首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 121 毫秒
1.
为了解北京地区密云水库鱼类资源及空间分布特征,对库区的主要渔获物及鱼类大小组成、密度及空间分布特征进行了探测评估分析。结果表明:密云水库主要渔获物为鲢、鳙、鲤、鲫、戴氏红鲌、团头鲂、草鱼、鯵条和池沼公鱼等,其中鲢和鳙分别占总渔获量的52.7 %和37.8 %。回声探测结果显示,鱼类平均目标强度为(-46.8±7.6)dB,鱼类体长范围为3.0~74.1 cm,平均体长为10.15 cm。不同水域鱼类密度空间分布有极显著性差异(P<0.01),鱼类密度最大值出现在水库中心水域,为865.20 ind./1 000 m3,鱼类密度最小值位于内湖水域,仅为2.87 ind./1 000 m3。不同水层间鱼类密度空间分布亦极不均匀(P<0.01),大部分鱼类倾向于分布在水体中层,鱼类密度为570.66 ind./1 000 m3。  相似文献   

2.
南海中部海域渔业资源时空分布和资源量的水声学评估   总被引:4,自引:0,他引:4  
2014年3月~2015年2月对南海中部12°N~15°N、111°E~117°E海域进行了4次渔业资源声学调查,其中2014年3月~4月(春季)、11月~12月(秋季)和2015年1月~2月(冬季)利用"南锋"号船载双频分裂波束科学探鱼仪系统(Simrad EK60,38 k Hz、120 k Hz,挪威)进行探测,2014年7月~8月(夏季)利用便携式分裂波束科学探鱼仪(Simrad EY60,70 k Hz,挪威)进行探测。通过鱼类目标强度现场测定,使用回波积分法获得了调查海域内渔业资源的丰度密度空间分布的季节变动特征。结合夏季调查灯光罩网采样数据,分析了调查海域内评估对象种类组成并估算资源总量。结果表明,夏季共捕获鱼类18种,头足类2种,其中鸢乌贼(Sthenoteuthis oualaniensis)为主要渔获种类,声学评估其资源量为2.36×106t,约占评估对象资源总量的73.19%。调查海域内单体目标强度均呈单峰状分布,且主要分布于-56.5~-41.5 d B,4次调查该海域范围内目标强度小于-71.5 d B的单体均分布于100 m以浅水层,而目标强度大于-20.5 d B的单体则均分布于100 m以深水层。  相似文献   

3.
王新良  赵宪勇  左涛  李显森 《水产学报》2016,40(7):1080-1088
太平洋磷虾是黄海生态系统中浮游动物的关键种。为准确评估太平洋磷虾的资源密度,基于2010年1月黄海渔业资源调查过程中采集的声学和生物学数据,利用SDWBA目标强度理论模型,研究了太平洋磷虾38和120 k Hz目标的回声散射特性,并根据2个频率平均体积散射强度的差值(简称频差技术),开展了太平洋磷虾回波映像识别及资源密度评估研究。结果显示,太平洋磷虾的目标强度与其倾角和体长密切相关;120k Hz的目标强度明显高于38 k Hz,且两个频率的有效平均目标强度之差随着磷虾体长的增加而减小。数据处理结果显示,两个频率回声数据的平均体积散射强度(MVBS)呈线性关系,120 k Hz的MVBS比38 k Hz高约14.1 d B,与理论仿真结果一致;回声散射层内太平洋磷虾的资源密度为1.8~2531.8尾/m3,均值为255.1尾/m3。本研究对利用渔业声学技术开展浮游动物资源评估具有借鉴意义,未来还需要进一步对太平洋磷虾目标强度模型参数及目标识别方法进行完善,以提高其资源密度声学评估的准确度。  相似文献   

4.
海南陵水湾口海域不同季节鱼类资源声学探查   总被引:3,自引:0,他引:3  
在2014年11月至2016年1月间的不同季节,利用便携式分裂波束科学探鱼仪对海南陵水湾口海域的鱼类资源进行了4次声学调查。通过回波积分方法并结合拖网采样对调查海域内渔业资源结构组成、数量密度、资源量密度及其空间分布进行了探查与评估。结果发现,2014年11月共捕获游泳生物和底栖无脊椎动物86种,其中55种声学评估种类平均资源数量密度和平均资源量密度分别为9.34×105尾/km2和5.08 t/km2。2015年8月共捕获游泳生物和底栖无脊椎动物114种,其中63种声学评估种类平均资源数量密度和平均资源量密度分别为1.12×105尾/km2和0.93 t/km2。2016年1月共捕获游泳生物和底栖无脊椎动物105种,55种声学评估种类平均资源数量密度和平均资源量密度分别为0.16×105尾/km2和0.32 t/km2。2015年5月共捕获游泳生物和底栖无脊椎动物56种,其中声学评估种类34种。2014年11月和2015年8月鱼类回波均匀分布于30 m以浅水层,2015年5月主要集中于10~20 m水层,2016年1月则主要分布于20 m以浅水层,20~30 m水层次之且略大于0~10、10~20 m水层的一半。调查海域内单体目标强度以小于–58 d B的小规格鱼类目标为主,目标强度有随水深增加而增大的趋势,且大于–50 d B的单体目标均分布于10 m以深水层。  相似文献   

5.
鄱阳湖通江水道是多种洄游性鱼类完成生活史过程的重要通道, 具有重要的生态功能, 对于长江中下游鱼类资源的养护及其多样性维持至关重要。为了解越冬时期鄱阳湖通江水道中不同体长鱼类资源的空间分布规律及栖息生境状况, 本研究将鱼类声学探测、生境遥感定量制图分析和三维水动力模拟相结合, 分别绘制出 3 种不同体长鱼类群落的水深(SID)、流速(SIV)、坡度(SIS)等单因子生境适宜度指数曲线, 并利用乘积法建立栖息地适宜性指数(habitat suitability index, HSI)模型, 对通江水道中不同水域的鱼类生境适宜度进行对比和评估。结果表明, 鄱阳湖通江水道越冬时期鱼类平均全长为(10.1±5.73) cm, 主要分布在屏峰山以北的湖口县、鞋山和屏峰附近 3 个水域; 小体长鱼类群组(1~20 cm)水深的生境适宜度曲线为双峰型, 最适宜水深包括 3.06~4.59 m 和 9.18~12.24 m 两个区间, 流速为 0.05~0.13 m/s, 坡度为 0~2.23°; 中等体长组(20~40 cm)及大体长组(>40 cm)鱼类适宜的水深、流速和坡度的生境适宜度曲线均为单峰型, 其中中等体长组最适宜栖息的生境因子范围为水深 9.18~13.77 m、流速 0.05~0.13 m/s 和坡度 0~2.23°, 大体长组为 13.77~15.3 m、0.10~0.13 m/s 和 0~2.23°。  相似文献   

6.
红水河岩滩水库鱼类资源声学评估   总被引:1,自引:0,他引:1  
为评估梯级开发下渔业资源变化情况,2015年9月采用分裂波束鱼探仪EY60(120 kHz,250 W)对红水河岩滩水库库区及上游江段鱼类资源进行声学调查,并结合渔获物统计和地理统计分析对鱼类时空分布进行分析,评估鱼类资源量。结果显示整个调查区域的鱼类资源密度为(0.53±2.11)尾·m~(-2)(±SD),从水坝上游至库区呈增长趋势,鱼类资源密度水平分布与水深无显著相关关系。垂直分布方面,鱼类主要分布在30 m以内水层;不同大小个体对水深有一定的选择性,小个体鱼类(10 cm)约86.2%分布在30 m水层之内;大个体(30 cm)有44.7%分布在40 m以下水层。基于鱼类分布GIS建模,估算调查区域鱼类资源量为6.57×10~7尾。  相似文献   

7.
为了研究黄海近海鱼类活动规律,采用自主研制的科研型鱼探仪于2015年11月22日至12月5日对调查海域的鱼类活动进行了首次声学调查,统计分析鱼类活动规律。在调查海域布放4套鱼探仪设备对鱼类进行定点长时间监测,并将采集到的鱼类回波数据利用水声技术进行分析和处理,得到调查海域单体鱼类目标强度在垂直方向上的分布、鱼类目标强度大小的分布以及鱼类在不同水层和不同时间段的活动情况。结果显示,调查海域冬季鱼类主要活动在4~10 m的中上水层,鱼类分布随着水层深度的逐步增加而急剧减少;从9∶00至13∶00鱼类活动频度呈增大趋势,并在13∶00至14∶00频度达到顶峰(约为38%),随后频度减弱;统计得到该海域鱼类目标强度主要以-49~-40 d B占比最高,目标强度大于-40 d B的鱼类均匀分布在整个水层,目标强度小于-40 d B的鱼类主要分布在4~10 m浅水层。研究表明,采用水声技术能够实现对鱼类活动的监测;调查海域的鱼类目标强度分布比较集中,鱼类在深度上的分布主要集中于中上水层,鱼类在不同时间段的活动情况随水温变化而变化,温度升高鱼类活动频度增加,反之则降低。由此可知,该海域鱼类的种类以暖水物种为主。  相似文献   

8.
三峡水库成库期间鱼类空间分布的水声学研究   总被引:2,自引:0,他引:2       下载免费PDF全文
2007年4月18日~5月1日,利用SIMRAD EY60回声探测仪(又称鱼探仪)对三峡水库坝前到丰都干流以及9条主要支流进行了水声学探测.采用垂直探测结合"之"字形路线的方法对库区整个水体鱼类的分布状况进行了研究.调查水域长度约有600 km,回波数据分成1 232个片段进行分析.结果表明:在5m以下水层,体长大于6cm的鱼类在该区域平均密度为567.68尾/dam3,且鱼类分布不均匀.在巫山至奉节江段鱼类的密度最低,密度的平均值和标准误(mean±S.E)为(8.1±0.47)尾/dam3;在忠县到丰都江段密度最高,平均值和标准误(mean±S.E)为(2597.06±154.08)尾/dam3.从坝前到丰都,干流鱼类资源量总体上呈现逐步增加的趋势.支流资源量要比干流高.目标强度在-60~-50 dB的鱼体大小差异不显著,大于-50dB鱼体的平均目标强度在巴东-巫山江段最高,巫山-奉节江段及抱龙河次之.小型鱼体的大小在各江段没有统计学差异,中型和大型鱼体在巴东-巫山江段鱼体个体相对最大,万州-忠县江段以及小江、长滩河等水域鱼类个体相对较小.  相似文献   

9.
2018年4月采用回声探测仪(EY60,200 kHz)对广西洪潮江水库鱼类资源进行了水声学探测。结果显示,在时间尺度上,洪潮江水库鱼类密度昼夜差异不显著(P>0.05),但目标强度平均值为白天>夜间(P<0.05),昼夜目标强度分别为(–43.30±0.32)和(–44.50±0.26) dB,主要是由于夜晚(–60 ~ –54 dB)的小型鱼类增加(–60 ~ –57和–57 ~ –54 dB 范围分别增加9.25%和4.76%),而白天(–54 ~ –48 dB)的鱼类比例增加所致(–54 ~ –51和–51 ~ –48 dB范围分别增加7.42%和5.27%)。在空间尺度上,洪潮江水库鱼类分布呈显著的空间变化特征(P < 0.05)。鱼类密度呈上游高于下游、库汊高于库心的特征。密度平均值为109.52 ind./1000 m3,最大值出现在上游S3站,平均密度为330.21 ind./1000 m3。最小值为下游的S8站,平均密度为21.50 ind./1000 m3。相关性分析表明,鱼类密度分布与总磷(TP)、高锰酸盐指数(CODMn)、叶绿素a呈正相关,与水深呈负相关(P<0.05);鱼类目标强度与水温、浊度、TP、CODMn呈显著的负相关(P<0.05)。研究表明,洪潮江水库鱼类空间分布是多种非生物因子(如叶绿素a、TP等)共同作用的结果,其在一定程度上也反映了生物因子(鱼类索饵、逃避敌害等)对鱼类分布的影响。该研究对了解洪潮江水库鱼类资源状况和环境影响因素,以及渔业资源保护与管理具有一定的参考价值。  相似文献   

10.
用水声学评估水库鱼类资源增殖放流的效果   总被引:1,自引:0,他引:1  
合理开展水库鱼类增殖放流,可提高水库鱼产力、修复水库生态环境和防治水库富营养化等,对水库健康运行具有重要意义。而科学评估水库鱼类资源动态及增殖放流净化效果将为合理开展增殖放流提供基础和指导。本研究于2015年运用BioSonics DT-X科学回声探测仪(208kHz)在老虎潭水库增殖放流完成后(夏季)和渔获期(冬季)对其鱼类资源进行走航式水声学调查。结合渔获物调查,对老虎潭水库的鱼类大小组成、空间分布、密度和资源量等进行测定,评估增殖放流活动对水体的净化效果。结果显示,夏季鱼类的平均目标强度为(-51.76±3.37)dB,冬季为(-45.058±4.26)dB,夏季和冬季鱼类目标回声强度大小存在显著性差异(P0.001)。夏冬两季鱼类密度的垂直分布存在显著性差异(P0.001)。老虎潭水库库区夏季鱼类的总尾数为1.297×10~6尾,资源量约10 246kg。冬季鱼类的总尾数为4.8×10~5尾,资源量约43 085kg。增殖放流后鱼类资源量增长明显,达32 839kg,共转移出碳、氮、磷的净含量分别为3.379×10~3、1.031×10~3、1.81×10~2 kg,实现了对水体营养物质的转移。后续研究可关注每年渔获量的科学设置,合理利用鱼类资源并有效降低库区水体营养水平。  相似文献   

11.
以黄、渤海、东海主要养殖鱼类许氏平鲉和大黄鱼为研究对象,在消声水池中选用KF-668双屏彩色探渔仪等仪器,在50、200 kHz工作频率下对研究对象目标强度及背向反射声截面与体重和体长的关系进行研究.试验结果显示,体重和体长均可用做定量表述上述两种鱼类目标强度的参数.TS大黄鱼在50kHz频率下身体各向目标强度值介于-32.85~-58.01dB;200kHz频率下身体各向目标强度介于-29.3~-56.99 dB.TS许氏平鲉在50 kHz频率下身体各向目标强度值介于-31.74~-75.87 dB;200kHz频率下身体各向目标强度介于-31.74~-74.75 dB.大黄鱼和许氏平鲉身体各向目标强度大小为TS侧向>TS背向>TS头向>TS尾向.50 kHz:TS大黄鱼=24.8 1og L(cm)-73.9(侧向);200 kHz:TS大黄鱼=23.9 1og L(cm)-71.3(侧向).50 kHz:TS许氏平鲉=25.7 1og L(cm)-69.16(侧向);200 kHz:TS许氏平鲉=26.4 1og L(cm)-70.8(侧向).试验结果为声学水下监测仪器的设计提供数据支持.  相似文献   

12.
为了解洞庭湖浮游植物的时空分布特征及原因,在2016年对洞庭湖浮游植物开展了季度调查。结果表明洞庭湖浮游植物样品中共检出6门53属,其中蓝藻门4属、绿藻门19属、硅藻门21属、隐藻门2属、裸藻门4属、甲藻门3属。洞庭湖浮游植物的平均密度为28.6×104cells/L,其中硅藻门最为丰富,占总密度的43.1%,其次为蓝藻门占23.4%、绿藻门占18.9%、隐藻门占8.8%、裸藻门占3.9%、甲藻门占1.9%。空间分布上,东洞庭湖浮游植物密度最高,其次为南洞庭湖、洞庭湖出口、入湖口和西洞庭湖。时间分布上,6月份浮游植物密度最高,其次为9月、3月和12月份。洞庭湖全湖综合营养状态指数为49.9,为中营养水平,其中东洞庭湖出现了轻度富营养化,尤其是大小西湖在夏秋季节有水华爆发的风险。典范对应分析(CCA)分析表明总磷和透明度是影响洞庭湖藻类分布的主要影响因素。  相似文献   

13.
为了研究鲢(Hypophthalmichthys molitrix)、鳙(Aristichthys nobilis)饵料生物组成及季节变化,分析了2016年7月-2017年3月在长江宜昌江段及东洞庭湖不同季度采集的84尾鲢和65尾鳙的肠道内含物。结果显示:鲢、鳙在长江宜昌江段摄食的饵料生物种类分别是55种和48种,在东洞庭湖分别是55种和43种。根据相对重要性指数(IRI),鲢、鳙的主要饵料生物均为枝角类。鲢、鳙食物组成呈现季节变化,鲢在长江宜昌江段春季、夏季、秋季和冬季的主要饵料生物分别是硅藻门、枝角类、枝角类和硅藻门,在东洞庭湖分别为枝角类、蓝藻门、枝角类和桡足类;鳙在长江宜昌江段春季、夏季、秋季和冬季的主要饵料分别是枝角类、枝角类、枝角类和硅藻门,在东洞庭湖分别为枝角类、枝角类、枝角类和桡足类。  相似文献   

14.
研究嘉陵江中游鱼类资源时空动态特征,了解变化过程及影响因素,提出嘉陵江鱼类资源保护的建议和措施,同时为长江上游及其支流的鱼类资源保护提供基础数据。运用Biosonics DT-X分裂波束科学回声探测仪于2018年7月(夏)、10月(秋)以及2019年1月(冬)、4月(春)对嘉陵江中游蓬安段金溪航电工程干流江段进行了水声学探测,并辅以常规渔获物调查。共采集到鱼类6科38种,其中蛇鮈、鲫、银飘鱼、黄尾鲴等中小型鱼类在数量上占优;鱼类密度分别为春季(0.8296±0.43)、夏季(0.8705±0.38 )、秋季(0.5082±0.25)、冬季(0.3939±0.13)尾/m3;鱼体平均目标强度分别为春季(-63.15±5.03)、夏季(-52.85±14.45)、秋季(-46.42±15.85)、冬季(-44.77±15.28 )dB;鱼体平均重量分别为春季0.03、夏季1.08 、秋季11.19 、冬季20.40 g/尾;鱼类资源量分别为春季0.4096、夏季0.2907 、秋季0.3919 、冬季0.5622 kg/m3;坝下鱼类密度显著高于坝上(F=12.67,P<0.05);坝上(F=7.02,P<0.05)和坝下(F=19.99,P<0.05)3个水层之间的鱼类密度差异显著,中层鱼类密度显著高于上层和下层(P<0.05),且总体上夏季各水层的鱼类密度要高于其他季节。后续研究应加强对该江段鱼类资源的动态监测,并重点探讨引起鱼类资源动态变化的关键影响因子。  相似文献   

15.
2013年12月和2015年9月,运用科学回声探测仪对邛海的鱼类资源量、空间分布进行了水声学法走航调查评估与分析。野外调查同时采用三层刺网、地笼等网具采样,结合湖岸鱼市及访问渔民等方式,对邛海现有鱼类组成进行分类整理。结果显示,邛海土著鱼类资源稀缺,太湖新银鱼(Neosalanx taihuensis)、鲢(Hypophthalmichthys molitrix)、鳙(Hypophthalmichthys nobilis)、鲤(Cyprinus carpio)、鲫(Carassius auratus)、歺又鱼(Hemiculter leucisculus)、红鳍原鲌(Cultrichthys erythropterus)等外来种为邛海鱼类组成优势种。2013年和2015年,邛海湖区鱼类平均密度分别为(0.1483±0.0715)尾/m~3和(0.1051±0.0279)尾/m~3,鱼类资源量分别为4.67×10~7尾和2.90×10~7尾;体长在13.3cm以上的鱼类资源量分别为9.9×10~6尾和7.6×10~6尾。鱼类水平方向主要集中分布于月亮湾-青龙寺以及青龙寺-邛海湾断面,垂直方向主要分布在中上层,且极显著高于底层(P0.01);调查表明,邛海鱼类的空间分布情况基本类似,4个调查断面及不同水层的鱼类种群分布类型均趋于成群分布(v1)。初步认为邛海鱼类水平分布差异主要是游客休闲娱乐、沿岸居民农业生产等人为干扰以及不同区域水深变化引起的,垂直水层分布差异与优势种鱼类的生态习性紧密相关。  相似文献   

16.
红枫湖鱼类资源及空间分布的水声学调查研究   总被引:1,自引:0,他引:1  
于2010年9月~12月和2011年3月~6月对贵阳市红枫湖的鱼类资源进行了调查,捕获鱼类28种,分属于4目6科;鱼类的体长为5.68~116.41 cm,优势体长组为11.00~30.00 cm,其中小型鱼体和中大型鱼体占多数。2011年6月运用BioSonics DT-X(200 kHz)鱼探仪对鱼类密度进行了水声学探测,平均密度为(51.64±36.49)×10-3尾.m-3,不同区域的鱼类密度分布有显著性差异,最大值出现在将军湾[(97.25±12.35)×10-3尾.m-3],最低值位于红枫湖大坝[(14.90±2.56)×10-3尾.m-3],从大坝到将军湾鱼类资源量总体上呈现逐步增长的趋势。红枫湖鱼类分布水层主要在6~15 m,不同水层的鱼类密度分布存在显著差异。  相似文献   

17.
《水生生物资源》2000,13(5):275-281
Experiments conducted at the Qualark Creek acoustic site on the Fraser River have shown unexpected systematic errors in the split-beam angle measurement. A tethered dead salmon with a target strength of approximately –30 dB was used as a target at 3.7 m range. A signal-to-noise ratio of ∼12 dB was observed. This target strength and signal-to-noise ratio are typical in some rivers where migrating adult salmon are observed. The target's location was measured both from the frame used to position the target in the beam and from the acoustic data. Comparison of these two sets of measurements demonstrated a bias that increased with the target's distance off the beam axis. The acoustically measured target locations were closer to the beam axis than the actual locations. Each acoustic estimate represented the mean location obtained after 3 000 pings. Results from a simulation model that includes the effects of random noise on the split-beam angle measurement reproduce the systematic underestimate of these angles. This bias increases rapidly with increasing off-axis target location and decreasing signal-to-noise ratio. The bias has been observed for circular and elliptical beams and the model accurately predicts the magnitude and direction of the systematic part of the angle measurement error in both cases. Results for a circular transducer are used here to illustrate the situation. The presence of this bias can affect measurements of fish density and migration speed. At the low signal-to-noise ratios often obtained in riverine environments, those who use a split-beam system for observation or estimation of fish should be aware of this phenomenon.  相似文献   

18.
洞庭湖水系资江干流鱼类资源现状调查   总被引:2,自引:0,他引:2  
资江作为洞庭湖一级支流,对洞庭湖乃至长江水系鱼类资源的维持或补充有着重要作用。为了解资江的鱼类资源现状,于2010年11月~2012年12月对湖南境内资江干流鱼类资源进行调查。共采集鉴定鱼类82种(包括1种湖南鱼类新纪录,2种引进种),隶属7目18科52属。种类组成以鲤科鱼类为主,占48.78%。鱼类物种数按上、中、下游依次增加,分别为52种、73种和77种,其中上游与中、下游之间鱼类群落为中等相似,中游与下游鱼类群落为极相似。资江鱼类在洄游、摄食、栖息习性等生态类型上呈现多样化特征。调查江段渔获物组成虽存在差异,但主要以鲫( Carassius auratus ) 、鲤(Cyprinus carpio )、蟹( Hemiculter leucisculus) 、翘嘴鲐(Culteralburnus)、蒙古铂(emongolicus)、蛇绚(Saurogobiodabryi)、鲇 ( Silurus asotus ) 和黄颡鱼( Pelteobagrus fulvidraco ) 等湖泊定居性鱼类为主,“四大家鱼”等洄游性鱼类所占比例极低,鱼类小型化现象明显。  相似文献   

19.
2019年10月24日至26日,使用便携式Simrad EY60科学探鱼仪对珠海桂山岛海上风电场水域的渔业资源进行了声学调查,研究了该水域的渔业资源组成、数量密度、资源量密度及其空间分布。本次调查共捕获游泳生物和底栖无脊椎动物72种,其中34种参与声学评估。扫海面积法估算的鱼类平均数量密度与资源量密度分别为1.09×104尾/km2,227.48 kg/km2;声学方法估算的鱼类数量密度与资源量密度分别为5.97×105尾/km2,15.13 t/km2。风电场水域鱼类聚集性分布明显,在风电场西北与东南外围水域密度较高,中间水域的密度较低。鱼类单体目标强度(TS)分布范围为-68~-41dB,其中-68~-58 dB的单体TS占主要部分(79.12%),对应鱼类的体长范围为3~8 cm;随着水深的增加,单体平均TS先减小后增大。本研究是桂山风电场水域渔业资源的首次声学调查,结果较准确地反映了风电场水域多种鱼类的资源量及其分布信息,可为科学评价海上风电场建成运营后对渔业资源的长期影响提供基础数据。  相似文献   

20.
HYEON-OK  SHIN  DAE-JAE  LEE  HYEONG-IL  SHIN 《Fisheries Science》2003,69(1):27-36
ABSTRACT:   The swimming behavior trajectory of an Israeli carp (body length 28 cm) during dynamite explosion work was obtained by the long baseline acoustic telemetry system with an ultrasonic pinger in an aquaculture cage located at Chungju Lake on 2 May 1997. The underwater noise levels measured at a distance of 400 m from the source of noise increased by 40 dB (re 1 µPa) compared to the levels before the explosion. The swimming area of the fish was reduced immediately after the explosion but more than 1 h after the explosion the fish had returned to a similar swimming area and behavior as right before the explosion. The fish usually swam less than 1.5 m from the water surface except during or right after the explosion. When there was an external stimulus, such as, an explosion the fish swam downwards. The average swimming speeds of the fish before, during and after the explosion were approximately 0.33 m/s, 0.52 m/s and 0.29 m/s, respectively, and the average swimming speed of the fish during the explosion was 1.6 times faster than usual.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号