首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The present study aimed to determine the ideal ratios of digestible essential amino acids (EAAs) for pacu (Piaractus mesopotamicus) juveniles by the amino acid (AA) deletion method. A completely randomized design which consisted of 11 treatments and three replicates each was used. The treatments included a control diet (CD) containing 55% of nonpurified natural ingredients and 45% of purified synthetic amino acids and ingredients, and other ten isonitrogenous and isoenergetic EAA limiting diets (LDs), each being deficient in 44.4 ± 0.02% of the respective EAA. Pacu juveniles with initial average body weight of 6.22 ± 0.09 g were distributed among 33 fiber glass tanks. Fish were fed with semipurified and extruded diets for 113 days two times a day until apparent satiation. The ideal ratio of each dietary EAA was calculated on the basis of the relationship between body N retention and amount of EAA deleted from the respective EAA LD. Based on the AA deletion method, the ideal ratios of digestible EAAs for pacu juveniles, relative to lysine requirement of 100% were estimated as: methionine 14.6%, threonine 35.0%, tryptophan 6.6%, arginine 62.8%, histidine 13.6%, isoleucine 26.3%, leucine 43.7%, phenylalanine 27.2%, and valine 35.8%.  相似文献   

2.
Rapid methods of estimating dietary essential amino acid (EAA) requirements might facilitate increases in aquaculture production, particularly for new or emerging industries. We conducted a 12‐week feeding study to test the hypothesis that whole body EAA concentrations and the quantified methionine requirement could be used to predict the remaining dietary EAA requirements for juvenile all‐female yellow perch. Six purified diets were developed and fed to triplicate groups of fish for 12 weeks. The diets contained the EAA profile of fishmeal (FM), the profile as predicted by whole body analysis, the quantified methionine requirement and resulting A/E ratios (PRED), PRED + 20% of all EAA (PRED20), PRED + 40% of all EAA (PRED40), PRED + 20% threonine, isoleucine and tryptophan (PRED320), and PRED + 40% threonine, isoleucine and typtophan (PRED340). Mean weight gain and feed consumption were significantly higher in fish fed PRED20 (35.7 ± 3.2 and 55.0 ± 5.3 g, respectively) than in fish fed FSM (25.1 ± 0.4 g wt gain, 41.0 ± 1.9 g cons), PRED (23.4 ± 2.3 g wt gain, 40.1 ± 4.2 g cons) and PRED340 (22.9 ± 3.3 g wt gain, 35.0 ± 3.8 g cons). There was no significant difference in feed efficiency among treatments. We recommend an EAA profile similar to PRED20 for feeding all‐female juvenile yellow perch.  相似文献   

3.
The requirements of juvenile prawn, Marsupenaeus japonicus (Bate), 0.79 g initial body weight, for essential amino acids (EAA) were evaluated based on the daily increase of each EAA in the whole body when the prawn was maintained on a diet with a high nutritive value (a casein‐squid protein‐based diet). The quantities of each EAA needed daily for growth and maintenance of prawn are conceived to correspond to the daily requirements of this prawn species for EAA. Therefore, these requirement values of respective EAA should be supplied from dietary proteins. To determine these values, protein and amino acids of the whole body of the prawn were quantified before and after feeding experiments, and the quantities of respective EAA needed to meet the requirements were estimated based on the EAA profile of the whole body protein of prawn. As a result, the contents of EAA in dietary proteins (%) needed to meet the requirements of the prawn for EAA were assessed to be: threonine (2.3), methionine (1.3), valine (2.4), isoleucine (2.3), leucine (3.4), phenylalanine (2.6), lysine (3.2), histidine (1.1), arginine (2.9) and tryptophan (0.6), respectively, when the prawn are fed 50% protein diet with 90% protein digestibility at a ration size of 2% (% of body weight).  相似文献   

4.
In order to determine the essential amino acid requirements (EAA) of striped bass Morone saxatilis , fillets were analysed to ascertain the relative amino acid concentrations for determining A/E ratios ((EAA/total EAA) × 1000)). Analysis of the striped bass fillets yielded the following concentrations of essential amino acids (g kg–1) and A/E ratios, respectively: arginine, 12.5, 115; histidine, 5.1, 47; isoleucine, 8.0, 74; leucine, 17.1, 157; lysine, 20.2, 186; methionine + cysteine, 9.2, 85; phenylalanine + tyrosine, 16.0, 147; threonine, 9.8, 90; tryptophan, 1.9, 18; and valine, 9.1, 84. In two experiments, diets with graded levels of EAA were fed to striped bass weighing 111 ± 3 g and 790 ± 122 g per fish, respectively. In both experiments, the dietary A/E ratios were maintained in the same relative concentrations as determined in the striped bass fillets. Statistical analysis of weight gains, feed conversions and nitrogen balance indicated significant differences ( P  < 0.05) between treatments. Non-linear regression analysis of the response criteria pooled from both experiments yielded the following estimates of dietary EAA requirements (g kg–1 dry diet) when digestible energy equalled 13.39 MJ kg–1 diet: arginine, 14; histidine, 6; isoleucine, 9; leucine, 19; lysine, 22; methionine + cysteine, 10; phenylalanine + tyrosine, 17; threonine, 11; tryptophan, 3; and valine, 10. The use of fillet A/E ratios allows for the rapid estimation of quantitative EAA requirements and the development of species specific diets for new aquaculture species. The data presented here are the first to simultaneously describe all the dietary EAA requirements for M. saxatilis.  相似文献   

5.
A 6‐week feeding trial was conducted to estimate the optimum dietary essential amino acid (EAA) pattern for silvery‐black porgy juvenile based on the AA deletion method. Eleven isonitrogenous and isoenergetic diets were formulated containing 60% of fish meal nitrogen and 40% of crystalline AA nitrogen. In the control diet, the EAA profile was made similar to fish meal protein. Ten other diets were formulated similar to the control diet but replacing 40% of each EAA by a mixture of non‐essential amino acids. Triplicate groups of fish (initial body weight of 4.7 g) were handfed with the experimental diets, three times a day, to visual satiation, for 42 days. At the end of the trial, final body weight of all EAA‐deficient groups was lower than that of control group, ranging from 6.3% of reduction with arginine‐deficient diet to 39.4% of reduction with lysine‐deficient diet, relatively to the control group. Based on the relationship between nitrogen retention and EAA intake of the control and EAA‐deficient diets, the optimal dietary EAA profile for silvery‐black porgy juveniles was estimated to be (g 16/g N): arginine 5.3, lysine 6.0, threonine 5.2, histidine 2.5, isoleucine 4.6, leucine 5.4, methionine + cysteine 4.0 (in a diet containing 0.6 cysteine), phenylalanine + tyrosine 5.6 (in a diet containing 1.9 tyrosine), tryptophan 1.0 and valine 4.6.  相似文献   

6.
The objective of this study was to determine the minimum dietary requirements of the branched‐chain amino acids (BCAAs: leucine [Leu], isoleucine [Ile] and valine [Val]) for juvenile red drum, Sciaenops ocellatus. This was accomplished by conducting three independent 49‐day feeding trials with juvenile red drum. Experimental diets were prepared by supplementing a basal diet containing 370 g/kg crude protein from red drum muscle and crystalline amino acids with incremental levels of Leu (9.0, 13.0, 17.0, 21.0, 25.0 and 29.0 g/kg of dry diet), Ile (5.0, 8.0, 11.0, 14.0, 17.0 and 20.0 g/kg of dry diet) and Val (6.8, 8.0, 9.2, 10.4, 11.6, 12.8 and 14.0 g/kg of dry diet). Fish were fed to apparent satiation twice daily in each trial, after which growth performance parameters were calculated and body composition and concentrations of BCAAs in plasma were analysed. Incremental levels of dietary Leu, Ile and Val significantly affected weight gain, feed efficiency and protein retention. Analyses of the weight gain data using a broken‐line regression model estimated the minimum Leu, Ile and Val requirements for maximum growth of juvenile red drum to be 15.7 ± 1.7 g/kg (±95% confidence interval), 11.1 ± 2.3 g/kg and 12.4 ± 0.6 g/kg of dry diet, respectively.  相似文献   

7.
南美白对虾必需氨基酸的需要量   总被引:1,自引:0,他引:1       下载免费PDF全文
黄凯 《水产学报》2003,27(5):456-461
采用高生物价的酪蛋白、明胶为蛋白源的蛋白饲料(PD)和无蛋白饲料(FPD)饲养南美白对虾幼虾(0.2627~0.2715g),根据虾体必需氨基酸(EAA)生长及维持量代谢,研究南美白对虾必需氨基酸的需求量。结果表明,要满足幼虾正常生长,各种EAA需求量[g·(100g虾体重)-1·d-1]为苏氨酸(Thr)0.046,缬氨酸(Val)0.054,蛋氨酸(Met)0.029,异亮氨酸(Ile)0.069,亮氨酸(Leu)0.087,苯丙氨酸(Phe)0.051,赖氨酸(Lys)0.086,组氨酸(His)0.025,精氨酸(Arg)0.097。如饲料蛋白质水平为40%,蛋白质利用率50%,虾摄食率为20%,推算得出饲料中EAA需求量(g·kg-1):苏氨酸(Thr)11.5,缬氨酸(Val)13.5,蛋氨酸(Met)7.3,异亮氨酸(Ile)17.3,亮氨酸(Leu)21.8,苯丙氨酸(Phe)12.8,赖氨酸(Lys)21.5,组氨酸(His)6.3,精氨酸(Arg)24.3。  相似文献   

8.
A 6‐week feeding trial was conducted for determining the effects of dietary essential amino acids (EAA) deficiencies on growth performance and non‐specific immune responses in silvery‐black porgy juveniles (4.7 ± 0.1 g initial weight). Eleven isoproteic (ca. 47%) diets were formulated including a control diet containing the optimum quantity of EAA, and ten EAA‐deficient diets. All diets contained 36% fish meal and 18.5% crystalline EAA and non‐essential amino acids (NEAA) as the main source of dietary proteins. All the EAA and NEAA incorporated in the crystalline amino acids mixture of the control diet simulated the amino acids profile of the fish meal. The other 10 EAA‐deficient diets were formulated by the deletion of each of the 10 EAA (crystalline form) from the control diet and replaced by a mixture of NEAA for the adjustment of dietary nitrogen contents. At the end of the experiment, fish fed with threonine‐deficient diet showed the lowest survival rate (< .05), whereas growth performance decreased in fish fed all EAA‐deficient diets, although the reduction in body growth varied depending on the EAA considered. Plasma total protein decreased in all experimental groups except for fish fed the phenylalanine‐deficient diet. Fish fed with arginine‐ and lysine‐deficient diets had the lowest plasma C3, C4, lysozyme, total immunoglobulin and total superoxide dismutase activity (< .05). Present results indicated that lysine, methionine and threonine were the most limiting EAA in terms of growth performance; however, arginine, threonine and lysine were the most limiting EAA for innate immunity responses in silvery‐black porgy juveniles.  相似文献   

9.
This experiment was conducted to investigate total aromatic amino acid requirement of juvenile grass carp Ctenopharyngodon idella. Six isonitrogenous and isoenergetic semipurified diets containing casein and gelatin with graded level of phenylalanine (7.8, 11.1, 14.4, 17.6, 21.7, 24.9 g kg?1 DM) were formulated. Each diet was randomly assigned to triplicate group of 30 fish (3.58 ± 0.002 g, mean ± SEM) each tank for 8 weeks. The highest weight gain (WG, %), final body weight (g) and specific growth rate were recorded when phenylalanine level was 17.6 g kg?1 of the diet. Fish muscle protein content, protein efficiency ratio (PER), feed conversion ratio and alanine aminotransferase were significantly affected by dietary phenylalanine level. The polynomial regression calculated using WG and PER indicated that the optimal dietary total aromatic amino acid (phenylalanine + tyrosine) requirement for juvenile grass carp was 24.4 g kg?1 of the diet, corresponding to 65.9 g kg?1 of dietary protein.  相似文献   

10.
Three studies were conducted with juvenile cobia, Rachycentron canadum: (Study 1) a 10‐week feeding trial within floating net cages to test the nutritional efficacy of different dietary feeding regimes (trash‐fish control diet, a semimoist diet, an in‐house dry formulated diet, and a commercial cobia feed); (Study 2) a 10‐week feeding trial within an indoor water‐recirculating tank‐based system to test the nutritional efficiency of different potential dietary fishmeal replacers (poultry byproduct meal, soy protein concentrate, feather meal), a diet without taurine supplementation, and a commercial cobia feed; and (Study 3) estimation of the essential amino acid (EAA) requirements of cobia based on EAA whole‐body composition in fast‐growing cobia fed a trash‐fish‐based diet. Fish performance in terms of growth and feed efficiency was the greatest within the outdoor net‐cage feeding trial, with fish fed the control trash‐fish‐based diet exhibiting the best performance. Although fish growth was poorer within the indoor feeding trials, fish performance was similar for most diets, with apparent crude protein digestibility coefficients of over 75% being obtained in all experimental diets in both feeding trials. The estimated EAA requirements of cobia obtained during this study were similar to those reported for other similar marine carnivorous fish species.  相似文献   

11.
Formulation of diets according to fish amino acid (AA) qualitative requirements may improve fish growth. Two diets with different AA profiles were tested on 16‐day‐old meagre during 20 days. The first diet had an AA profile closer to meagre larval AA requirements (BAL), whereas the second had a different AA profile (UNBAL). Results showed that larvae fed the diet with higher similarities to the AA profile of meagre carcass had a higher final weight (19.8 ± 0.5 mg versus 13.4 ± 1.8 mg) and lower ammonia excretion after being fed (0.6 ± 0.1 ml/(g DW. larvae. h) and 0.8 ± 0.1 ml/(g DW larvae. h)). A higher mean fibre area was obtained in 36 DAH larvae fed the BAL diet (224.8 ± 33.3 μm2 versus 158.8 ± 34.5 μm2) as well as higher larval weight. When fibre area distribution was analysed, a higher frequency of larger fibres was observed in 36 DAH BAL larvae, suggesting that fibre hypertrophy had a higher importance in this treatment. In conclusion, this study shows that meagre larvae fed a diet with an AA profile closer to their requirements had lower nitrogen losses and higher final weight, as result of higher muscle hypertrophy.  相似文献   

12.
Three experiments were conducted that were designed to evaluate our ability to predict essential amino acid (EAA) needs of hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. In the first experiment, six diets containing various amino acid profiles were fed to triplicate groups of fish initially weighing 7.7 g per fish. At the end of the 8‐week experiment, no significant differences were detected in growth rates or feed efficiencies (FE) between fish fed a practical diet containing 510 g kg?1 herring fish meal (FM) and fish fed a purified diet containing the amino acid profile of herring fish meal (CAA‐FM). Growth responses of fish fed purified diets containing 100 (HSB), 110 (HSB110), 120 (HSB120) or 140 g 100 g?1 (HSB140) of the amino acid profile of hybrid striped bass whole‐bodies were significantly lower than those of fish fed diet FM. In the second experiment, triplicate groups of fish (5.6 g per fish) were fed diets containing various energy : protein (E : P) ratios (34.8, 41.2, 47.5 and 53.9 kJ g?1 protein) and one of two amino acid profiles (CAA‐FM and HSB120) in a 4 × 2 factorial design. Carbohydrate concentration was varied to achieve the desired energy concentrations. At the end of the 8‐week experiment, weight gain and FE were significantly higher in fish fed diets formulated to simulate the amino acid profile of herring fish meal (CAA‐FM) compared with fish fed diets formulated to contain 120 g 100 g?1 of the amino acid profile of hybrid striped bass whole‐bodies (HSB120). Weight gain, FE and survival data indicated the optimum dietary E : P was 41.2 kJ g?1 protein. Dietary treatments in the final experiment included three amino acid profiles and four levels of lipid in a 3 × 4 incomplete factorial design. Dietary amino acid treatments included the amino acid profile of herring fish meal (CAA‐FM) or 120 g 100 g?1 of the predicted EAA requirement profile for hybrid striped bass (HSB120). The amino acid profile of the remaining dietary treatment (PRED+) was similar to that of the HSB120 treatment, but contained additional threonine, isoleucine and tryptophan. Diets CAA‐FM and HSB120 contained either 90, 130, 170 or 210 g kg?1 lipid, whereas diet PRED+ contained 130 g kg?1 lipid. Dietary treatments were fed for 10 weeks to triplicate groups of fish initially weighing 81.0 g per fish. Weight gain and FE were not significantly affected by dietary amino acid profile. Feed efficiency was significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with fish fed diets containing 90–170 g kg?1 lipid. Intraperitoneal fat (IPF) ratio and hepatosomatic index (HSI) values generally increased as dietary lipid concentrations increased. Total liver lipid concentrations were significantly reduced in fish fed diets containing 210 g kg?1 lipid compared with those of fish fed 90–130 g kg?1 lipid. Results of this study indicate an appropriate dietary amino acid profile can be predicted for hybrid striped bass using the quantified lysine requirement and whole‐body amino acid concentrations. Further, the optimum E : P appears to be 40 kJ g?1 protein.  相似文献   

13.
One of the strategies used to improve fish production is lowering the feed costs and the environmental impact by reducing dietary protein content. Using the deletion method, we determined the optimal amino acid (AA) ratio for Nile tilapia (Oreochromis niloticus) (body weight 20 g). Eleven experimental diets and four replications, taken two at a time, distributed in a randomized block design were used. For this trial, a balanced diet (BD) was formulated. Ten other diets were formulated by the deletion method, in which the BD diet was adjusted to result in a reduction of 45% of the test amino acid. Fish were fed three times a day for 57 days. Groups of fish at the beginning and at the end of the experiment were euthanized for further determination of the carcass nitrogen (N) composition. The optimal ratio of each AA was derived by dividing the requirement for each AA by the requirements for lysine. The essential AA ratios, expressed relative to lysine (=100), were methionine 64, threonine 93, tryptophan 24, arginine 125, histidine 34, isoleucine 57, leucine 96, valine 76 and phenylalanine 101. Our findings might be used to design strategies aimed at reducing the production costs of Oreochromis niloticus.  相似文献   

14.
Juvenile white sturgeon (Acipenser transmontanus, Richardson) were fed or starved for 4 weeks, and their whole body amino acid composition determined at the beginning and the end of the study. The amino acid compositions of muscle, liver, gill and gastrointestinal tract, and the free amino acids in plasma of fed and starved fish were also determined. Very little variation was observed in the amino acid compositions of all the tissues examined after starvation. However, the plasma free amino acids were significantly (P < 0.05) decreased following starvation. On the basis of the amino acid composition and nitrogen retention values of the whole fish, daily indispensable amino acid requirements for protein accretion and obligatory nitrogen losses (mg amino acid 100 g body weighr?1 day?1) were estimated. The pattern of indispensable amino acids required for each of these is different, with the pattern for protein accretion containing much higher levels of lysine, but lower levels of tryptophan and sulfur amino acids. Individual amino acid retention rates varied from 33.3% of dietary tryptophan to 80.2% for arginine. The estimated dietary indispensable amino acid pattern for young growing white sturgeon (expressed as a percentage of total indispensable amino acids plus cystine and tyrosine) is: arginine, 14.0; histidine, 6.6; isoleucine, 8.8; leucine, 12.5; lysine, 15.8; methionine (plus cystine), 6.6; phenylalanine (plus tyrosine), 15.5; threonine, 9.7; tryptophan, 0.8; and valine, 9.7.  相似文献   

15.
To determine the digestible lysine requirement for pacu juveniles, a dose–response feeding trial was carried out. The fish (8.66 ± 1.13 g) were fed six diets containing the digestible lysine levels: 6.8, 9.1, 11.4, 13.2, 16.1 and 19.6 g kg?1 dry diet. The gradual increase of dietary digestible lysine levels from 6.8 to 13.2 g kg?1 did not influence the average values of the parameters evaluated (P > 0.05). The increase of dietary digestible lysine level to 16.1 g kg?1 significantly improved weight gain (WG), specific growth rate (SGR), protein productive value (PPV), protein efficiency rate (PER), and apparent feed conversion rate (FCR), but was not different from fish fed diets containing 19.6 g kg?1 lysine. Fish fed diets containing 16.1 and 19.6 g kg?1 digestible lysine showed lower body lipid contents than fish in the other treatments. The digestible lysine requirement as determined by the broken‐line model, based on average WG values, was 16.4 g kg?1. The other essential amino acid requirements were estimated based on the ideal protein concept and the value determined for lysine.  相似文献   

16.
A study was conducted to evaluate the effect of partial replacement of dietary fish meal by crystalline amino acids on growth performance, feed utilization, body composition and nitrogen utilization of turbot juveniles.

Four diets were formulated to be isolipidic (12% DM) and isonitrogenous (8% DM). A fish meal based diet was used as control. In the experimental diets, a crystalline amino acid (AA) mixture was used to partially replace fish meal, corresponding to a non-protein nitrogen content of 19, 37 and 56%, respectively (diets 19AA, 37AA and 56AA, respectively). The overall amino acid profile of the experimental diets resembled that of the whole-body protein of turbot. Each experimental diet was fed to triplicate groups of 20 fish (initial body weight of 31.8 g) twice daily to apparent satiation for 42 days. During the trial water temperature averaged 18 °C.

Final body weight, weight gain (g kg ABW− 1 day− 1) and specific growth rate were not different between the control and 19AA diet but significantly decreased with the increase of crystalline-AA inclusion from 19 to 56%. Feed intake and feed efficiency of fish fed the control and diet 19AA were similar and significantly higher than those of fish fed the 56AA diet. At the end of the growth trial, there were no significant differences in whole-body composition among groups. Hepatosomatic index was also unaffected by dietary treatments.

Nitrogen retention (g kg ABW− 1 day− 1) of fish fed the control and the 19AA diets were similar and significantly higher than that of fish fed the other diets. Expressed as a percentage of the nitrogen intake, N retention was significantly higher with the control than with the 37AA and 56AA diets.

Daily ammonia excretion (mg kg ABW− 1 day− 1) of fish fed the control diet was significantly higher than that of fish fed the 37AA and 56AA diets, while daily urea excretion (mg kg ABW− 1 day− 1) did not significantly differ among treatments. Non-fecal nitrogen (ammonia + urea) excretion (mg kg ABW− 1 day− 1) was significantly higher for fish fed the control diet than in those fed the 37AA and 56AA diets. However, as percent of N intake, ammonia excretion and non-fecal N excretion were significantly higher in fish fed the 56AA diet than in those fed the control and 19AA diets.

Specific activity of glutamate dehydrogenase, alanine and aspartate aminotransferases did not significantly differ among experimental groups.

In conclusion, in diets with an overall amino acid profile resembling that of the whole-body protein of turbot, crystalline-AA may replace 19% of dietary protein without negatively affecting growth performances or feed utilization efficiency. However, higher protein replacement levels of protein-bound-AA by crystalline-AA severely depressed growth performance.  相似文献   


17.
A feeding trial was conducted to investigate the effects of different dietary amino acid patterns on growth performance, feed utilization and body composition of juvenile Nibea japonica. Four semi‐purified diets were formulated to simulate the dietary amino acid profiles of juvenile giant croaker whole body protein (GCP), Peru fishmeal protein (PFP), red sea bream eggs protein (REP) and soybean meal protein (SMP) by supplementing with pre‐coated crystalline amino acids (CAA). A control diet contained only intact protein sources provided by the fishmeal and casein (2:1). Each experimental diet was fed to satiated triplicate groups of juveniles (10.73 ± 0.07 g) twice a day for 8 weeks. The highest weight gain (WG) was observed in the juveniles fed the control diet, whereas no significant differences were found between the juveniles fed the GCP and control diets. Fish fed the control, GCP, PFP and SMP diets did not exhibit any significant difference in protein efficiency ratio (PER), feed conversion (FCR) or nitrogen (N) retention. The results of this study suggest that the amino acid (AA) patterns of juvenile whole body protein could be used as a guideline in the formulation of dry diets, which also confirms that the juvenile giant croaker is able to utilize high amounts (20%) of CAA in coated form for growth.  相似文献   

18.
A 12‐week feeding trial was conducted to estimate the effects of supplemented amino acids (lysine and methionine) with different dietary protein levels on growth, haematology and liver histology in meagre (Argyrosomus regius) at two different sizes: fingerling (15.2 g) and juvenile (44.4 g). Six practical diets were prepared, and three of these practical diets were formulated with 40 (P40), 44 (P44) and 48% (P48) crude protein without supplementation of amino acids. Other three diets having same protein levels were supplemented with lysine and methionine (P40AA, P44AA and P48AA) to bring these amino acids level up to that estimated to be at the least in the 48% protein diet. Final mean weight (FMW) and specific growth rate (SGR) of P48AA in fingerlings were higher than that of 40AA. According to FMW and SGR of juveniles, there was interaction found between dietary protein levels and the supplementation of amino acids. The FMW and SGR of meagre fed P44AA were higher than that of fish fed the other diets, except fish fed the P48. Economic profit index, packed cell volume and haemoglobin for juvenile meagre were significantly improved with the dietary protein level and amino acid supplementation. The liver tissues of the P48 group in both sizes displayed better structure compared with the other groups. In conclusion, dietary crude protein content of practical diets for juvenile meagre could be reduced from 48% to 44% by adding essential amino acids with an enhancement in growth, health and economic profit.  相似文献   

19.
2013-2014年分析了金沙江流域160尾秀丽高原鳅(Triplophysa venusta)的生长性状、繁殖力和肌肉氨基酸组成。结果显示,秀丽高原鳅由1~8龄个体组成,以2~5龄个体为主,占比为78.1%;雌雄个体比例为1∶1.29。雌雄个体的平均体长分别为67.8 mm与72.7 mm,平均体重分别为4.13 g与4.30 g,雌雄个体间的体长和体重均无显著差异。秀丽高原鳅的体长与体重呈显著的幂函数相关:W♀+♂=0.014 9L2.811,(R2=0.89,r=0.864 7)。雌雄个体的Fulton和Clark肥满度分别为1.13与1.02,1.15与0.84,但差异不显著。雌性个体的绝对繁殖力位于825~4 500粒/尾之间,平均1 815粒/尾。肌肉中共检测到18种氨基酸,包括8种必需氨基酸与10种非必需氨基酸,总氨基酸含量(占鲜重)为13.63%,鲜味氨基酸含量为4.22%;必需氨基酸的构成比例符合FAO/WHO标准。氨基酸评分中,色氨酸分值最小,为第一限制性氨基酸。  相似文献   

20.
Two separate 12 weeks feeding trials were performed to quantify the total sulphur amino acid (TSAA) requirement (experiment I) and cysteine replacement value for methionine (experiment II) of fingerling Catla catla. In experiment I, six casein–gelatin based (33% crude protein; 16.72 kJ g?1 gross energy) diets with graded levels of TSAA (0.56%, 0.81%, 1.06%, 1.31%, 1.56%, 1.81% dry diet) were fed to triplicate groups of fish (3.55 ± 0.06 cm; 0.65 ± 0.02 g) near to satiation. The TSAA requirement was determined by quadratic regression analysis of absolute weight gain (AWG), protein efficiency ratio (PER), feed efficiency (FE), protein gain (PG) and TSAA gain (TSAAG) against dietary TSAA concentrations at 95% maximum response. Above analysis revealed that inclusion of TSAA at 1.28% dry diet (1.22% methionine + 0.06% cysteine), corresponding to 3.87% of dietary protein is optimum. In experiment II, to determine the replacement value of cysteine for methionine, six diets containing 1.28% TSAA determined in experiment I with different ratios of l ‐methionine and l ‐cysteine (80:20, 70:30, 60:40, 50:50, 40:60, 30:70) on equimolar sulphur basis were fed to fish (3.65 ± 0.08 cm; 0.67 ± 0.04 g). Broken‐line regression analysis of AWG, PER, FE, PG and TSAAG against varying methionine to cysteine ratios yielded the optimum cysteine replacement value at 40.3%. Based on above analysis, it is recommended that inclusion of 1.28% dietary TSAA, corresponding to 3.87% of dietary protein is optimum of which 40.3% could be spared by cysteine. Data generated during this study would be useful in formulating TSAA balanced, cost‐effective feeds for the intensive culture of this fish.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号