首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nutrition trial with meagre, Argyrosomus regius was assessed to determine the effect of dietary replacement of fish oil (FO) by soybean oil (SO) on the growth, feed utilization, body composition, fatty acid composition and basic haematological parameters. Six isonitrogenous (47% crude protein) and isoenergetic (gross energy 22 kJ/g) experimental diets were formulated by replacing 0 (FO), 20 (S20), 40 (S40), 60 (S60), 80 (S80) and 100 (S100) % of the FO with SO. Fish were fed three times daily to near satiation for 14 weeks. The specific growth rate (SGR) of fish fed S100 diet was significantly lower than the other treatments, except SO80 diet. The fish fed SO100 diet displayed significantly higher feed conversion ratio than that of other diets (P < 0.05). It was observed that fish fed the SO100 and SO80 diets displayed haemoglobin (HGB) levels significantly lower (P < 0.05) than fish fed the SO20 diet. Packed cell volume (PCV) of fish fed SO20 diet was significantly higher compared to SO100. The white blood cell (WBC) and red blood cell (RBC) remained unaffected by dietary treatment. The docosahexaenoic acid (22:6n‐3, DHA) and eicosapentaenoic acid (20:5n‐3, EPA) levels of meagre were significantly reduced by the substituting of dietary SO by FO at the end of the feeding period. The level of linoleic acid (18:2n‐6, LA) and linolenic acid (18:3n‐3, LNA) significantly raised in fish fed with SO diets (P < 0.05). The results of this study showed that SO could be replaced FO up to 80% in meagre diet without negative effect on growth performance and basic haematological parameters. Furthermore, the maximum level of FO replacement with SO determined by second order polynomial regression analysis, was 30.1% on the basis of maximum SGR.  相似文献   

2.
Fish oil (FO) substitution has been studied in many marine carnivorous fish, but seldom in marine herbivorous or omnivorous species. To evaluate the feasibility of using soybean oil (SO) as a dietary lipid and confirm its capability of converting C18 polyunsaturated fatty acid (PUFA) into long chain polyunsaturated fatty acid (LC‐PUFA) in the marine herbivorous teleost Siganus canaliculatus, juvenile fish were fed with four formulated diets differing in lipid composition, with SO accounting for 0.76% (SO0), 23% (SO23), 45% (SO45) and 67% (SO67) of total dietary lipid respectively. After feeding for 8 weeks, growth performance including weight gain, specific growth rate, feed conversion ratio and protein efficiency rate were better in the SO23 and, especially, SO45 groups than in the SO0 and SO67 groups (< 0.05). Tissue fatty acid compositions were affected by diet, with the liver contents of eicosapentaenoic (EPA), docosapentaenoic (DPA), docosahexaenoic (DHA) acids and total n‐3 PUFA displaying parallel changes with the corresponding dietary fatty acids. While the muscle contents of EPA, DPA and total n‐3 PUFA between SO0 and SO23 groups, and the liver contents of arachidonic acid (ARA) and 20:4n‐3, as well as the muscle content of 20:3n‐6 between SO0 and SO45 groups showed no difference, confirming the biosynthesis of LC‐PUFA from C18 precursors in vivo as the contents of corresponding fatty acids in diets SO23/SO45 were much lower than those in diet SO0 (< 0.05). The results indicate that SO may be a suitable dietary lipid source for S. canaliculatus, and can replace up to 67% or 45% of total dietary FO without negatively compromising growth performance or nutritional quality of fish respectively. Moreover, the study increases our knowledge of FO substitution in marine herbivorous fish.  相似文献   

3.
4.
The effect of dietary n−3 and n−6 polyunsaturated fatty acids (PUFAs) on juvenile Arctic charr Salvelinus alpinus (L.) were investigated with respect to essential fatty acid (EFA) deficiency and lipid metabolism using one commercial and 12 casein-based test diets. Arctic charr with mean weight of 1.6g were fed test diets for 12 weeks at 10°C. At the end of the feeding, blood, liver, muscle and whole fish were sampled to determine haematocrit, haemoglobin, water content, lipid and fatty acid composition. Charr fed diets containing 0–1.0% n−3 PUFAs showed typical EFA deficiency signs: fatty liver or elevated water content in whole body or substantial accumulation of 20:3n−9 in liver polar lipids. These signs were less apparent or disappeared when charr were fed diets containing ≥ 2.0% 18:3n−3. No correlation was found between dietary PUFAs and haematocrit or haemoglobin values. Significant changes in fatty acid composition of liver polar lipids in charr fed dietary PUFAs indicate that charr can convert 18:3n−3, 18:2n−6 and 20:5n−3 into long-chain PUFAs. While charr had a direct incorporation of dietary 22:6n−3 into liver and muscle there appears to be preferential utilization of n−3 PUFAs for elongation and desaturation. The conversion of 18:4n−3 was less in muscle than in livers. These findings, combined with data on growth and feed efficiency reported previously by Yang and Dick (1993), indicate that charr require 1−2% dietary 18:3n−3 (dry weight). Small amounts of dietary 18:2n−6 (up to 0.7%) did not have detrimental effects on charr.  相似文献   

5.
An 84‐day growth trial was designed to investigate effects of dietary replacements fish oil with pork lard (PL) or rapeseed oil (RO) on growth and quality of gibel carp (Carassius auratus gibelio var. CAS III) (initial body weight: 158.2 ± 0.2 g), and responses of the fish refed fish oil (FO) diet. Three isonitrogenous (crude protein: 30%) and isolipid (crude lipid: 10%) diets were formulated containing 7.73% FO, PL or RO. Five experimental treatments including FO group (FO), PL group (PL), RO group (RO), group fed PL for 42 days and refed FO for 42 days (PL+rFO), RO and refed FO group (RO+rFO) was tested. At the end of first 42 days, the fish fed PL and RO had higher mortality than that of the control (P > 0.05). At the end of whole experiment, fish fed PL and RO showed higher plasma cortisol than FO fish (P < 0.05). RO+rFO fish showed higher lysozyme activity than RO fish (P < 0.05). Fish growth and feed utilization, composition of whole body and muscle, free amino acids, texture, off‐flavour substances or sensory attributes were not affected by dietary treatments (P > 0.05). PL and RO diet decreased muscle EPA, DHA and n‐3/n‐6 ratio (P < 0.05), while FO‐refeeding had recovery effect. It can be concluded that the replacement of FO by PL and RO does not affect the growth, feed utilization or fish tasting quality in gibel carp. Fish muscle fatty acids modified by dietary PL and RO can be recovered by refeeding with FO diet.  相似文献   

6.
The desaturation and elongation of [1-14C]18:3n-3 was investigated in hepatocytes of the tropical warm freshwater species, zebrafish (Danio rerio) and Nile tilapia (Oreochromis niloticus). The hepatocyte fatty acid desaturation/elongation pathway was assayed before and after the fish were fed two experimental diets, a control diet containing fish oil (FO) and a diet containing vegetable oil (VO; a blend of olive, linseed and high oleic acid sunflower oils) for 10 weeks. The VO diet was formulated to provide 1% each of 18:2n-6 and 18:3n-3, and so satisfy the possible EFA requirements of zebrafish and tilapia. At the end of the dietary trial, the lipid and fatty acid composition was determined in whole zebrafish, and liver, white muscle and brain of tilapia. Both zebrafish and tilapia expressed a hepatocyte fatty acid desaturation/elongation pattern consistent with them being freshwater and planktonivorous fish. The data also showed that hepatic fatty acid desaturation/elongation was nutritionally regulated with the activities being higher in fish fed the VO diet compared to fish fed the FO diet. In zebrafish, the main effect of the VO diet was increased fatty acid Δ6 desaturase activity resulting in the production of significantly more 18:4n-3 compared to fish fed the FO diet. In tilapia, all activities in the pathway were greater in fish fed the VO diet resulting in increased amounts of all fatty acids in the pathway, but primarily eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3). However, the fatty acid compositional data indicated that despite increased activity, desaturation of 18:3n-3 was insufficient to maintain tissue proportions of EPA and DHA in fish fed the VO diet at the same level as in fish fed the FO diet. Practically, these results indicate that manipulation of tilapia diets in commercial culture in response to the declining global fish oil market would have important consequences for fish fatty acid composition and the health of consumers. Scientifically, zebrafish and tilapia, both the subject of active genome mapping projects, could be useful models for studies of lipid and fatty acid metabolism at a molecular biological and genetic level. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

7.
This study was undertaken to assess the effects of fish oil (FO) substitution by a mixture of alternative vegetable oils (VO) on Seriola dumerili culture performance. A 154‐day feeding experiment was conducted using juveniles (39.2 ± 1.6 g average weight). Three isolipidic and isoenergetic meal‐based diets were formulated varying their lipid component. The control diet contained 100% FO (FO100), whereas diets VO50 and VO100 included 1/2 of oil blend and all the oil from blend of palm oil (PO) and linseed oil (LO) as substitute for FO, respectively. Dietary regime did not significantly affect growth performance, biometric indices, feed efficiency, plasma chemistry and liver and muscle lipid contents. Nonetheless, dietary VO inclusion impacted on the fatty acid profile of target tissues, especially in the liver. Fatty acid profiles of the fillets reflected those of the dietary oils except that there was apparent selective utilization of palmitic acid (C16:0) and oleic acid (C18:1n‐9) and apparent selective retention of long‐chain polyunsaturated fatty acids, especially eicosapentaenoic acid (EPA, C20:5n‐3) and docosahexaenoic acid (DHA, C22:6n‐3). The nutritional value and the potential ability to prevent the development of coronary heart diseases of the flesh lipid fraction decreased with gradual FO substitution.  相似文献   

8.
We studied the effects of dietary n‐3 LC‐PUFAs on the activities and mRNA expression levels of tissue lipoprotein lipase (LPL) and fatty acid synthase (FAS) during vitellogenesis and ovarian fatty acid composition in female silver pomfret broodstock. Broodstock were fed one of four experimental diets for 185 days: FO (100% fish oil), FSO (70% fish oil + 30% soybean oil), SFO (30% fish oil + 70% soybean oil) or SO (100% soybean oil). The results revealed that hepatic LPL and FAS and ovarian FAS activities and mRNA expression levels significantly increased at vitellogenesis and postvitellogenesis relative to previtellogenesis, with no significant differences between these two stages, except for hepatic LPL mRNA expression. Dietary n‐3 LC‐PUFAs decreased tissue FAS and increased LPL activities and mRNA expression levels. The ovarian concentrations of 20:4n‐6 (ARA), 20:5n‐3 (EPA), 22:6n‐3 (DHA) and n‐3 LC‐PUFAs were directly influenced by n‐3 LC‐PUFA levels. Total n‐3 LC‐PUFA concentrations in SO were 57% lower than those in FO, while 18:2n‐6 concentrations in SO were 4.7 ×  higher than those in FO. These results revealed that high dietary n‐3 LC‐PUFAs levels significantly affected tissue lipid metabolism in female silver pomfret broodstock during vitellogenesis by upregulating LPL and downregulating FAS.  相似文献   

9.
This study investigated the effect of two lipid sources on reproduction performance and growth in pearl gourami. For this purpose, 180 fish (3.32 ± 0.25 g) were fed with three isoenergetic (19.80) and isonitrogenous diets (480 g/kg protein) including FO (80 g/kg fish oil), FS (40 g/kg fish oil and 40 g/kg soybean oil) and SO (80 g/kg soybean oil) for 10 weeks before maturation. At the end of the trial, there was no significant difference in weight gain, feed conversation ratio and body composition between fish fed FO and FS diets. Individuals fed dietary FO had significantly higher levels of n‐3 long‐chain polyunsaturated fatty acids in the muscle (130.5 g/kg lipid) and ovary (140.4 g/kg lipid) as compared with those fed SO diet (64.5, 103.6 g/kg, respectively) (p < .05). Feeding pearl gourami with FO and FS diets enhanced regarding absolute fecundity, relative fecundity, the fertilization rate, larvae total length and survival at 3 day posthatch (p < .05). Also, 17 beta‐estradiol in plasma of fish fed dietary FO (6.2 ng/L) was higher than those fed SO diet (1.7 ng/L) (p < .05). In conclusion, we suggest FS diet for broodstock nutrition of pearl gourami as a model for asynchronous multi‐batch spawning fish.  相似文献   

10.
As a marine carnivore exhibiting exceptionally high growth rates, cobia are considered a species for which fish oil (FO) replacement may be difficult. However, partial, if not complete, FO replacement is necessary to ensure sustainability. We evaluated the effects of graded substitution of dietary FO with soybean oil (SO) in cobia culture. Feeds contained FO (100% FO), SO (0% FO) or blends of the two (67% FO, 33% FO) as the supplemental lipid source. Production performance was largely unaffected by partial replacement of FO with SO: feed intake and final weight were reduced only in the 0% FO dietary treatment. Fillet total lipid fatty acid (FA) composition differed among the dietary treatments, closely approximating dietary FA profile. As increasing amounts of FO were replaced, SO‐associated FA became enriched within the fillet lipid at the expense of FO‐associated FA. Fillet lipid classes were associated with a particular FA signature, regardless of dietary FA profile. SO can replace a substantial amount of dietary FO; however, juvenile cobia appear to exhibit a nominal requirement for intact long‐chain polyunsaturated FA. Therefore, aggressive FO replacement may result in essential fatty acid deficiencies unless the feeds can be amended with alternative sources of these essential nutrients.  相似文献   

11.
The dominant fatty acids (FAs) in oils are often used to explain different nutritional effects of dietary oils in fish. However, the amounts of dominant FAs among oils are different, and the nutritional roles of these important FAs in fish have not been precisely compared at similar levels in feeding trials. In the present study, different amounts of palmitic acid were added to safflower oil (SO), olive oil (OO) and fish oil (FO) to obtain comparable amounts (about 550 g/kg of total FAs) of 18:2n‐6, 18:1n‐9 and 20:5n‐3 + 22:6n‐3 and subsequently fed to Nile tilapia (11.1 ± 0.01 g) for 8 weeks. The results showed similar growth among groups but FO group obtained lower fat deposition, serum ALT and AST activities, compared to OO. Lipogenesis‐related gene expressions were higher in OO group than FO group in liver, muscle and adipose tissue, but there were only few differences in these genes between SO and FO groups. Lipid catabolism genes in FO group were higher than OO and SO groups in adipose tissue, but not in muscle, and the significantly higher expressions of CPT1b and PPARα were only observed in liver. Overall, dietary 18:2n‐6, 20:5n‐3 and 22:6n‐3 were beneficial to normal growth and lipid metabolism, whereas high amount of 18:1n‐9 induced lipid deposition and liver damage in Nile tilapia.  相似文献   

12.
The objective of this work was to determine whether highly unsaturated fatty acid (HUFA) synthesis and fatty-acid oxidation in Atlantic salmon (Salmo salar L.) intestine was under environmental and/or seasonal regulation. Triplicate groups of salmon were grown through a full two-year cycle on two diets containing either fish oil (FO) or a diet with 75% of the FO replaced by a vegetable oil (VO) blend containing rapeseed, palm, and linseed oils. At key points in the life cycle fatty acyl desaturation/elongation (HUFA synthesis) and oxidation activity were determined in enterocytes and hepatocytes using [1−14C]18:3n−3 as substrate. As observed previously, HUFA synthesis in hepatocytes reached a peak at seawater transfer and declined thereafter, with activity consistently greater in fish fed the VO diet. In fish fed FO, HUFA synthesis in enterocytes in the freshwater stage was at a level similar to that in hepatocytes. HUFA synthesis in enterocytes increased rapidly after seawater transfer, however, and remained high for some months after transfer before decreasing to levels that were again similar to those observed in hepatocytes. Enterocyte synthesis of HUFA was usually higher in fish fed the VO diet than in those fed the FO diet. Oxidation of [1−14C]18:3n−3 in hepatocytes from fish fed FO tended to decrease during the freshwater phase but then increased steeply, peaking just after transfer before decreasing during the remaining seawater phase. At the peak in oxidation activity around seawater transfer, activity was significantly lower in fish fed VO than in fish fed FO. In enterocytes, oxidation of [1−14C]18:3 in fish fed FO reached a peak in activity just before seawater transfer. In fish fed VO, except for high activity at nine months the pattern was similar to that obtained in enterocytes from fish fed FO, with high activity around seawater transfer and declining activity in seawater. In conclusion, fatty acid metabolism in intestinal cells seemed to be under dual nutritional and environmental or seasonal regulation. Temporal patterns of oxidation of fatty acids were usually similar in the two cell types, but HUFA synthesis in enterocytes peaked over the summer seawater phase rather than at transfer, as with hepatocytes, suggesting the possibility of different regulatory cues.  相似文献   

13.
The effects of increasing soya bean lecithin (SL) levels (0%, 2% and 4% of diet dry matter, DM) at two fish oil (FO) levels (0% and 3% DM) on gonad index, colour and biochemical composition of Strongylocentrotus purpuratus were evaluated using a 3 × 2 factorial design with six iso‐nitrogenous formulated diets. All diets generated an increase in gonad index of more than 9%. Dietary FO had a positive effect on diet digestibility and accumulation of proteins in the gonad. Soy lecithin did not affect gonad composition, but improved its coloration, decreased gonad feed conversion ratio and increased gonad protein efficiency. There was a clear effect of diets on sea urchins gonad protein, ash and fatty acid content, in particular, decreasing the n‐3/n‐6 ratio associated with a decrease in 20:5n‐3 when SL levels increased. Nevertheless, 22:6n‐3 levels increased by week 12 in all treatments, and diets with SL increased the content of 20:4n‐6 in gonads. A decrease in bitter‐tasting amino acids such as histidine, cysteine, valine and methionine was observed in all treatments with a concomitant increase in isoleucine levels. We recommend using a diet containing 3% of FO and 2% of SL to increase food consumption, diet digestibility, improving marketable gonad colour and an increasing gonad n‐6 fatty acids and C22:6n‐3. In addition, the present study paves the way for future research in the use of FO and SL as an additive in diets for S. purpuratus towards the goal of increasing gonad size and nutritional quality.  相似文献   

14.
The recent decreasing worldwide supplies of marine oils have forced the aquaculture industry to investigate alternative lipid sources for use in marine fish feeds. The aim of this study was to determine the impact of dietary replacement of fish oil by vegetable oils on gilthead seabream (Sparus aurata) growth performance, nutritive utilization, body composition, and fatty acid profile as well as feed cost. Two dietary vegetable oil (VO) mix blends (VO1 and VO2) in which: sunflower (SO), cottonseed (CO) and linseed (LO) for VO1 or soybean oil (SBO) for VO2, were tested as 60% fish oil (FO) substitutes versus the 100% FO control or reference diet (FO). Three iso-proteic (46% CP) and iso-lipidic (18%) experimental diets were hand fed, twice a day, 6 days a week to apparent visual satiety to triplicate groups of seabream growers (average initial weight, 130.9 ± 3.44 g), until fish reached market size (300–400 g/fish) after 20 weeks at mean ambient temperature 27.0 ± 1.8°C. All experimental diets were well accepted by seabream growers regardless of the different lipid sources used, as overall mean feed intake (FI) and daily intake (DFI) were not significantly different (P > 0.05) among dietary treatments. In terms of growth performance, fish fed VO1 diet (with LO) exhibited a relatively lower, but significant (P < 0.05), total weight gain (WG) than fish fed all FO diet (FO). However, mean value of WG of fish fed either vegetable oil-tested diet was nonsignificantly different. Feeding seabream growers vegetable oil (VO) diets (VO1 or VO2) had no significant effect on specific growth rate (SGR), daily weight index (DWI), or feed conversion ratio (FCR) among dietary treatments. Consumption of VO for 20 weeks did not significantly alter the major nutrient composition of fish, but the muscle fatty acid (FA) profile was significantly altered compared to the reference FO diet. Comparatively reduced levels of eicosapentaenoic acid (EPA) and docosahexaenoic acids (DHA), as well as elevated levels of linoleic and linolenic acids (LA and LNA) compared with fish fed the FO were noticed. In terms of economics, 17 or 20% reduction in Kg feed cost was obtained for diets VO1 or VO2, respectively. In terms of growth performance and cost, VO2 diet showed slight relative superiority over VO1 diet. However, in terms of liver structure morphology, VO1 diet (with LO) has resulted in less fat-infiltration and altered hepatic cells than VO2 (with SBO). As these traits do not affect yield or the price paid for the fish, VO2 diet has therefore been considered better than VO1 as complementary lipid sources for gilthead seabream grower diets.  相似文献   

15.
The static or declining supply of fish oil from industrial fisheries demands the search of alternatives, such as plant (vegetable) oils, for diets in expanding marine aquaculture. Vegetable oils are rich in C18 polyunsaturated fatty acids but devoid of the n-3 highly unsaturated fatty acids in fish oils. Previous studies, primarily with salmonids, have shown that including vegetable oils in their diets increased hepatocyte fatty acid desaturation. In the present study, we have investigated the effects of dietary partial substitution of fish oil (FO) with rapeseed oil (RO), linseed oil (LO) and olive oil (OO) on the desaturation /elongation and, -oxidation capacities of [1-14C]18:3n-3 in isolated hepatocytes from European sea bass (Dicentrarchus labrax L.), in a simultaneous combined assay. Fish were fed during 34 weeks with diets containing 100% FO, or RO, LO and OO, each included at 60% with the balance being met by FO, with no detrimental effect upon growth or survival. The highest total desaturation rates were found in hepatocytes of fish fed FO diet (0.52±0.08 pmol/h/mg protein) and OO diet (0.43±0.09 pmol/h/mg protein), which represented 3.2% and 2.7% of total [1-14C]18:3n-3 incorporated, respectively. In contrast, lowest desaturation rates were presented by hepatocytes of fish fed LO and RO diets (0.23±0.06 and 0.14±0.05 pmol/h/mg protein, respectively) represented 1.4% and 0.9% of total [1-14C]18:3n-3 incorporated, respectively. The rates of [1-14C]18:3n-3 β-oxidized were between 11-fold and 35-fold higher than desaturation. However, no significant differences were observed among β-oxidation activities in hepatocytes of fish fed any of the diets. The present study demonstrated that the European sea bass, as a carnivorous marine fish, presented a ‘marine’ fish pattern in the metabolism of 18:3n-3 to 20:5n-3 and 22:6n-3. This species appeared to have all the enzymic activities necessary to produce 22:6n-3 but presented only extremely low rates of fatty acid bioconversion. Furthermore, nutritional regulation of hepatocyte fatty acid desaturation was minimal, and dietary vegetable oils did not increase desaturase activities, and in RO and LO treatments the activity was significantly lower. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Tilapia (Oreochromis niloticus) previously reared on a commercial feed were fed three experimental diets with added 60 g kg−1 of soybean (SO), linseed (LO) or fish oils (FO), for 6 weeks. The final bodyweight (week 6) of fish was significantly lower when feeding the vegetable oils. At 0, 2, 4 and 6 weeks, fillet, liver, visceral fat, testis and ovary triacylglycerols (TAG) and phospholipids (PL) were analysed for their fatty acid (FA) composition. The simple FA dilution model has been successfully applied to describe the incorporation of numerous dietary FAs into both tissue TAGs and PLs. Fillet PL FAs reacted more sensitively on the FAs of the SO and LO diets, when compared to the TAGs. Alterations of the hepatic TAG and PL fractions were minor and less predictable. Testicular PLs have been found to preferentially accumulate n3 FAs, in particular docosahexaenoic acid (DHA) (C22:6 n3). In contrast, ovarian TAGs showed a predominant accretion of oleic acid by the FO diet. The increased dietary unsaturation index (SO, FO) was found to augment hepatic in vivo lipid peroxidation, as assessed by the tissue malondialdehyde concentrations.  相似文献   

17.
A 10‐week feeding trial was conducted to evaluate the effects of dietary lipid sources on the growth and immune responses of Chinese mitten crab Eriocheir sinensis. Six isonitrogenous and isoenergetic diets were formulated with fish oil (FO), linseed oil (LO), soybean oil (SO), rapeseed oil (RO), coconut oil (CO) and beef tallow (BT) as the sources of lipid with five replicates each. Thirty crabs (2.35 ± 0.14 g) were stocked into each tank and fed twice daily. Weight gain and specific growth rate of crab fed the FO diet were significantly lower than those fed other diets (P < 0.05), except for crabs fed LO diet (P < 0.05). Crab fed the SO diet weighed more than those fed FO diets (P < 0.05). Serum superoxide dismutase and malondialdehyde of crab fed the FO diet were significantly higher than in other groups (P < 0.05). Crab fed the FO diet had the highest activities of serum phenoloxidase, acid phosphatase, alkaline phosphatase and lysozyme (P < 0.05). The fatty acid composition in the liver of crab reflected the change in test diets. Our results indicate that the use of dietary vegetable or animal oils can achieve similar growth performance to the use of dietary FO in Chinese mitten crab, but non‐FOs may impair crab immunity. Soybean oil is recommended as a suitable replacer for FO in Chinese mitten crab diet.  相似文献   

18.
Changes in fatty acid metabolism in Atlantic salmon (Salmo salar) induced by vegetable oil (VO) replacement of fish oil (FO) and high dietary oil in aquaculture diets can have negative impacts on the nutritional quality of the product for the human consumer, including altered flesh fatty acid composition and lipid content. A dietary trial was designed to investigate the twin problems of FO replacement and high energy diets in salmon throughout the entire production cycle. Salmon were grown from first feeding to around 2 kg on diets in which FO was completely replaced by a 1:1 blend of linseed and rapeseed oils at low (14–17%) and high (25–35%) dietary oil levels. This paper reports specifically on the influence of diet on various aspects of fatty acid metabolism. Fatty acid compositions of liver, intestinal tissue and gill were altered by the diets with increased proportions of C18 polyunsaturated fatty acids and decreased proportions of n-3 highly unsaturated fatty acids (HUFA) in fish fed VO compared to fish fed FO. HUFA synthesis in hepatocytes and enterocytes was significantly higher in fish fed VO, whereas β-oxidation was unaltered by either dietary oil content or type. Over the entire production cycle, HUFA synthesis in hepatocytes showed a decreasing trend with age interrupted by a large peak in activity at seawater transfer. Gill cell prostaglandin (PG) production showed a possible seasonal trend, with peak activities in winter and low activities in summer and at seawater transfer. PG production in seawater was lower in fish fed the high oil diets with the lowest PG production generally observed in fish fed high VO. The changes in fatty acid metabolism induced by high dietary oil and VO replacement contribute to altered flesh lipid content and fatty acid compositions, and so merit continued investigation to minimize any negative impacts that sustainable, environmentally-friendly and cost-effective aquaculture diets could have in the future. Abbreviations: FO - fish oil; HUFA - highly unsaturated fatty acids acids (carbon chain length ≥C 20 with ≥3 double bonds); LO - linseed oil; RO - rapeseed oil; VO - vegetable oil. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

19.
To investigate the impact of different dietary lipid sources on fillet composition and lipid transport, we conducted a feeding trial and evaluated the proximate composition of muscle tissue, fatty acid profiles, total cholesterol (in muscle and plasma), triglycerides, and lipoprotein concentrations in Nile tilapia, Oreochromis niloticus. Five semi‐purified diets, containing different oils (soybean – SO, corn – CO, linseed – LO, fish – FO, and olive – OO), were supplied to tilapia for 160 d. Fish fed with LO and FO diets had a lower percentage of total lipids in muscle compared with the others (P < 0.05). The highest percentage of protein was found in fish fed with FO diet (P < 0.05). The muscle fatty acid profile was influenced differently by diets (P < 0.05). The group supplemented with SO and CO had a higher concentration of 18:2n‐6, whereas the fish fed with LO diet had a higher level of 18:3n‐3 and those that received the FO diet had more 22:6n‐3 in comparison with those supplemented with vegetable oils. Plasma lipid transport was also affected by the diets: the fish fed with FO diet had higher total cholesterol and high‐density lipoprotein and lower very‐low‐density lipoprotein concentrations (P < 0.05).  相似文献   

20.
The essential fatty acid (EFA) requirement of milkfish was examined by a 12-week feeding trial using defined, purified diets at water temperature of 28–29°C and salinity of 32. The test diets contained varying levels of 18:0 (triglyceride form, TG), 18:3(n–3), 18:2(n–6) and (n–3) highly unsaturated fatty acids (n–3 HUFA). Milkfish juveniles were starved for 7 days and were than fed lipid-free diet for 30 days before the initiation of feeding trials. Low growth and feed efficiency together with high mortalities were observed in fish fed the lipid-free diet as well as in the EFA-deficient diet. Supplementation of 2% 18:2(n–6) to the tristearin based diet did not improve growth rate of milkfish as effectively as feeding with (n–3) fatty acids. The highest weight gain was obtained in milkfish fed a combination of 5% 18:0 + 1.0% 18:3(n–3) + 0.5% 20:5(n–3) + 0.5% 22:6(n–3) although the supplementation of 2% 18:3(n–3) alone or combination of 0.5% 20:5(n–3) + 0.5% 22:6(n–3) to the tristearin based diets were also effective for improvement of growth. Thus, (n–3) fatty acids, such as 18:3(n–3) and (n–3)HUFA were nutritionally more important than 18:2(n–6) for milkfish. The fatty acid composition of the polar lipids from whole body of milkfish juveniles fed the various test diets were influenced by the composition of the dietary fatty acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号