首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nitrification process is a widely used biological approach responsible for ammonia and nitrite removal in recirculating aquaculture system (RAS) biofilters. Given this pivotal role, the influence of different water quality parameter on nitrification efficiency is important information for RAS operations. One influencing parameter is salinity, and salinity fluctuations in freshwater RAS biofilters are reported to affect the nitrifying bacteria. This study investigated the effects of abrupt increase in salinity in freshwater RAS on substrate-dependent (1’-order) as well as substrate independent (0’-order) nitrification rates. A 100% inhibition was found for surface specific removal (STR) of total ammonia nitrogen (TAN) and surface specific nitrite removal (SNR) when salinity was abruptly increased to 25‰ and above. A fast turnover (i.e. steep decline in [NH4-N+] and [NO2-N]) were observed at lower salinities (≤10‰), while limited/no degradation of either ammonia or nitrite was seen at salinities above 25‰. At low substrate loading (1’-order process), removal rate constants (k1a) of 0.22 and 0.23 m d-1 were observed for ammonia and nitrite degradation, respectively, declining to 0.01 m d-1when adding marine RAS water increasing the salinity to 15‰. Similar observations followed at high nutrient loadings (0’-order process) with STR and SNR of 0.10 and 0.12 g N m-2 d-1, respectively, declining to 0.01 g N m-2 d-1 at 15‰. When salinities of 25‰ and 35‰ were applied, neither TAN nor nitrite degradation was seen. The results thus demonstrate a pronounced effect of salinity changes when freshwater RAS biofilters are subjected to fast/abrupt changes in salinity. RAS facility operators should be aware of such potential effects and take relevant precautions.  相似文献   

2.
Effects of salinity on the growth, survival, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX) and sodium‐potassium adenosine triphosphatase (Na+K+‐ATPase) activities of juvenile golden pompano Trachinotus ovatus were studied under a laboratory condition. Experimental fish were reared at the salinities of 10‰, 18‰, 26‰ and 34‰ for 30 days. Growth and survival of juvenile golden pompano were significantly affected by the rearing salinity. Fish reared at 34‰ achieved the highest specific growth rate, while the highest survival was obtained when fish were cultured at the salinity of 26‰. The highest GPX activity was obtained when fish were cultured at 26‰, and the lowest GPX activity was observed when fish reared at 34‰ salinity. The SOD activities of fish reared at 18‰ and 34‰ were significantly higher than those reared at 10‰ and 26‰. The lowest of Na+K+‐ATPase activity was obtained in fish reared at 34‰, while the highest Na+K+‐ATPase activity was obtained when fish reared at 18‰. Results from present study indicate that juvenile golden pompano can be reared above 18‰ without sacrificing fish survival, and the best growth can be achieved when fish is reared at the salinity of 34‰. The salinity of 10‰ may be too low for juvenile golden pompano as the growth, survival and SOD activity were reduced.  相似文献   

3.
The effects of two different environmental salinities [brackish water (BW), 12‰; sea water (SW), 39‰] and initial stock densities [low (LD), 1.0 g L?1; high (HD), 2.0 g L?1] on growth, osmoregulation, stress and energy metabolism of the fry Pagrus pagrus were investigated over a period of 45 days. Pagrus pagrus (n=80, 5.51 ± 0.25 g mean initial body weight) were randomly divided in eight groups. Growth, weight gain and specific growth rate increased in BW‐acclimated fish compared with SW‐acclimated fish. No differences were observed between the two stock densities tested at either environmental salinity. Plasma osmolality was lowest in BW‐acclimated specimens, but the stock density had no effect on this parameter. Branchial Na+,K+‐ATPase activity was positively correlated with environmental salinity, but unaltered at the renal level. Plasmatic parameters were enhanced by salinity and stocking conditions. At the hepatic level, triglyceride values were enhanced in BW‐acclimated fish maintained at LD. Muscle metabolites (glycogen, glucose and lactate) increased in BW‐ compared with SW‐acclimated fish; stock density had no influence. Our data suggest that changes in metabolic parameters could be correlated with the higher growth rates observed in P. pagrus acclimated to BW, while no significant effects due to the stocking density used were observed.  相似文献   

4.
The giant freshwater prawn, Macrobrachium rosenbergii, is a species with a high commercial value in aquaculture. Two experiments were performed to determine the effects of salinities on the osmoregulation, growth and molting cycles of M. rosenbergii during growout. The first experiment was designed to determine whether these animals are capable of adapting to the changes in salinity seen in salinity intrusions in tropical deltas, with an incremental increase in salinity of 3‰ per day from 0‰ to 30‰ Haemolymph osmolality was rapidly regulated up to salinities of 15‰ , whereas animals conformed at higher salinities. The second experiment determined the growth, moulting cycle, osmolality, muscle water content and mortality during a 4‐month experiment at 0‰, 15‰ or 25‰ salinity. The weight gains in 0‰ and 15‰ were not significantly different and were comparable to the growth rates achieved in production farms with body mass increases of 2.6 and 2.3‐fold their initial body mass, respectively, after 4 months. The 25‰ group suffered from low growth, high mortality and a significantly lower moulting frequency. These data show that this species can be reared in brackish water up to 15‰, allowing for farming in the large areas impacted by salt water intrusions in tropical deltas.  相似文献   

5.
Shrimp farming at low salinity is a trend that will continue to grow globally. Performance of Litopenaeus vannamei postlarvae in the nursery at different salinities with a biofloc technology (BFT) system needs to be explored further, as the nursery is currently used as a transitional stage between the hatchery and grow-out ponds. Hence, this study evaluated the effect of seven salinity levels (2, 4, 8, 12, 16, 25, and 35 ‰) on the performance of L. vannamei postlarvae reared with a BFT system and zero-water exchange at 2000 org/m3. Additionally, this study evaluated the water quality of all salinity treatments. After 28 days of culture, the findings showed that, under biofloc conditions, salinity affected the performance of some variables of water quality in some cases, but only the combination of a high nitrite-N concentration (>4 mg/l) and low salinity (2 and 4 ‰) caused up to 100 % shrimp mortality in the first 2 weeks. In the rest of the treatments (8, 12, 16, 25, and 35  ‰), shrimp survival was >72 %. Shrimp mortality was affected by salinity, especially when it decreased from 35–25–16 to 12 and 8 ‰. The organisms reared at low salinities presented lower final weights and specific growth rate than those reared at higher salinities. An inverse relationship was shown between the ion concentration and the final weight of shrimp.  相似文献   

6.
We studied the effects of salinity on survival, growth, food conversion efficiency and plasma osmolality of juvenile Siganus guttatus in two independent experiments. In the first experiment, fish were transferred from 30 ‰ salinity to freshwater, 5, 10, 20 and 30 ‰ salinities for 192 h. No fish died when transferred directly from 30 ‰ to salinities >5 ‰. However, all fish died in the freshwater treatment. In the second experiment, survival, growth, feeding rate, food conversion efficiency and plasma osmolality of fish were analyzed during 6 weeks in salinities of 5, 10, 20 and 30 ‰ (control). At the end of this experiment, the final weight and the specific growth rate of fish were significantly greater at 10 ‰ than fish in all other treatments. Feeding rate increased significantly with decreasing salinity: 10 ‰ > 20 ‰ > 30 ‰. However, the food conversion efficiency was not significantly different between fish in any treatment. Plasma osmolality of fish in 20 and 30 ‰ salinity was significantly greater than fish reared at 10 or 5 ‰. A salinity of 13.95 ‰ (411.88 mOsmol/kg) was the point of isosmolality for juvenile S. guttatus.  相似文献   

7.
Tropical shrimp, like Litopenaeus vannamei, in land‐based recirculating aquaculture systems (RAS) are often kept at low water salinities to reduce costs for artificial sea salt and the amount of salty wastewater. Although these shrimp are tolerant against low salinities, innate immunity suppression and changes in the microbial composition in the water can occur. As especially Vibrio spp. are relevant for shrimp health, alterations in the species composition of the Vibrio community were analysed in water from six RAS, run at 15‰ or 30‰. Additionally, pathogenicity factors including pirA/B, VPI, toxR, toxS, vhh, vfh, tdh, trh, flagellin genes and T6SS1/2 of V. parahaemolyticus were analysed. The Vibrio composition differed significantly depending on water salinity. In RAS at 15‰, higher numbers of the potentially pathogenic species V. parahaemolyticus, V. owensii and V. campbellii were detected, and especially in V. parahaemolyticus, various pathogenicity factors were present. A reduced salinity may therefore pose a higher risk of disease outbreaks in shrimp RAS. Because some of the detected pathogenicity factors are relevant for human health, this might also affect food safety. In order to produce healthy shrimp as a safe food for human consumption, maintaining high water salinities seems to be recommendable.  相似文献   

8.
The effects of different salinities (0, 2, 4, 6 and 10‰) on food intake, growth, food conversion, and body composition of the freshwater catfish Mystus vittatus (Bloch) were studied. Under a restricted feeding schedule daily intake of food was found to be salinity dependent. Fish reared in 10‰ consumed more Tubifex tubifex, converted less efficiently and displayed poor growth as compared to individuals reared in fresh water. Fish flesh production decreased from 483 g (fresh water) to 177 g (10‰ salinity) as the salinity was increased. Water content of the fish was found to decrease with increase in salinity, while maximum ash (25.56%) and fat (42.25%) were exhibited by fish reared in 10‰ salinity.  相似文献   

9.
Grouper have to face varied environmental stressors as a result of drastic changes to water conditions during the storm season. We aimed to test the response of brown-marbled grouper to drastic and gradual changes in temperature and salinity to understand the grouper’s basic stress response. The results can improve the culture of grouper. Brown-marbled grouper, Epinephelus fuscoguttatus (6.2 ± 0.8 g) were examined for temperature and salinity tolerances at nine different environmental regimes (10, 20, and 33 ‰ combined with 20, 26 and 32 °C), in which the fish were subjected to both gradual and sudden changes in temperature and salinity. The critical thermal maximum (50 % CTMAX) and the upper incipient lethal temperature (UILT) were in the ranges of 35.9–38.3 and 32.7–36.5 °C, respectively. The critical thermal minimum (50 % CTMIN) and the lower incipient lethal temperature (LILT) were in the ranges of 9.8–12.2 and 14.9–22.3 °C, respectively. The critical salinity maximum (50 % CSMAX) and the upper incipient lethal salinity (UILS) were in the ranges of 67.0–75.5 and 54.2–64.8 ‰, respectively. Fish at temperature of 20 °C and a salinity of 33 ‰ tolerated temperatures as low as 10 °C when the temperature was gradually decreased. Fish acclimated at salinities of 10–33 ‰ and a temperature of 32 °C tolerated salinities of as high as 75–79 ‰. All fish survived from accumulating salinity after acute transfer to 20, 10, 5, and 3 ‰. But all fish died while transferred to 0 ‰. Relationships among the UILT, LILT, 50 % CTMAX, 50 % CTMIN, UILS, 50 % CSMAX, salinity, and temperature were examined. The grouper’s temperature and salinity tolerance elevated by increasing acclimation temperature and salinity. On the contrary, the grouper’s temperature and salinity tolerance degraded by decreasing acclimation temperature and salinity. The tolerance of temperature and salinity on grouper in gradual changes were higher than in drastic changes.  相似文献   

10.
Overwintering is an important part of the conservation of Scylla paramamosain, and salinity has an important effect on the conservation of S. paramamosain during overwintering. Three salinities (4‰, 12‰ and 25‰) were selected as the overwintering salinities to reveal the effects of different salinities on the relevant important ions in osmotic pressure regulation, plasma cortisol, digestive enzymes, immune enzymes and amino acids of S. paramamosain during indoor overwintering. Results indicated that after overwintering, Cl, Na+ and the osmotic pressure of serum have the highest salinity at 25‰, and the lowest salinity at 4‰. Na+/K+‐ATPase activity and cortisol were found to increase with decreasing salinity. The activity of digestive and immune enzymes was highest at 25‰, and was the lowest at 4‰. The amount of total amino acids (TAA), umami amino acids (UAA) and essential amino acids (EAA) in 25‰ were significantly higher than in 4‰ and 12‰. After overwintering, the essential amino acid index (EAAI) in the salinity range of 12–25‰ was 54.04–59.00, compared to 48.56–54.04 in the salinity range of 4–12‰. As a result, S. paramamosain at 25‰ had higher digestion and immunity than at 4‰ and 12‰, due to requiring more energy for osmotic pressure adjustment. In addition, S. paramamosain at 25‰ had the best meat quality. The results of this study are helpful for aquaculture production for indoor overwintering of S. paramamosain.  相似文献   

11.
Despite the importance of certain highly unsaturated fatty acids in osmotic regulation, few studies have been addressed to determine the essential fatty acid requirements for a given species cultured under different salinities. As Galaxias maculatus is a diadromic species, the present study aimed to determine the effect of salinity on the optimum dietary EPA/docosahexaenoic (DHA) ratio for survival and growth during the larval stages. Larvae were fed for 20 days with rotifers containing two different EPA/DHA ratios (low: 0.64 and high: 2.18) at three different salinities (0, 10 and 15 g L?1). The results of this study showed a marked effect of water salinity on larval dietary lipid utilization in G. maculatus larvae. These results suggested that G. maculatus larvae reared at higher salinities may have a higher dietary requirement for DHA, whereas larvae reared at 0‰ showed higher requirements for EPA. The overall results of the present study indicate that even small changes in salinity can determine the optimum dietary EPA/DHA ratio and the quantitative essential fatty requirements of fish. This may have important repercussions and affect the rearing performance of G. maculatus cultured under different salinities.  相似文献   

12.
A study was undertaken to measure the water flow (Qw) delivered by a vacuum airlift designed for recirculating aquaculture systems (RAS) in fresh (<1‰ of salinity) and sea water (35‰ of salinity). The vacuum airlift consists of two concentric tubes connected at their top to a depression chamber. The water rises in the inner tube as a result of air being injected in its lower section and flows back through the external downcomer tube. The vacuum airlift was adjusted at three different lengths: 2, 4 or 6 m and water discharge could be lifted from 0 to 30 cm. Air flow rate (Qg) varied from 0 to 80 L min−1. Different types of air injectors were tested, delivering different bubble sizes (0.1–5 mm) depending on porosity and functioning at low or high injection pressure. Results show an increase in water flow when pipe length and air flow were increased and lift height reduced. Water flow also depended on the type of water and ranged from 0 to 35 m3 h−1 (0–580 L min−1) for fresh water and only from 0 to 20 m3 h−1 (0–330 L min−1) for sea water (for a 6 m high vacuum airlift). This difference was attributed to the smaller bubble diameter and higher gas holdup (ɛg) observed in sea water (0–20%) compared to fresh water (0–10%). When bubbles were present in the downcomer tube, they created a resistance to flow (counter-current airlift) that slowed down liquid velocity and thus water flow. Increasing the vacuum made it possible to use low air injection pressures and high injection depths. Vacuum also increased bubble size and airflow (20 L min−1 at atmospheric pressure to 60 L min−1 at 0.3 barA) and thus water flow rates. With RAS, the presence of fish feed in water rapidly increased water flow delivered by the airlift because of changes of water quality and gas holdup. When working with low head RAS (under 0.3 m), vacuum airlift could save up to 50% of the energy required for centrifugal pumps. An empirical predictive model was developed and calibrated. Simulation shows a good correlation between predicted values and measurements (R2 = 0.96).  相似文献   

13.
A study was performed to examine the effects of salinity on water quality, fish performance, carcass composition and haemato‐biochemical parameters in juvenile meagre, Argyrosomus regius. Fish (5.0 g) were stocked in fibreglass tanks at four salinity levels: 8‰, 16‰, 24‰ and 32‰, and fed a pelleted diet (47/17 protein/lipid) for 56 days. Results indicated that the growth, feed utilization, carcass composition and haemato‐biochemical parameters of meagre gradually improved with the increase in salinity up to 24‰ and then significantly (p ≤ .05) decreased at 32‰. The survival per cent showed a significant decrease when A. regius exposed to 8‰ salinity. An improvement with 32%, 47% and 34.1% of FCR, protein productive value and energy utilization was detected at 24‰ compared with 8‰ salinity respectively. The highest content of protein and the lowest of lipids were recorded in fish carcass at 24‰ compared with the opposite trend at 8‰ salinity. The 24‰ salinity treatment exhibited the highest value of haemoglobin (4.9 g/dl) and the lowest ratio (0.73) of albumin/globulin. The serum total protein, albumin and globulin were significantly higher at 24‰ and 32‰ salinity than those at 8‰ and 16‰ salinity groups. These findings indicate that 24‰ salinity level might be the best for meagre.  相似文献   

14.
Channel catfish, Ictalurus punctatus (Rafinesque), goldfish, Carassius auratus (L.), striped bass, Morone saxatilis (Walbaum), and Gulf sturgeon, Acipenser oxyrinchus desotoi Vladykov, were acclimatized to fresh water or salinities of 9.0‰ or less and then exposed to Flavobacterium columnare (formerly known as Flexibacter columnaris ), the bacterial pathogen that causes columnaris disease. None of the fish acclimatized to 3.0 or 9.0‰ salinity died, and all deaths in lower salinities occurred between 1 and 5 days after exposure to F. columnare . Mortality was 97.7% in fresh water and 67.1% in 1.0‰ salinity for channel catfish (model SE, 1.8) and 66.5% in fresh water and 40.8% in 1.0‰ salinity for goldfish (model SE, 1.2); and 96.9% in fresh water and 61.7% in 1.0‰ salinity for striped bass (model SE, 1.8). After exposure to F. columnare , none of the Gulf sturgeon died. Flavobacterium columnare was isolated from the skin and gills of all fish dying during the experiments, but was not isolated from survivors in fresh water and 1.0‰ salinity 21 days after bacterial exposure. In vitro growth of bacteria was significantly higher in 1.0 or 3.0‰ salinity than in control medium (0.3‰ salinity). However, in vitro adhesion of bacteria was reduced with increasing salinity, which could explain the lower mortality of fish at higher salinities.  相似文献   

15.
Coho salmon yearlings, reared in France in a freshwater hatchery, were directly transferred to sea water at three different periods of the year: 14 January, 3 March and 14 April 1976. The last two experiments were realized at three different salinities: 25, 30 and 35‰.The results show important seasonal differences in the osmoregulatory responses. The direct transfer to 35‰ reveals some osmoregulatory problems which are not discernable at lower salinities. Yearlings transferred to a 35‰ sea water present a much higher and faster rise of plasma electrolytes and of branchial Na+K+ ATPase activity than fish transferred to a 25 or 30‰ sea water.It was found that a physiologically pre-adapted fish, characterized by a high level of branchial Na+K+ ATPase activity in fresh water (April) will present in sea water a slower and more regular increase in gill Na+K+ ATPase activity than fish with a low level of enzyme activity in fresh water (January–March). These smolts transferred to 25 and 30‰ sea water in April do not exhibit important variations, whereas a well-marked osmotic disequilibrium appears at 35‰. However, this osmotic stress is much more rapidly controlled than in the previous transfers.Our results suggest that the highest tolerance to sea water is reached only at time of smolting and that the time of transfer may have a direct influence on the intensity of the osmotic stress. These facts might be of considerable importance for the development of marine rearing of coho salmon in coastal areas where the salinities stay usually above 30‰ which constitutes an unusual environment for the species under consideration.  相似文献   

16.
Abstract.— In South Carolina, studies have been conducted to develop rearing techniques for southern flounder Paralichthys lethostigma a candidate for aquaculture development and stock enhancement programs. To help define environmental tolerances, a variety of salinity studies were conducted with the early life stages of this species. Eggs were buoyant at 32 ppt and sank at 29 ppt with salinities of 30–31 ppt providing varying levels of suspension in the water column. Eggs incubated at 0 and 5 ppt all died, whereas 82.5% hatched at 10 ppt but larvae died shortly thereafter. At 63 h post-fertilization, there were no differences in hatch level for eggs incubated at salinities of 15 to 35 ppt (mean hatch level 98.5%). In a 72-h study, fish 3 wk post-metamorphosis (13.7 mm TL, 50-d-old) were acclimated to seven salinities ranging from 0–30 ppt. Fish held at 0 ppt salinity exhibited a statistically (P < 0.05) lower survival (20.0%) than those exposed to 5–30 ppt salinity concentrations. No differences were detected in survival (mean 99.1%) among fish held in the higher salinities. A second study examined the tolerance of older juveniles to lower salinities. Juvenile flounder (95.2 mm TL, 220-d-old) were acclimated to 0, 1,5 and 10 ppt salinities and reared for 2 wk. Results showed that fish could tolerate salinities of 0–10 ppt (100% survival). These data indicate that salinity tolerance of southern flounder increases with age. In addition to the short duration studies, a replicated 11-mo duration tank grow-out study was conducted at mean salinity 5.4 ppt and mean temperahue 22.6 C with an all male population. Flounder grew from a mean length of 100 mm to 213 mm TL and weight from 8.9 to 104.3 g. Growth of the cultured fish approximated that observed among male flounders in the wild.  相似文献   

17.
Abstract – Fragmented populations of freshwater fish may develop genotypic and phenotypic differences as adaptations to local habitat conditions. These differences contribute significantly to biological diversity and may lead to speciation. In the Murray–Darling Basin, Australia, the Murray hardyhead Craterocephalus fluviatilis, listed as ‘endangered’ by the World Conservation Union, has a wide but fragmented distribution that is apparently related to salinity. To determine whether this pattern has a physiological basis, we compared osmoregulation in fish from two isolated populations in different salinity regimes (Wyndgate: 0.4–1.5‰; Disher Creek: c. 1.0–45‰). In laboratory trials, fish from both populations remained healthy at high salinities (5–65‰). The Disher Creek population maintained a significantly lower blood osmotic concentration than the Wyndgate population at salinities ≤1‰, suggesting that there is a physiological difference between them. The findings have implications for the conservation of C. fluviatilis and other fish populations whose distributions are fragmented by salinity.  相似文献   

18.
Salinity has been proven to have a significant effect on the growth and survival of anadromous fish species; however, there is a paucity of information regarding its effect on euryhaline marine species. Experiments were conducted to examine the effect of hyposalinity on the osmoregulation and growth of juvenile spotted grunter, Pomadasys commersonnii (Lacépède). Although the spotted grunter is considered to be a strong osmoregulator, growth performance and survival was compromised below isosmotic concentrations. The growth rate, condition and food conversion of fish in low salinity (5‰) were lower than in either isosmotic (12‰) or hyperosmotic (25‰ and 35‰) conditions. Mortality was also significantly higher at 5‰. From these results, it is concluded that P. commersonnii can be successfully cultured in salinities ranging from 12‰ to full-strength sea water (35‰).  相似文献   

19.
The aim of the present study was to investigate the effects of different salinities (0‰, 6‰ and 12‰) and temperatures (23, 27 and 31 °C) on the food consumption, growth, blood biochemistry and haematocrit of Goldfish. After 45 days of exposure to different salinities and temperatures, Goldfish showed a good adaptation to these salinities and temperatures in terms of blood biochemistry (glucose and triglyceride) and haematocrit. Salinities (0‰ and 6‰) and temperatures (23 and 27 °C) did not affect the weight gain, specific growth rate, final biomass and feed conversion rates, but these parameters were significant (P<0.05) at 12‰ salinity and 31 °C temperature. Plasma total protein levels decreased with the increase in salinity (P<0.05), while they were independent of temperature. In conclusion, Carassius auratus, a freshwater stenohaline fish, showed good growth in saline waters with maximum 12‰ salinity and 31 °C temperature.  相似文献   

20.
The rate of metamorphosis of larvae, duration of larval stages and carapace lengths of postlarvae were measured in the common prawn, Palaemon serratus, reared in 30 different combinations of temperature and salinity. Temperature varied from 13°C to 29°C and salinity from 13‰ to 43‰. When salinity.was 13‰, this species was able to metamorphose at a temperature of 21°C. For salinities of 19‰, 25‰, 31‰, 37‰ and 43‰, the temperature range over which metamorphosis occurs extends from 17°C to 25°C. The equation of Van't Hoff can be adapted to calculate the relation between the rearing rate, which is the converse of the duration of larval stages, and the water temperature. The Q10 values vary from 1.39 minimum at a salinity of 37‰ to 2.28 maximum at 31‰. Neither the effect of temperature (at 0.1%) nor that of salinity (at 1%) is significant for the carapace lengths of postlarvae.Tridimensional models of the combined effects of temperature and salinity on the rate of metamorphosis and on the number of metamorphosed postlarvae appearing daily were constructed for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号