summer SSTs and chum salmon growth at the end of July and September explained the largest amount of variability in walleye pollock recruitment indicating that physical and biological indices of ocean productivity can index fish recruitment.  相似文献   

16.
An advective model was used to simulate the drift of larval walleye pollock ( Theragra chalcogramma ) over a 40-day period (late April through early June) near Shelikof Strait, Alaska. This model was used: (i) to assess how much of the observed change in larval positions during that period can be explained by transport at fixed depth; (ii) to demonstrate that observed change can be related to mean large-scale meteorological forcing; and (iii) to investigate accumulation of larvae in specific areas near the coast. Based on availability of larval and circulation data, three years were studied: 1988, 1989 and 1991. Velocity fields generated from a hydrodynamic model driven by winds and runoff were used to advect particles seeded in accordance with observed larval distributions in late April of each year. The modelled larvae were tracked at 40 m depth, corresponding to the mean depth of sampled larvae and the depth of neutrally buoyant drifters employed in field studies. Specific features observed in late May larval surveys were reproduced by the model, such as the accumulation of larvae in a shoal area downstream of the strait. Differences among the modelled years include extensive flushing of larvae to the south-west in 1988 and 1991, vs. limited flushing in 1989. These differences appear related to the mean large-scale atmospheric pressure patterns for April-May of those years.  相似文献   

17.
ABSTRACT:   Variations in trawl dimension, bottom contact, and catch with differing warp lengths during walleye pollock surveys conducted by the Fisheries Research Agency were examined. The ratio of warp length to fishing depth (scope ratio) was set at 2.5, 3.0 and 3.5 at depths of 110 m. At a 2.5 scope ratio, the net mouth shape and footgear contact fluctuated, as the trawl door did not contact the bottom. Footgear contact was complete when the scope ratio was 3.0 or more. Walleye pollock, sculpins and flatfishes were the main catch in all tows, and the catch increased with scope ratio. There was no difference in the length frequency of walleye pollock ( n  = 300) captured at 2.5 and 3.0 scope ratio. However, the length frequency at 3.5 was significantly different from that of other scope ratios. These results suggest that at a scope ratio of 3.0 or more, the trawl door will not leave the bottom at any depths. To compliment echo surveys for walleye pollock, a 3.0 scope ratio would be optimal, since the catch data for a 3.5 scope ratio was dissimilar from that of scope ratios.  相似文献   

18.
19.
The southwestern Pacific coast of Hokkaido is the main spawning ground for the Japanese Pacific stock of walleye pollock Theragra chalcogramma. A commercial gillnet fishery targeting spawning adult pollock in this area mainly operates from October to January to coincide with the migration of adult pollock from the feeding ground. Given the results of acoustic surveys, and changes in the proportion of the monthly total catch that was monthly walleye pollock caught by the commercial gillnet fishery, it is thought that the timing of walleye pollock spawning migration to the Donan area varies among years and that the pollock catch of the gillnet fishery clearly reflects changes in pollock abundance in this area. A time series of interannual variability in catch data from 1980 to 2005 suggested that adult pollock migrated and concentrated on their spawning ground later in the 1980s and after 2000 than in the 1990s. Such decadal-scale shifts are presumably caused by climatic changes (e.g., in water temperature) in the Oyashio region. These shifts affect the gillnet fishery through differences in monthly unit prices of pollock and changes in the formation of fishing grounds. These scientific findings can aid the establishment of rules for more efficient walleye pollock resource management under the total allowable catch system.  相似文献   

20.
Populations of several species of marine birds and mammals in the Bering Sea and Gulf of Alaska have been declining since the mid-1970s, with numbers of one, the Steller sea lion (Eumetopias jubatus) , so depressed it was listed as threatened under the Endangered Species Act in spring 1990. All of the declining populations depend to an important extent on walleye pollock (Theragra chakogramma) for food, although they eat numerous other species as well. In contrast, certain animals that compete with pollock for common prey have been increasing in abundance. All of these changes could be related through food web connections mediated by pollock. Pollock is also important to people–it presently supports the largest single-species commercial fishery in the world, in large part because of its great biomass, which has averaged about 15 × 106t in the Bering Sea over the past 15 years. Pollock consume an inordinate proportion of the pelagic production in the Bering Sea, which further supports the conclusion that it is a key species in the ecosystem. However, there are conflicting hypotheses about the importance of the roles played by pollock as predator and prey, and about the effect that changes in pollock abundance might have on biomass yield at higher trophic levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号