首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
为研究甘蔗渣作为载体填料用于海水曝气生物滤池中的可行性,在海水曝气生物滤池中培养生物膜,并以此为基础构建海水养殖排放水处理系统。通过监测水体总氨氮(TAN)、亚硝酸盐氮(NO2--N)等水质指标浓度变化,水体游离细菌与载体附着细菌密度变化,评价甘蔗渣载体生物滤池的降解效果。结果显示,以甘蔗渣为载体的生物滤池挂膜所需时间为26 d,挂膜完成后甘蔗渣附着可培养总菌和芽孢杆菌密度分别为3×108cfu/g和7.8×107cfu/g。在处理养殖水体时,生物滤池中水体氨氮和亚硝酸盐氮浓度分别控制在0.2 mg/L和0.05 mg/L以下,同时,水体中芽孢杆菌数量由3.3×103cfu/L增加至7×104cfu/L,弧菌数量由4.9×103cfu/L下降至3.1×101cfu/L。研究表明,以甘蔗渣为载体的海水曝气生物滤池能快速有效地完成挂膜,并在海水养殖排放水处理中取得较好效果。  相似文献   

2.
投喂频率对循环水养殖系统氨氮浓度的影响   总被引:1,自引:0,他引:1  
研究在相同投喂量下,不同投喂频率(3,6,8次/d)对循环水养殖系统水体氨氮水平及生物滤器氨氮去除效率的影响.结果表明:随着投喂频率增高,养殖水体氨氮变异系数由14.9%逐渐减弱到0,但总体平均浓度基本保持稳定(P>0.05);投喂后,生物滤器氨氮去除效率由67.02%升高到85.71%(P<0.05).研究发现,采用8次/d投喂频率时,养殖水体氨氮浓度更稳定,生物滤器氨氮去除效率更高.  相似文献   

3.
稳定高效运行的生物滤器是循环水系统养殖过程中至关重要的部分,然而生物滤器在运行过程中会受到诸多环境因子的影响。该文分两部分对进水pH对流化床生物滤器硝化性能的影响进行研究。(1)针对流化床生物滤器挂膜启动阶段进行研究,研究在自然挂膜情况下,不同进水pH(7. 0、7. 5、8. 0、8. 5)对流化床生物滤器启动的影响,结果显示,生物滤器在pH 7. 5时启动时间最短,50 d左右便能够稳定运行,而且在此pH条件下生物滤器对TAN、NO2--N的去除效率最高。(2)生物膜成熟后,针对稳定运行的生物滤器进行试验,研究不同pH(7. 0、7. 5、7. 7、8. 0、8. 5)对生物滤器硝化性能的影响,结果显示,生物滤器在pH 7. 7时,对TAN的去除速率最高,达到(0. 58±0. 02) mg/(L·h)。另外,生物滤器在pH 7. 5时对NO2--N的处理效果最好。试验还发现各处理组皆存在不同程度的NO2--N积累现象,该现象随着pH的升高不断加剧。适宜的进水pH能够缩短生物滤器的挂膜周期并提高其硝化性能。研究结果可以为海水生物滤器的挂膜启动和稳定运行提供理论指导。  相似文献   

4.
为了解凡纳滨对虾(Litopenaeus vannamei)养殖过程中挂膜式生物滤器内不同位置间微生物群落结构多样性的差异,采集已运行46 d的挂膜式生物滤器内挂膜上部外侧和内侧、下部内侧和外侧及收集盘5个不同位置的微生物,采用分子生物学手段,通过16S rRNA基因高通量测序法对生物滤器内微生物进行多样性分析,并对不同位置间功能性微生物进行对比.结果显示,在门水平上,5个不同位置共鉴定出10个主要类群,其中,变形菌门(Proteobacteria)所占丰度比例较大,为主要优势类群,硝化螺旋菌门(Nitrospirae)在挂膜内外两侧检出比例均较高(平均4.3%),收集盘内则较低(0.33%),存在显著性差异.共鉴定出41种优势属,其中地杆菌属(Pedobacter)为绝对优势种属,短小盒菌属(Parvularcula)为次优势属,二者丰度比例均在10%以上,硝化螺旋菌属(Nitrospira)为第三优势属,挂膜不同位置丰度比例(平均4.31%)显著高于收集盘内比例(0.28%).挂膜上氨氧化细菌(AOB)平均丰度比例为1.70%,硝化细菌(NOB)平均比例为6.99%,是系统中主要去除氨氮和亚硝酸氮的微生物.生物滤器各部位微生物物种多样性丰富,微生态系统稳定,可有效维持循环水系统的水质.生物滤器硝化作用主要在上部进行,下部净化能力较弱,收集盘内基本没有硝化能力.生产中应合理配置挂膜数量,科学设计挂膜长度以提高生物滤器的净化效率.  相似文献   

5.
生物—电氧化法去除海水养殖循环水污染物   总被引:1,自引:0,他引:1  
为提高海水养殖循环水处理效率,降低处理成本,本研究采用曝气生物滤器与电化学阳极氧化组合工艺,考察了不同阳极电势、进水氨氮和亚硝酸盐浓度下系统对氨氮及亚硝酸盐等污染物的去除效果,研究了微生物与工作电极之间的相互作用,并分析了电化学反应能耗。在水力停留时间为45 min、1.4 V阳极电压、进水氨氮和亚硝酸盐浓度分别为4.5和1.3 mg/L条件下,生物—电氧化法对氨氮去除率达88.8%,高出对照组7.6%,出水氨氮和亚硝酸盐浓度分别为0.5和0.9 mg/L,COD去除率为88.2%,高出对照组19.4%,平均能耗0.040 kWh/m~3,电极表面微生物生长对阳极电氧化过程有促进作用,微生物功能预测显示实验组硝化功能占比为0.03%,对照组为0.07%。研究表明,生物—电氧化法对海水养殖循环水的污染物有良好的去除效果,具有一定的发展应用潜力。  相似文献   

6.
为探讨挂膜方式对流化床生物滤器的启动时间及其对微生物群落结构的影响,了解流化床生物滤器的净水机制,并将其应用于中华鲟循环水养殖系统中,研究自然挂膜法和接种微生态制剂2种挂膜法工况下滤器的启动时间,并采用焦磷酸测序方法,分析不同时期滤器中微生物群落结构的变化。结果显示:采用接种微生态制剂挂膜法滤器启动的时间显著短于采用自然挂膜法。挂膜初期,两种挂膜方式下滤料载体表面微生物种类较少,其优势细菌都是厚壁菌门;生物膜成熟后,采用自然挂膜法的滤器中细菌群落的多样性显著高于采用接种微生态制剂培养法,并且群落结构更加稳定,筛选出的功能性细菌的比例也高于采用接种挂膜方式,如黄杆菌属和紫色非硫细菌等,表明采用自然挂膜法更利于流化床生物滤器的稳定运行。  相似文献   

7.
为了提高海水循环养殖系统(RAS)中曝气生物滤器(BAF)系统脱氮效率,减少亚硝态氮(NO2–-N)积累和曝气量,将铁基复合生物填料引入BAF系统,以间歇式曝气营造BAF系统好氧、缺氧和厌氧的循环环境,采用扫描电子显微镜考察了填料表面形态,研究了不同复合填料配比及曝气运行方式下的氮污染物的处理效果,并利用单因素实验对生物滤器的各重要运行参数进行优化。结果显示,添加铁基填料可以提高约10%的脱氮效率,降低25%的NO2–-N积累并节省50%的曝气量;海水BAF系统在如下运行参数条件下有更优的去除性能,间歇曝气时长为12 h,聚碳酸亚丙酯(PPC)凝胶亲水填料与海绵铁复合配比为3∶1,温度为30℃,水力负荷率(HLR)为1.2 m3/(m2·d),进水氨氮(NH4+-N)负荷为1 mg/L。研究表明,在RAS中引入铁基填料并以间歇曝气方式运行,能提高BAF系统处理氮污染物效率,明显降低NO2–-N积累和运行耗电量,为BAF在RAS中的生产应用提供理论依据。  相似文献   

8.
为探讨聚丙烯塑料发泡材料(EPP)、悬浮球填料和海绵填料对集装箱循环水养殖废水中细菌吸附性能的差异,以及3种填料挂膜启动和挂膜成熟后对氨氮(NH_4~+-N)、亚硝酸盐氮(NO_2~--N)和硝酸盐氮(NO_3~--N)的净水效果,以集装箱循环水养殖废水为研究对象,采用自然挂膜的方式进行了为期3个月的试验,并对相关指标进行测定。结果显示:EPP填料对养殖废水中细菌的吸附能力最好,另外两种填料对细菌的吸附能力次之并且差异不显著(P0.05);3种填料自然挂膜成熟的时间分别为21 d、26 d和30 d;各填料挂膜成熟后处理高浓度NH_4~+-N养殖废水时,NH_4~+-N浓度与NO_2~--N浓度之间的关系可以用多项式y=ax~2+bx+c进行拟合,NH_4~+-N浓度与NO_3~--N浓度之间的关系可以用对数式y=aln(x)+b进行拟合。研究表明:EPP填料、悬浮球填料和海绵填料均可作为生物填料用于集装箱循环水养殖系统。  相似文献   

9.
为了解凡纳滨对虾(Litopenaeus vannamei)养殖过程中挂膜式生物滤器内不同位置间微生物群落结构多样性的差异,采集已运行46 d的挂膜式生物滤器内挂膜上部外侧和内侧、下部内侧和外侧及收集盘5个不同位置的微生物,采用分子生物学手段,通过16S r RNA基因高通量测序法对生物滤器内微生物进行多样性分析,并对不同位置间功能性微生物进行对比。结果显示,在门水平上,5个不同位置共鉴定出10个主要类群,其中,变形菌门(Proteobacteria)所占丰度比例较大,为主要优势类群,硝化螺旋菌门(Nitrospirae)在挂膜内外两侧检出比例均较高(平均4.3%),收集盘内则较低(0.33%),存在显著性差异。共鉴定出41种优势属,其中地杆菌属(Pedobacter)为绝对优势种属,短小盒菌属(Parvularcula)为次优势属,二者丰度比例均在10%以上,硝化螺旋菌属(Nitrospira)为第三优势属,挂膜不同位置丰度比例(平均4.31%)显著高于收集盘内比例(0.28%)。挂膜上氨氧化细菌(AOB)平均丰度比例为1.70%,硝化细菌(NOB)平均比例为6.99%,是系统中主要去除氨氮和亚硝酸氮的微生物。生物滤器各部位微生物物种多样性丰富,微生态系统稳定,可有效维持循环水系统的水质。生物滤器硝化作用主要在上部进行,下部净化能力较弱,收集盘内基本没有硝化能力。生产中应合理配置挂膜数量,科学设计挂膜长度以提高生物滤器的净化效率。  相似文献   

10.
循环水养殖系统生物滤器负荷挂膜技术   总被引:4,自引:0,他引:4       下载免费PDF全文
循环水养殖系统启动运行前往往需要经过一段时间的生物膜预培养,使生物膜达到成熟稳定,从而保证系统的水质净化功能。本研究通过养殖试验,研究了生物滤器负荷挂膜的技术方法,以期实现生物膜的快速成熟和系统的快速启动。为此,构建了6组循环水系统组成的养殖车间,建成后立即投入试验生产。试验为期120 d,养殖种类为红鳍东方鲀,初始放养平均体重(632.5±2.26)g。期间,红鳍东方鲀平均增重29.91%,养殖成活率98.7%,养殖密度由(19.34±1.89)kg/m3增加到(32.17±3.40)kg/m3,投饵率由0.2%增加到0.5%–0.7%,每日换水量由50%逐渐减至10%。结果表明,在生物膜的生长期,通过对投饵量及新水补充量的有效调节,可以把养殖水体中的氨氮和亚硝氮浓度控制在安全范围以内,以保证养殖鱼类的生长。生物膜在50天左右达到完全成熟,此后便可依靠生物膜的净化作用将氨氮浓度控制在0.5?1.2 mg/L、亚硝氮浓度控制在0.2?0.5 mg/L、pH值控制在6.5–7.5、COD值低于4 mg/L、细菌总数控制在800–2100 cell/ml的安全范围内。利用生物滤器负荷挂膜技术,在合理调控水质指标的条件下,循环水养殖系统建成后可以立即投入生产,实现生物滤器挂膜与养殖生产的同步进行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号