首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Populations of aerobic heterotrophic bacteria present in the gastrointestinal (GI) tract of healthy Atlantic cod (Gadus morhua L.) fed three different diets, fish meal, standard or a bioprocessed soybean meal (BPSBM), were estimated using the dilution plate technique. A total of 944 isolates were characterised by biochemical and physiological properties and 425 isolates were identified further by sequencing the 16S rRNA genes. Our results showed that gut microbiota were affected by dietary manipulation. The GI tract of fish fed fish meal was dominated by Gram-positive bacteria of the genera Brochothrix and Carnobacterium. The Gram-negative bacteria Chryseobacterium spp. and Psychrobacter glacincola, and Gram-positive bacteria belonging to Carnobacterium, dominated in the digestive tract of fish fed soybean meal. In contrast to these results, genus Psychrobacter dominated in the GI tract when fish were fed BPSBM.Until recently, it was generally suggested that the gut microbiota of fish were less diverse than in homoeothermic animals. However, the present study identified several “new” bacterial species isolated from the alimentary tract of Atlantic cod. These “new” bacterial species are not normally isolated from the GI tract of fish. Based on our finding we suggest that the GI tract microbiota of fish might not be as simple as believed.Antagonistic activity of carnobacteria regarding inhibition of growth of two fish pathogens (Aeromonas salmonicida ssp. salmonicida and Vibrio anguillarum) was observed. However, some difference in the antibacterial activity of Carnobacterium spp. was observed. Whether this antagonistic activity has any effect in challenge studies will be discussed, especially in relation to the finding that the digestive tract is one of the major infection routes in fish.  相似文献   

2.
Duplicate groups of Atlantic salmon (Salmo salar L.), kept in seawater, were fed fish meal‐based cold‐pelleted diets. Diets with non‐starch polysaccharides (NSP), either cellulose, purified soybean NSP or extruded purified soybean NSP at a dietary level of 100 g kg?1, were compared with a diet without supplemental NSP and a diet with soybean meal in a 28‐day feeding trial. Isolation and characterizations were limited to culturable bacteria and population levels of aerobic and facultative aerobic heterotrophic autochthonous (adherent) and allochthonous (transient) bacteria present in the mid and distal intestines of Atlantic salmon fed the five different diets estimated using traditional bacteriological techniques. The presence of an autochthonous microbiota was demonstrated using transmission electron microscopy. No significant effects of diet composition were observed on total population levels of culturable bacteria present in the digestive tract, but the study showed that the composition of the gut microbiota (autochthonous or allochthonous) was sensitive to dietary changes. A total of 752 culturable isolates from the intestines were characterized by biochemical and physiological properties. Of these, 188 isolates were further characterized by partial sequencing the 16S rRNA genes. Among these, 146 isolates belonged to 31 phylotypes that were >94% identical to previously described species. However, 42 isolates showed similarity <94% to species available at the National Center of Biotechnology Information. Several of the phylotypes identified in the present study have not been reported previously in the gastrointestinal (GI) tract of fish, including the Gram‐negative bacteria Gelidibacter salicanalis, Pseudoalteromonas elyakovii, Psychrobacter aquimaris, Psychrobacter cibarius, Psychrobacter fozii, Psychrobacter maritimus, Psychrobacter okhotskensis and Psychrobacter psychrophilus. Among the Gram‐positive bacteria identified were Arthrobacter bergeri, Arthrobacter psychrolactophilus, Arthrobacter rhombi, Bacillus pumilus, Bacillus subtilis, Exiguobacterium spp., Microbacterium oxydans, Planococcus maritimus, Sporosarcina ginsengisoli and several bacteria that have been described as unculturable previously. In addition, we identified Carnobacterium inhibens, a lactic acid bacterium that is not frequently isolated from the GI tract of fish. Psychrobacter cibarius was the dominant bacterial species and was isolated from the digestive tract of all fish investigated.  相似文献   

3.
The microbial diversity of culturable intestinal microflora of wild freshwater salmonid fishes salmon Salmo salar and sea trout Salmo trutta trutta juveniles (0+ years old) from the same environmental conditions were investigated by means of molecular identification techniques and analysis of diet. Significant differences in the intestinal microbial diversity were observed in different fish species. The predominant group in the intestinal tract of the salmon comprised representatives of the Enterobacteriaceae family (23%), Plesiomonas (19.2%) and Carnobacterium (15.3%). Predominant microbiota in sea trout intestinal tract were Enterobacteriaceae (52%), Aeromonas (22%) and Pseudomonas (14%). The results show that Enterobacteriaceae were predominant in the intestinal tract of the salmon and the sea trout juveniles raised on diets of different compositions. However, molecular identification of the intestinal microbiota at the species or genus level revealed differences in these fish species. Bacteria in the hindgut of salmon included Pragia and Serratia. However, bacteria in the gut contents of sea trout from the Enterobacteriaceae family were Buttiauxella, Enterobacter, Moellerella, Pantoea, Rahnella and Tiedjeia arctica. A novel phylotype of T. arctica is harbored in the intestinal tract of wild salmon, and may correspond to a previously undescribed species.  相似文献   

4.
Intensive fish production worldwide has increased the risk of infectious diseases. However, before any infection can be established, pathogens must penetrate the primary barrier. In fish, the three major routes of infection are the skin, gills and gastrointestinal (GI) tract. The GI tract is essentially a muscular tube lined by a mucous membrane of columnar epithelial cells that exhibit a regional variation in structure and function. In the last two decades, our understanding of the endocytosis and translocation of bacteria across this mucosa, and the sorts of cell damage caused by pathogenic bacteria, has increased. Electron microscopy has made a valuable contribution to this knowledge. In the fish‐farming industry, severe economic losses are caused by furunculosis (agent, Aeromonas salmonicida spp. salmonicida) and vibriosis [agent, Vibrio (Listonella) anguillarum]. This article provides an overview of the GI tract of fish from an electron microscopical perspective focusing on cellular damage (specific attack on tight junctions and desmosomes) caused by pathogenic bacteria, and interactions between the ‘good’ intestinal bacteria [e.g. lactic acid bacteria (LAB)] and pathogens. Using different in vitro methods, several studies have demonstrated that co‐incubation of Atlantic salmon (Salmo salar L.) foregut (proximal intestine) with LAB and pathogens can have beneficial effects, the cell damage caused by the pathogens being prevented, to some extent, by the LAB. However, there is uncertainty over whether or not similar effects are observed in other species such as Atlantic cod (Gadus morhua L.). When discussing cellular damage in the GI tract of fish caused by pathogenic bacteria, several important questions arise including: (1) Do different pathogenic bacteria use different mechanisms to infect the gut? (2) Does the gradual development of the GI tract from larva to adult affect infection? (3) Are there different infection patterns between different fish species? The present article addresses these and other questions.  相似文献   

5.
The effect of dietary administration of probiotic Lactococcus lactis MM1 for 60 d on the autochthonous microbiota in the foregut, midgut and hindgut of juvenile grouper, Epinephelus coioides, was evaluated using polymerase chain reaction‐denaturing gradient gel electrophoresis (DGGE). Samples collected from the probiotic and control groups showed different DGGE patterns, while 11 common bands presented in both groups. The similarity dendrogram revealed three different clusters depending on the three sections of the gastrointestinal (GI) tract, and the probiotic triplicates in each GI section were generally clustered into one group distinctly different from the corresponding control triplicates. Increased species richness and Shannon index were observed in the foregut, midgut, and hindgut samples in the probiotic group compared with the control group, which suggested that probiotic L. lactis MM1 could improve the autochthonous microbial diversity along the GI tract of E. coioides. The growth of many potentially beneficial and unidentified bacteria was stimulated by the probiotic, whereas the growth of some potential harmful species, like Staphylococcus saprophyticus, was depressed.  相似文献   

6.
Bacterial community associated with the gastrointestinal (GI) tract of aquaculture animals can play important roles in health, nutrition and disease. Compared with the GI tract of aquatic vertebrates such as fish, crustacean GI tract has unique structures and surfaces in different segments that may contribute to differences in the bacterial communities. This study examined the bacterial composition and distribution in different segments along the GI tract and in digesta of wild‐caught adult Penaeus monodon using Automated Ribosomal Intergenic Spacer Analysis (ARISA), real‐time quantitative PCR and clone libraries of 16S rRNA genes. Thirty‐nine bacterial species in four phyla including Proteobacteria (α, β, ε, γ), Firmicutes, Bacteroidetes and Actinobacteria were represented in the GI tract of adult P. monodon. Proteobacteria comprised over 80% abundance of the bacterial community in most segments of the GI tract, except the middle intestine that was dominated by Firmicutes (~50% abundance). The results also showed that bacterial communities showed significant differences along the GI tract segments, particularly the hindgut (p < .001) with Vibrio and Ferrimonas as dominant genera. The knowledge about the distribution of bacteria could be useful in understanding interaction of commensal bacteria and pathogens in different segments, and its potential influence on the effectiveness of probiotic bacteria in the GI tract of shrimp.  相似文献   

7.
Aquaculture is one of the fastest growing industries in the world. The need for enhanced disease resistance, feed efficiency, and growth performance of cultured organisms is substantial for various sectors of this industry. If growth performance and feed efficiency are increased in commercial aquaculture, then the costs of production are likely to be reduced. Also if more fish are able to resist disease and survive until they are of marketable size, the subsequent cost of medication and overall production costs would be reduced drastically. It has been documented in a number of food animals that gastrointestinal microbiota play important roles in affecting the nutrition and health of the host organism. Thus, various means of altering the intestinal microbiota to achieve favorable effects such as enhancing growth, digestion, immunity, and disease resistance of the host organism have been investigated in various terrestrial livestock as well as in humans. Dietary supplementation of prebiotcs, which are classified as non‐digestible food ingredients that beneficially affect the host by stimulating growth and/or activity of a limited number of health‐promoting bacteria such as Lactobacillus and Bifidobacter spp. in the intestine, while limiting potentially pathogenic bacteria such as Salmonella, Listeria and Escherichia coli, have been reported to favorably affect various terrestrial species; however, such information is extremely limited to date for aquatic organisms. Effects of probiotics, defined as live microbial feed supplements, on gastrointestinal microbiota have been studied in some fishes, but the primary application of microbial manipulations in aquaculture has been to alter the composition of the aquatic medium. In general, the gastrointestinal microbiota of fishes including those produced in aquaculture has been poorly characterized, especially the anaerobic microbiota. Therefore, more detailed studies of the microbial community of cultured fish are needed to potentially enhance the effectiveness of prebiotic and probiotic supplementation. This review summarizes and evaluates current knowledge of intestinal microbial ecology of fishes, the various functions of this intestinal microbial community, and the potential for further application of prebiotics and probiotics in aquaculture.  相似文献   

8.
Using the approach of sequencing the V3-V4 region of the 16S rRNA gene, we have analysed the bacterial diversity associated with the distinct compartments of the gastrointestinal tract of perch (Perca fluviatilis) and cestodes (Proteocephalus sp.) parasitizing their digestive tract. The dominant microbiota associated with cestodes (Proteocephalus sp.) was represented by bacteria from the genera Serratia, Pseudomonas and Mycoplasma. By comparing the associated microbiota of perch and cestodes, a clear difference in bacterial composition and diversity was revealed between the community from the stomach content and other parts of the gastrointestinal tract of fish. Microbiota associated with cestodes was not significantly different in comparison with microbiota of different subcompartments of perch (mucosa and content of intestine and pyloric caeca) (ADONIS, p > .05) excluding microbiota of stomach content (ADONIS, p ≤ .05). PICRUSt-based functional assessments of the microbial communities of perch and cestodes indicated that they mainly linked in terms of metabolism and environmental information processing and could play an important role in the nutrition and health of host.  相似文献   

9.
The research of intestinal microflora structures for Paralichthys olivaceus larvae and juveniles will help us to master the ontogeny and developmental colonization of microflora during the larval rearing stage. In this study, we sequenced the total bacterial genomic DNA in larval and juvenile guts with an Illumina MiSeq PE300 system, and analysed the structural characteristics of these microbiota, feed and rearing water in live and formulated feeding periods. The structure of gut microbiota was gradually similar to those in wild P. olivaceus at the phylum level and the newly hatched ones with the growth, according to the distribution and abundance of intestinal microbiota. And the colonized rule of main microbial species in guts was decreased initially and then increased during the larvae and juveniles stage. Meantime, the core microflora of this study were obtained through the analysis of shared and dominant species, which included Bacteroides, Bacillus, Enterococcus, Lactobacillus, Lactococcus, Escherichia_Shigella, Acinetobacter, Pseudomonas, Vibrio, Nitrosomonas, and Glaciecola. The correlation analysis of microbiota between intestines and environmental factors suggested that microflora in feed and water could affect the distribution of larval and juvenile gut microbiota. Moreover, many species of Acinetobacter, Pseudomonas and Vibrio are treated as important potential pathogens in aquaculture. These all pointed out the microbial quality of feed and rearing water should be strictly controlled in fish breeding and farming, and supply theoretical bases for screening the native probiotics to artificially regulate the gut microbiota.  相似文献   

10.
Digestion of food depends on three main factors: (i) the ingested food and the extent to which the food is susceptible to the effects of digestive enzymes, (ii) the activity of the digestive enzymes and (iii) the length of time the food is exposed to the action of the digestive enzymes. Each of these factors is affected by a multitude of secondary factors. The present review highlights the experimental results on the secondary factor, enzymatic activity and possible contribution of the fish gut microbiota in nutrition. It has been suggested that fish gut microbiota might have positive effects to the digestive processes of fish, and these studies have isolated and identified the enzyme‐producing microbiota. In addition to Bacillus genera, Enterobacteriaceae and Acinetobacter, Aeromonas, Flavobacterium, Photobacterium, Pseudomonas, Vibrio, Microbacterium, Micrococcus, Staphylococcus, unidentified anaerobes and yeast are also suggested to be possible contributors. However, in contrast to endothermic animals, it is difficult to conclude the exact contribution of the gastrointestinal microbiota because of the complexity and variable ecology of the digestive tract of different fish species, the presence of stomach and pyloric caeca and the relative intestinal length. The present review will critically evaluate the results to establish whether or not intestinal microbiota do contribute to fish nutrition.  相似文献   

11.
Intestinal microflora of salmonids: a review   总被引:13,自引:0,他引:13  
Microflora isolated from fish intestines have been described for a limited number of salmonid fish species. The size of the microbial population of salmonids appears to vary within different regions of the gastrointestinal tract. The genera present in the gastrointestinal tract seem to be those which can survive and multiply in the intestinal tract. The predominant bacteria isolated from the salmonid gut are aerobes or facultative anaerobes. Few investigations have evaluated obligate anaerobes in the digestive tract of salmonids, and these studies have suggested that the population levels of obligate anaerobes are lower than those of facultative anaerobes. The bacterial genera isolated from fish intestines vary with salinity, antibiotics, chromic oxide, diet and dietary components such as linoleic acid, and display day-to-day fluctuations. Acinelobacter spp., Enterobacter spp. and Pseu-domonas spp. are regarded as autochthonous in Oncorhynchus species, while Aeromonas spp., Flavobacterium spp., Pseudomonas spp. and Lactobacillus spp. are suggested as autochthonous in Arctic charr, Salvelinus alpinus(L.).  相似文献   

12.
The rapidly growing yellow grouper industry has experienced relatively severe bacterial disease problems in China. The proliferation of pathogens in fish can be suppressed by commensal microbiota. In this background, we used nested polymerase chain reaction‐denaturing gradient gel electrophoresis (PCR‐DGGE) and sequence analysis to investigate microbiota in the skin, gills and intestines, including adherent bacteria and non‐adherent bacteria in yellow grouper fed with natural diet and complete feed. A total of 21 bacterial species were identified using phylogenetic analysis. The γ‐Proteobacteria group (81.0%, 17 species) dominated the bacterial communities in yellow grouper completely. Others belonged to Firmicutes (9.5%, two species), Actinobacteria (4.75%, one species) and Verrucomicrobia (4.75%, one species). The higher similarities (above 91%) of the DGGE band patterns in skin, gill and intestinal‐non‐adherent bacteria between two groups of fish indicated that existed more stable microbial communities existed in these specifically ecological niches in yellow grouper. However, considerable differences existed between two intestinal‐adherent bacteria (IAB) samples; that is, compared with natural diet fed yellow grouper, higher bacterial apparent species richness and possibly less abundance existed in IAB in fish fed with complete diets, probably indicating that the community structures in IAB were affected easily and significantly by diet.  相似文献   

13.
Probiotics renowned as valuable microbes serve as a potential alternative to control diseases in aquaculture and are considered as an efficient and environment‐friendly approach to reduce the use of antibiotics. The present study aims at the isolation of putative probiotic bacteria from the intestinal tract of different fish species from the Doaba region of Punjab, India. In this study, isolated bacterial strains were characterized based on their morphological, biochemical and molecular characterization by 16S rRNA gene sequencing, followed by in vitro evaluation of different selection parameters described in FAO/WHO guidelines. A total of 169 different bacterial strains were isolated from the gastrointestinal tract of 52 different fish species. After in vitro evaluation, out of 169 bacterial strains only five bacteria (S3, S7, BDK2', BDK7 and BDK9) identified as Enterococcus and Bacillus species showed antagonistic activity against the fish pathogen Pseudomonas aeruginosa (MTCC 4 673). These isolates were screened based on their response towards bile tolerance, pH tolerance, adhesion and drug susceptibility to different antibiotic discs. And, the in vivo results indicated improved growth and survival against the infection (P. aeruginosa) after oral administration of the probiotics. The observations of in vitro and in vivo evaluation indicate that these isolated probiotic strains serve as effective probiotics and can be used as a novel and safe treatment to cure current issues in aquaculture.  相似文献   

14.
The Norwegian aquaculture of Atlantic salmon (Salmo salar L.) is hampered by ulcerative disorders associated with bacterial infections. Chronic ulceration may provide microenvironments that disturb the normal microbial biodiversity of external surfaces. Studying the composition of microbial communities in skin ulcers will enhance our understanding of ulcer aetiology. To achieve this, we tested marine farmed Atlantic salmon and sampled the base and edge of ulcers at the end of winter (April) and end of summer (September), in addition to skin mucus of healthy individuals. In order to assess microbiota associated with the host and obtain insight into the environmental ecology, we also sampled sea water, the sediment layer underneath the farm facility and the distal intestine of Atlantic salmon. The skin microbiota of Atlantic salmon was different from that of the surrounding water. Residential Tenacibaculum and Arcobacter species persistently dominated the cutaneous skin and ulcer mucus surfaces of Atlantic salmon during both winter and summer periods. The intestinal microbiota was dominated by Mycoplasma with an increase in Aliivibrio and Alcaligenes abundance in the intestine of fish with ulcerative disorder at the end of winter. These findings suggest the presence of resilient microbes in the mucus surfaces of Atlantic salmon.  相似文献   

15.
Previous studies have shown that the gut microbiota of fish differs depending on host feeding habits and these populations may also be influenced by dietary ingredients. In this study, the bacterial populations of the intestinal tract of the opportunistic omnivore jundiá Rhamdia quelen and the typical omnivore tilapia Oreochromis niloticus were investigated in two experiments. In experiment I, the levels of amylolytic, cellulolytic, lipolytic, proteolytic and total culturable bacteria were compared in the proximal, mid and distal intestine using selective agar. Higher levels of amylolytic, cellulolytic, lipolytic, proteolytic and total culturable bacteria were observed in the tilapia than jundiá, in all intestinal regions. Jundiá contained higher levels of proteolytic bacteria and lipid digesting bacteria in the distal intestinal portion as compared with the mid intestine; both fish species also presented more amylolytic bacteria in the distal intestine. In experiment II, the amylolytic intestinal microbiota between the two species was compared after administration of diets containing different carbohydrate sources. Jundiá fed broken rice presented higher total culturable bacterial levels; however, dietary cassava bagasse and ground corn significantly elevated the population of amylolytic bacteria in tilapia (> 0.05). PCR‐DGGE was also used to assess the bacterial communities in experiment II. A Cetobacterium spp. was detected in jundiá fed diets containing broken rice, and tilapia fed cassava bagasse, dextrin, broken rice and ground corn. Microbial differentiation was further demonstrated between jundiá and tilapia, because an uncultured bacterium was unique in tilapia and an uncultured spirochete was observed only in jundiá; the presence of these bacterial species was also influenced by dietary carbohydrate sources.  相似文献   

16.
As is the case at other sites in the body (e.g. the gut, skin and mouth), the ocular microbiota plays a crucial role in their host, as disturbances of the composition and function of the ocular microbiota are known to be associated with ocular disorders. Exophthalmic disease (ED) is a significant cause of high mortality in fish species, including farmed turbot (Scophthalmus maximus). However, the relationship between alterations in the ocular microbiota and ED in turbot is unclear. In this work, we collected turbot samples from farmed ponds with ED and healthy samples to understand changes in the ocular microbiota of turbot suffering from ED. We compared the structural and metabolic differences of ocular bacterial communities from farmed turbot with exophthalmic disease and those of healthy controls. Besides less microbial diversity found in turbot with ED regarding the control group, we also found that Aeromonas was the dominant bacteria both in controls and ED samples, but the abundance of Aeromonas was significantly greater in ED individuals. Moreover, the results of correlation test further suggest that Aeromonas overgrowth was correlated with the progress of the disease and shifts in ocular microbiota functional pathways in turbot. These findings emphasize that an increased abundance of Aeromonas serves as an ocular bacterial signature associated with ED in turbot, which provide basic information useful for diagnoses, prevention and treatment of ocular diseases occurring in cultured fish.  相似文献   

17.
Doctor fish (Garra rufa, Heckel, 1843) are increasingly used for cosmetic treatment raising particular concerns regarding the potential transmission of infections to clients. Investigations of microbial causes undertaken in two outbreaks of mortality among G. rufa used for cosmetic treatment revealed the presence of multiple bacteria, including both fish and human pathogens such as Aeromonas veronii, A. hydrophila, Vibrio cholerae, Shewanella putrefaciens, Mycobacterium marinum and M. goodii. This range of bacteria indicates an intense microbial proliferation involving multiple pathogens, most likely induced by the poor health condition of the fish. Most of the detected pathogens are well‐known agents of zoonosis. Indeed, M. goodii is an emerging nosocomial human pathogen that has never been detected in fish to date, nor in other animals. This first detection of M. goodii associated with fish infection points out a new zoonotic potential for this pathogen. These findings point out that handling, poor environmental conditions and the presence of fish pathogens, that can compromise the immune system of fish, can result in a mixed microbial proliferation and increase the spread of waterborne bacteria, including zoonosis agents. Accordingly, the microbiological surveillance of fish used for cosmetic treatment is extremely important, particularly in association with mortality outbreaks.  相似文献   

18.
Trichothecene mycotoxins are commonly found in cereals worldwide and bring significant threats to the food industry and animal production. The aim of this research was to search for microbes from fish guts capable of transforming trichothecenes into less toxic compounds. Digesta of 62 fishes from nine species were screened for their ability to transform 4-deoxynivalenol (DON). Liquid chromatography-mass spectrometry was used to determine the reduction of DON concentrations and structures of DON-transformation products. The microbial community from one catfish Ameiurus nebulosus, namely microbial culture C133, completely transformed DON to deepoxy DON (dE-DON) at 15 °C in full medium after 96 h incubation. Various media and culture conditions were tested to evaluate their effect on DON transformation. Microbial culture C133 maintained high transformation ability over a broad range of temperatures from 4 to 25 °C and pH values from 4.5 to 10.4. The transformation of DON to dE-DON was enhanced in a rich medium such as full medium, nutrient broth and corn meal broth. Microbial culture C133 was then tested for its ability to transform other trichothecene mycotoxins; most of the toxins were transformed to deacetyl and/or deepoxy products. This is the first report on trichothecene transformation by microbes from the intestinal tract of fish.  相似文献   

19.
The effect of dietary probiotics (Bacillus subtilis, Bacillus licheniformis and Enterococcus faecium) used singularly and synergistically on the growth performance, intestinal microbiota and health status of rainbow trout (Oncorhynchus mykiss Walbaum) were assessed after 10 weeks feeding on supplemented diets. No significant improvements of weight gain or specific growth rate were observed in the probiotic fed groups. However, a significant improvement of feed conversion ratio was observed in the group fed E. faecium. High levels of probiotic species were observed in the posterior gastrointestinal tract as transient digesta‐associated populations and potentially resident mucosal populations. Bacillus subtilis and B. licheniformis levels accounted for 36% of the total culturable microbial population adhered to the mucosa and 62% in the digesta. E. faecium levels accounted for 45% of the mucosal population and 89% of the population in the digesta. An increase of serum lysozyme activity was observed in the fish fed diets containing the Bacillus probionts and elevated leukocyte levels were observed in fish fed diets containing Bacillus + E. faecium synergistically. The results of the current study demonstrate potential for B. subtilis, B. licheniformis and E. faecium to improve feed utilization, modulate intestinal microbiota and the health status of rainbow trout.  相似文献   

20.
Atlantic salmon (Salmo salar L.) were fed fishmeal protein for 46 days, and 500 g kg−1 of fishmeal protein substituted with meal from Northern krill (Meganyctiphanes norvegica). No differences were observed in weight gain, length gain, feed conversion or specific growth rate between the groups that could be attributed to dietary manipulation. The adherent microbiota in the hindgut of the two rearing groups were further investigated. By substituting fishmeal with krillmeal, the total viable counts of aerobic and facultative aerobic bacteria colonizing the hindgut of Atlantic salmon increased from 8.5 × 104 to 2.2 × 106. Furthermore, dietary krillmeal affected the adherent hindgut microbiota. The Gram‐positive bacteria Carnobacteria piscicola, Microbacterium oxydans, Microbacterium luteolum and Staphylococcus equorum spp. linens and the Gram‐negatives Psychrobacter spp. and Psychrobacter glacincola were not isolated from hindgut of fish fed the krill diet. On the other hand, Pseudomonas fulgida, Pseudomonas reactans and Stenotrophomonas maltophila were not isolated from the control group fed fishmeal. Acinetobacter lwoffi, which is not normally found in the fish gut, was isolated from both feeding groups. Transmission electron microscopy showed bacteria‐like profiles between the hindgut microvilli in both feeding groups indicating autochthonous microbiota. When fish were fed the krill diet, hindgut enterocytes were replete with numerous irregular vacuoles. These vacuoles were not observed in fish fed the fishmeal protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号