首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Currently, there are two methods of inducing laboratory‐based amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L.: cohabitation with infected fish or exposure to a suspension of amoebae. Amoebic gill disease cannot be induced with cultured amoebae; therefore, the only source of the infective organism is salmon with the disease. For experimental purposes and to maintain pathogen supply, salmon are kept in an infection tank and amoebae are isolated from salmon once the disease establishes. In this way, discrete batches of amoebae are collected periodically. This study investigated the infective ability of different batches of amoebae. Furthermore, the effect of stocking density of salmon on the progression of AGD was also examined. The infective ability of different batches of amoebae isolated periodically from AGD‐affected salmon varied in terms of quantifiable pathology. Salmon stocking density had a significant impact on survival after amoebae challenge, with morbidity beginning 23 days post challenge in tanks stocked at 5.0 kg m?3 and 29 days for those stocked at 1.7 kg m?3. For uniform initiation of AGD in multiple tanks, amoebae batches should be equally divided and added to tanks until the required concentration is reached and to maintain a standard biomass between replicate tanks and treatments.  相似文献   

2.
A 2-year study was carried out on amoebic gill disease (AGD) involving monthly samples of 1+ Atlantic salmon, Salmo salar L., smolts, histological assessment of the gills and analysis of environmental data. Gill pathology was seen before amoebae could be detected microscopically. These changes in gill integrity were associated with marine environmental conditions, particularly elevated ammonium, nitrite and chlorophyll levels. The results suggest that the environmental changes predispose salmon to colonization by amoebae and ciliates. High densities of histophagous scuticociliates were observed in the gills during periods of advanced gill pathology. A number of different amoebae were observed in close association with gill pathology. Neoparamoeba was not seen in high densities, nor was it associated with gill pathology, indicating that Neoparamoeba may not be the primary agent of the AGD in Irish salmonid culture.  相似文献   

3.
Previous work in our laboratory defined a method of inducing laboratory‐based amoebic gill disease (AGD) in Atlantic salmon, Salmo salar L. Gills of AGD‐affected fish were scraped and the debris placed into fish‐holding systems, eliciting AGD in naïve Atlantic salmon. While this method is consistently successful in inducing AGD, variability in the kinetics and severity of infections has been observed. It is believed that the infections are influenced by inherently variable viability of post‐harvest amoeba trophozoites. Here, a new method of experimental induction of AGD is presented that redefines the infection model including the minimum infective dose. Amoebae were partially purified from the gills of AGD‐affected Atlantic salmon. Trophozoites were characterized by light microscopy and immunocytochemistry and designated Neoparamoeba sp., possibly Neoparamoeba pemaquidensis. Cells were placed into experimental infection systems ranging in concentration from 0 to 500 cells L?1. AGD was detected by gross and histological examination in fish held in all systems inoculated with amoebae. The number of gross and histological AGD lesions per gill was proportional to the inoculating concentration of amoebae indicating that the severity of disease is a function of amoeba density in the water column. The implications of these observations are discussed in the context of the existing AGD literature base as well as Atlantic salmon farming in south‐eastern Tasmania.  相似文献   

4.
There have been recent efforts amongst immunologists to develop approaches for following individual fish during challenges with viral and bacterial pathogens. This study contributes to assessing the feasibility of using such approaches to study amoebic gill disease (AGD). Neoparamoeba perurans, agent of AGD, has been responsible for widespread economic and fish loss in salmonid aquaculture. With the emergence of AGD in Europe, research into infection dynamics and host response has increased. This study investigated the effect of repeat exposure to anaesthesia, a necessary requirement when following disease progression in individual fish, on N. perurans. In vitro cultures of N. perurans were exposed every 4 days over a 28‐day period to AQUI‐S® (isoeugenol), a popular anaesthetic choice for AGD challenges, at a concentration and duration required to sedate post‐smolt salmonids. Population growth was measured by sequential counts of amoeba over the period, while viability of non‐attached amoeba in the culture was assessed with a vital stain. AQUI‐S® was found to be a suitable choice for in vivo ectoparasitic challenges with N. perurans during which repetitive anaesthesia is required for analysis of disease progression.  相似文献   

5.
Amoebic gill disease (AGD) has been attributed to infection by Neoparamoeba sp. The causal mechanisms for AGD lesion development and the primary pathogenic role of Neoparamoeba sp. require elucidation. Three groups of Atlantic salmon were exposed to viable gill isolated amoebae, to sonicated amoebae, or to sea water containing viable amoebae without direct contact with gill epithelia. Fish were removed 8 days post-exposure and the gills assessed histologically for AGD. AGD occurred only when fish were exposed to viable trophozoites. Consequently, in an accompanying experiment, infection was evaluated histologically at 12, 24 and 48 h post-exposure in three groups of salmon, one group being mechanically injured 12 h prior to exposure. A progressive host response and significant increase (P < 0.001) in the numbers of attached amoebae was apparent over the 48-h duration in undamaged hemibranchs in both treatment groups. There were no significant differences to mucous cell populations. Attachment of Neoparamoeba sp. to damaged gill filaments was significantly reduced (P < 0.05) by 48 h post-exposure. These data further confirm and describe the primary pathogenic role of Neoparamoeba sp. and the early host response in AGD. Preliminary evidence suggests that lesions resulting from physical gill damage are not preferentially colonized by Neoparamoeba sp.  相似文献   

6.
7.
A relationship between increasing water temperature and amoebic gill disease (AGD) prevalence in Atlantic salmon (Salmo salar) has been noted at fish farms in numerous countries. In Scotland (UK), temperatures above 12°C are considered to be an important risk factor for AGD outbreaks. Thus, the purpose of this study was to test for the presence of an association between temperature and variation in the severity of AGD in Atlantic salmon at 10 and 15°C. The results showed an association between temperature and variation in AGD severity in salmon from analysis of histopathology and Paramoeba perurans load, reflecting an earlier and stronger infection post‐amoebae exposure at the higher temperature. While no significant difference between the two temperature treatment groups was found in plasma cortisol levels, both glucose and lactate levels increased when gill pathology was evident at both temperatures. Expression analysis of immune‐ and stress‐related genes showed more modulation in gills than in head kidney, revealing an organ‐specific response and an interplay between temperature and infection. In conclusion, temperature may not only affect the host response, but perhaps also favour higher attachment/growth capacity of the amoebae as seen with the earlier and stronger P. perurans infection at 15°C.  相似文献   

8.
Infections of gill amoebae that manifest as amoebic gill disease (AGD) occur in Atlantic salmon in Tasmania. The treatment of choice is freshwater bathing; however, the effectiveness of this treatment has declined over time. In this experiment, cage trials of chloramine‐T (Cl‐T) to treat AGD in Atlantic salmon were conducted over 3 months, and involved an initial bath in either freshwater or seawater with Cl‐T, followed by a second bath 6 weeks later. Amoeba densities were reduced to 50–80% of original values for both treatments. Neoparamoeba sp. density was not affected by bathing, and was not significantly different over the course of the experiment. Lesion prevalence was higher for Cl‐T‐treated fish than for freshwater‐treated fish, with overall prevalence levels of 14.30±1.00% and 8.03±0.57% respectively. This was also seen for gross gill scores. In the fortnight after each of the two baths, Cl‐T‐treated fish had significantly higher lesion levels, although this difference was then resolved by 4 weeks post bathing. The use of Cl‐T in seawater is at least as effective as freshwater at reducing amoebae density, and may be a more practical alternative when freshwater is in short supply.  相似文献   

9.
Gills of Atlantic salmon, Salmo salar L., with amoebic gill disease (AGD), were analysed by routine histology to identify lesion morphology and distribution patterns. Numbers of lesions occurring dorsally, medially and ventrally in the gill filaments were recorded as was lesion size, proximity to the gill arch and the degree of pathological severity involved. The mean number of lesions and pathological severity in the dorsal region of the second left gill arch were significantly higher than that found ventrally ( P  < 0.01). There were no significant differences between gill regions in lesion size or proximity of lesions to the gill arch. Serially sectioned lesions revealed interlamellar cysts to be spherical to ovate in shape and fully enclosed within a wall of epithelium. Small to medium size cysts sometimes contained necrotic amoebae. Inflammatory cells, morphologically identified as neutrophils and macrophages, were occasionally seen infiltrating medium sized cysts. Larger cysts were mostly clear of any cellular debris.  相似文献   

10.
Neoparamoeba pemaquidensis is an ubiquitous amphizoic marine protozoan and has been implicated as the causative agent for several diseases in marine organisms, most notably amoebic gill disease (AGD) in Atlantic salmon. Despite several reports on the pathology of AGD, relatively little is known about the protozoan and its relationship to host cells. In this study, an in vitro approach using monolayers of a rainbow trout gill cell line (RTgill-W1, ATCC CRL-2523) was used to rapidly grow large numbers of N. pemaquidensis (ATCC 50172) and investigate cell-pathogen interactions. Established cell lines derived from other tissues of rainbow trout and other fish species were also evaluated for amoeba growth support. The amoebae showed preference and highest yield when grown with RTgill-W1 over nine other tested fish cell lines. Amoeba yields could reach as high as 5 x 10(5) cells mL(-1) within 3 days of growth on the gill cell monolayers. The amoebae caused visible focal lesions in RTgill-W1 monolayers within 24 h of exposure and rapidly proliferated and spread with cytopathic effects destroying the neighbouring pavement-like cells within 48-72 h after initial exposure in media above 700 mOsm kg(-1). Disruption of the integrity of the gill cell monolayers could be noted within 30 min of exposure to the amoeba suspensions by changes in transepithelial resistance (TER) compared with control cell monolayers maintained in the exposure media. This was significantly different by 2 h (P < 0.05) compared with control cells and remained significantly different (P < 0.01) for the remaining 72 h that the TER was monitored. The RTgill-W1 cell line is thus a convenient model for growing N. pemaquidensis and for studying host-pathogen interactions in AGD.  相似文献   

11.
Amoebic gill disease (AGD) is a significant disease of Atlantic salmon farmed in South East Tasmania. The commercial treatment for the disease is a freshwater bath for up to 4 h. Previous studies have shown that the chemical composition of the freshwater, in particular total water hardness, affects the efficacy of the treatment. The aim of this study was to determine if other water chemistry parameters, such as dissolved organic carbon (DOC), interact with total water hardness to affect treatment success. Firstly, the relative survival of isolated gill amoebae incubated for up to 3 h with hard or soft water (346.0 and 34.6 mg L?1 CaCO3 respectively) with low or high concentrations of humic or tannic acid (5 and 50 mg L?1 respectively) was determined. Secondly, fish with AGD were bathed for 2.5 h in hard or soft water (249.3 and 35.3 mg L?1 CaCO3) containing either 5 or 20 mg L?1 humic acid. The number of viable amoebae surviving on the gills and number of gill lesions were determined. It was found that the concentration of DOC used in this study that represents the levels commonly found around SE Tasmania is unlikely to have any commercial significance in the reduction in amoebae on the gills of Atlantic salmon. However, this study provided further support that freshwater selected for bathing AGD‐affected salmonids should be chosen primarily on its total water hardness.  相似文献   

12.
13.
Amoebic gill disease (AGD) caused by the ectoparasite Paramoeba perurans affects several cultured marine fish species worldwide. In this study, the morphology and ultrastructure of P. perurans in vitro and in vivo was investigated using scanning and transmission electron microscopy (SEM and TEM, respectively). Amoebae cultures contained several different morphologies ranging from a distinct rounded cell structure and polymorphic cells with pseudopodia of different lengths and shapes. SEM studies of the gills of AGD‐affected Atlantic salmon, Salmo salar L., revealed the presence of enlarged swellings in affected gill filaments and fusion of adjacent lamellae. Spherical amoebae appeared to embed within the epithelium, and subsequently leave hemispherical indentations with visible fenestrations in the basolateral surface following their departure. These fenestrated structures corresponded to the presence of pseudopodia which could be seen by TEM to penetrate into the epithelium. The membrane–membrane interface contained an amorphous and slightly fibrous matrix. This suggests the existence of cellular glycocalyces and a role for extracellular products in mediating pathological changes in amoebic gill disease.  相似文献   

14.
Amoebic gill disease (AGD) affects the marine culture phase of Atlantic salmon, Salmo salar L., in Tasmania. Here, we describe histopathological observations of AGD from smolts, sampled weekly, following transfer to estuarine/marine sites. AGD was initially detected histologically at week 13 post-transfer while gross signs were not observed for a further week post-transfer. Significant increases (P < 0.001) in the proportion of affected gill filaments occurred at weeks 18 and 19 post-transfer coinciding with the cessation of a halocline and increased water temperature at the cage sites. The progression of AGD histopathology, during the sampling period, was characterized by three phases. (1) Primary attachment/interaction associated with extremely localized host cellular alterations, juxtaposed to amoebae, including epithelial desquamation and oedema. (2) Innate immune response activation and initial focal hyperplasia of undifferentiated epithelial cells. (3) Finally, lesion expansion, squamation-stratification of epithelia at lesion surfaces and variable recruitment of mucous cells to these regions. A pattern of preferential colonization of amoebae at lesion margins was apparent during stage 3 of disease development. Together, these data suggest that AGD progression was linked to retraction of the estuarine halocline and increases in water temperature. The host response to gill infection with Neoparamoeba sp. is characterized by a focal fortification strategy concurrent with a migration of immunoregulatory cells to lesion-affected regions.  相似文献   

15.
Currently, the only effective and commercially used treatment for amoebic gill disease (AGD) in farmed Tasmanian Atlantic salmon is freshwater bathing. Hydrogen peroxide (H2O2), commonly used throughout the aquaculture industry for a range of topical skin and gill infections, was trialled in vitro and in vivo to ascertain its potential as an alternative treatment against AGD. Under in vitro conditions, trophozoites of Neoparamoeba perurans were exposed to three concentrations of H2O2 in sea water (500, 1000 and 1500 mg L?1) over four durations (10, 20, 30 and 60 min) each at two temperatures (12 and 18 °C). Trophozoite viability was assessed immediately post‐exposure and after 24 h. A concentration/duration combination of 1000 mg L?1 for >10 min demonstrated potent amoebicidal activity. Subsequently, Atlantic salmon mildly affected with experimentally induced AGD were treated with H2O2 at 12 and 18 °C for 15 min at 1250 mg L?1 and their re‐infection rate was compared to freshwater‐treated fish over 21 days. Significant differences in the percentage of filaments affected with hyperplastic lesions (in association with amoebae) and plasma osmolality were noted between treatment groups immediately post‐bath. However, the results were largely equivocal in terms of disease resolution over a 3‐week period following treatment. These data suggest that H2O2 treatment in sea water successfully ameliorated a clinically light case of AGD under laboratory conditions.  相似文献   

16.
Neoparamoeba perurans is the causative agent of amoebic gill disease (AGD). Two loop-mediated isothermal amplification (LAMP) assays targeting the parasite 18S rRNA and the Atlantic salmon EF1α, used as internal control, were designed. The N. perurans LAMP assay did not amplify close relatives N. pemaquidensis and N. branchiphila, or the host DNA. This assay detected 106 copies of the parasite 18S rRNA gene under 13 min and 103 copies under 35 min. Five “fast-and-dirty” DNA extraction methods were compared with a reference method and further validated by TaqMan™ qPCR. Of those, the QuickExtract buffer was selected for field tests. Seventy-one non-lethal gill swabs were analysed from AGD-clinically infected Atlantic salmon. The pathogen was detected under 23 min in fish of gill score >2 and under 39 min for lower gill scores. About 1.6% of the tests were invalid (no amplification of the internal control). 100% of positives were obtained from swabs taken from fish showing gill score ˃3, but only ~50% of positives for lower gill scores. The present LAMP assay could be implemented as a point-of-care test for the on-site identification of N. perurans; however, further work is required to improve its performance for lower scores.  相似文献   

17.
The current treatment for amoebic gill disease (AGD)-affected Atlantic salmon involves bathing sea-caged fish in fresh water, often sourced from local dams, for 3-4 h. In both a small-scale laboratory and an on-farm field experiment, the effects of water hardness on the efficacy of freshwater bathing were assessed. Results showed that soft fresh water (19.3-37.4 mg L(-1) CaCO3), whether it be naturally soft city mains water or artificially softened dam water, was more efficacious at alleviating AGD in affected fish than hard fresh water (173-236.3 mg L(-1) CaCO3). Soft freshwater bathing significantly reduced viable gill amoebae numbers (from 73.9 to 40.9% of total count) and significantly alleviated gill pathology, both gross and histological. Following bathing, gross gill pathological scores of soft freshwater bathed fish lagged 2 weeks behind hard freshwater bathed fish. Significant gill lesion fragmentation, and shedding of lesion-associated hyperplastic tissue, was accompanied by a significant reduction in AGD-affected gill filaments in soft freshwater bathed fish. Furthermore, soft freshwater bathing alleviated the blood plasma electrolyte imbalance seen in control (sea water) and hard freshwater bathed fish. This study showed that the use of soft fresh water for bathing AGD-affected Atlantic salmon could be an improvement to the current method of treatment. Not only does it reduce gill amoeba numbers, but also, it is of a therapeutic advantage with the potential to reduce bathing frequency.  相似文献   

18.
There is inconsistent evidence of resistance of Atlantic salmon, Salmo salar L., to amoebic gill disease (AGD). Here, evidence is presented that demonstrates that Atlantic salmon exposed and subsequently challenged with AGD are more resistant than naïve control fish. Seventy‐three per cent of Atlantic salmon previously exposed to AGD survived to day 35 post‐challenge compared with 26% exposed to Neoparamoeba sp. for the first time, yet the gill pathology of surviving naïve control or previously exposed fish was not significantly different. Development of resistance to AGD is associated with anti‐Neoparamoeba sp. antibodies that were detectable in serum of 50% of surviving Atlantic salmon previously exposed to AGD. However, anti‐Neoparamoeba sp. antibodies were not detectable in cutaneous mucus of resistant fish. Increased resistance of Atlantic salmon after secondary Neoparamoeba sp. infection and detection of specific serum antibodies provides support for the development of a vaccine for AGD.  相似文献   

19.
Abstract. Rainbow trout developed a humoral immune response against numerous antigens of sonicated amoebae which were emulsified with Freund's complete adjuvant and injected into the peritoneum. The amoebae were cultured from the gills of Atlantic salmon, Salmo salar L., affected by amoebic gill disease. Antibodies in fish sera were detected by both enzyme-linked immunosorbent assay (ELISA) and immunoblotting. Non-spedfie reactivity in fish serum against Escherichia coli, the bacterium used in co-cultivation of amoebae in vitro, was removed by immunoadsorption. Results obtained using ELISA and immunoblotting were comparable and indicated no significant difference in response to immunization with 10, 50 or 250 μg of sonieatcd amoebic protein. Amoebae contained immunogenie components of > 100, 100, 89, 49, 37 and 34kDa.  相似文献   

20.
Amoebic gill disease (AGD) of cultured salmonids in Tasmania is caused by the amphizoic parasitic amoeba Neoparamoeba pemaquidensis. The freshwater tolerance of amoebae isolated from the gills of AGD-affected salmon (predominantly N. pemaquidensis) was tested in vitro using a trypan blue exclusion assay. Amoebae exposed to water containing high concentrations of Ca2+ or Mg2+ (200 mg l−1) showed high levels of survival up to 3 h of exposure. Exposure to water containing elevated Na+, choline chloride or water at different pH all had no significant survival of amoebae. Exposure of amoebae to different concentrations of chlorine dioxide, chloramine-T or hydrogen peroxide in artificially hard water demonstrated that chloramine-T and hydrogen peroxide were the most efficacious at killing amoebae in vitro. This work suggests that the hardness of freshwater may be an important factor for the survival of marine amoebae (predominantly N. pemaquidensis) on the gills of AGD-affected salmon and have significant implications with regard to the efficacy of freshwater bathing practices for the control of AGD on farms. Additionally, chloramine-T and hydrogen peroxide appear to be efficacious at killing marine gill amoebae in vitro and may be useful for the control of AGD in farmed Atlantic salmon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号