首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 187 毫秒
1.
A century of tagging experiments on 174 Atlantic cod (Gadus morhua) groups is reviewed and the frequency and spatial distribution of four migratory behaviours documented. Of all cod groups, 41% were categorized as sedentary, 18% as accurate homers, 20% as inaccurate homers and 20% as dispersers (ranging over large areas without recognizable return migrations). All behaviours occurred over the full spatial range of cod. Coastal groups did not differ significantly from offshore (shelf) groups in the relative frequency of migratory behaviours. However, the north‐east Atlantic had more sedentary and accurate homing groups than did the north‐west Atlantic, which had more dispersing groups. Overall, sedentary cod groups had lower maximum historical biomass than did other groups, confirming that migration/dispersal begets abundance. Maximum historical biomass was strongly related to the area occupied [log (biomass, tonnes)] = 1.58 log (range, km2) + 1.529; r2 = 0.9), irrespective of migratory type (for 23 major groups a total of 22 million tonnes over 3.3 million km2 with an average density of 7 tonnes km?2). Historical densities were not related to area occupied, although all large groups exhibited high densities (10–12 tonnes km?2 ; smaller groups had a wide range of density). The four migratory strategies in cod enable entrainment by diverse physical, oceanographic and biological ecosystem properties, and is key to cod success in the North Atlantic.  相似文献   

2.
Stock‐based and ecosystem‐based indicators are used to provide a new diagnosis of the fishing impact and environmental status of European seas. In the seven European marine ecosystems covering the Baltic and the North‐east Atlantic, (i) trends in landings since 1950 were examined; (ii) syntheses of the status and trends in fish stocks were consolidated at the ecosystem level; and (iii) trends in ecosystem indicators based on landings and surveys were analysed. We show that yields began to decrease everywhere (except in the Baltic) from the mid‐1970s, as a result of the over‐exploitation of some major stocks. Fishermen adapted by increasing fishing effort and exploiting a wider part of the ecosystems. This was insufficient to compensate for the decrease in abundance of many stocks, and total landings have halved over the last 30 years. The highest fishing impact took place in the late 1990s, with a clear decrease in stock‐based and ecosystem indicators. In particular, trophic‐based indicators exhibited a continuous decreasing trend in almost all ecosystems. Over the past decade, a decrease in fishing pressure has been observed, the mean fishing mortality rate of assessed stocks being almost halved in all the considered ecosystems, but no clear recovery in the biomass and ecosystem indicators is yet apparent. In addition, the mean recruitment index was shown to decrease by around 50% in all ecosystems (except the Baltic). We conclude that building this kind of diagnosis is a key step on the path to implementing an ecosystem approach to fisheries management.  相似文献   

3.
Abundance of marine stocks fluctuates in response to both internal processes (e.g., density dependence) and exogenous drivers, including the physical environment, fishing, and trophodynamic interactions. In the United States, research investigating ecosystem drivers has been focused in data‐rich systems, primarily in the North Atlantic and North Pacific. To develop a more holistic understanding of important ecosystem drivers in the Southeast U.S. continental shelf Large Marine Ecosystem, we applied generalized linear and dynamic linear modeling to investigate the effects of climate and fishing covariates on the relative abundance trends of 71 demersal fish and invertebrate species sampled by a coastal trawl survey during 1990–2013. For the assemblage as a whole, fishing effects predominated over climate effects. In particular, changes in trawling effort within the penaeid shrimp fishery governed abundance trends of bony fishes, invertebrates, and elasmobranchs, a likely result of temporal changes in bycatch mortality. Changes in trawling intensity induced changes in overall community composition and appear to have altered trophic interactions among particular species. Among climate indices investigated, the Pacific Decadal Oscillation and the Western Bermuda High Index were most prevalent in well‐supported dynamic linear models. Observed annual abundance trends were synchronous among some taxonomically related species, highlighting similar responses to exogenous influences based on life history. This study strengthens the foundation for generating hypotheses and advancing ecosystem‐based fisheries research within the region.  相似文献   

4.
The distribution of northern European hake (Merluccius merluccius L.) extends from the Bay of Biscay up to Norwegian waters. However, despite its wide geographical distribution, there have been few studies on fluctuations in the European hake populations. Marine ecosystem shifts have been investigated worldwide and their influence on trophic levels has been studied, from top predator fish populations down to planktonic prey species, but there is little information on the effect of atmosphere–ocean shifts on European hake. This work analyses hake recruitment success (recruits per adult biomass) in relation to environmental changes over the period 1978–2006 in order to determine whether the regime shift identified in several abiotic and biotic variables in the North Sea also affected the Northeast Atlantic shelf oceanography. Hake recruitment success as well as parameters such as the sea surface temperature, wind patterns and copepod abundance changed significantly at the end of the 1980s, demonstrating an ecological regime shift in the Northeast Atlantic. Despite the low reproductive biomass recorded during the last decades, hake recruitment success has been higher since the change in 1989/90. The higher productivity may have sustained the population despite the intense fishing pressure; copepod abundance, warmer water temperatures and moderate eastward transport were found to be beneficial. In conclusion, in 1988/89 the Northeast Atlantic environment shifted to a favourable regime for northern hake production. This study supports the hypothesis that the hydro‐climatic regime shift that affected the North Sea in the late 1980s may have influenced a wider region, such as the Northeast Atlantic.  相似文献   

5.
The fishery for the western rock lobster (Panulirus cygnus) in Western Australia is Australia's largest trap-based fishery, deploying 8.8 million pot lifts, landing on average 11,000 tonnes of lobster and using approximately 14,000 tonnes of bait annually. A mass balance model was constructed to determine the potential contribution of this bait to the diet of western rock lobsters. Bait is potentially a significant subsidy given the oligotrophic nature of Western Australia's marine environment. The mass balance model was constructed on the principle that the biomass of the lobster population reflects the difference between inputs (growth, immigration) and outputs (natural and fishing mortality and emigration). Biomass calculated using this approach was within 7% of biomass calculated from independent estimates based on depletion analysis, indicating the model is robust. The food required to explain observed growth was then calculated, allowing the potential contribution of bait to lobster diet to be assessed. The abundance of natural diet items on the benthos was sufficient to explain the observed growth of lobsters, with bait contributing a maximum of 13% of lobster food requirements over the whole ecosystem. This contribution of bait will differ spatially and temporally reflecting uneven distribution of fishing effort and may be as high as 35% during some months of the fishing season, a result consistent with dietary studies based on stable isotopes. Given observed effects of organic matter addition on ecosystem processes as observed in trawl fisheries and aquaculture operations, it is likely that the effects of bait addition on ecosystem function are more widespread than lobster production.  相似文献   

6.
The fishing industry of the western and central regions of the coastal Gulf of Alaska (CGoA) directly employs over 17,000 people and processes fish with a wholesale value of US$618 million annually. Pacific halibut (Hippoglossus stenolepis) are a valued groundfish species because of the high quality of their flesh. In contrast, arrowtooth flounder (Atheresthes stomias) are much more abundant but of low value because their flesh degrades upon heating. Both are high trophic level predators but play different roles in the ecosystem because of differences in abundance and diet. Using an end‐to‐end ecosystem model, we evaluate the impact of alternate levels of fishing effort and large‐scale changes in oceanographic conditions upon both species, the ecosystem, and the fishing economy. Reduction of longline efforts to reduce Pacific halibut mortality led to reduction in total value of all CGoA landings but increase in value landed by sport fisheries, trawl fleets, and fish pot vessels as they exploit a greater share of available halibut, sablefish, and Pacific cod. Increased trawl effort to raise arrowtooth flounder mortality led to increase in total value of all landings but large reductions in value landed by longline, jig, fish pot, and sport fleets with greater competition for available Pacific cod, halibut, and sablefish. Oceanographic conditions that enhance pelagic food chains at the expense of benthic food chains negatively impact groundfish in general, though Pacific halibut and arrowtooth flounder are resilient to these effects because of the high importance of pelagic fish in their diets.  相似文献   

7.
Forage fish occupy a central position in marine food‐webs worldwide by mediating the transfer of energy and organic matter from lower to higher trophic levels. The lesser sandeel (Ammodytes marinus) is one of the ecologically and economically most important forage fish species in the North‐east Atlantic, acting as a key prey for predatory fish and sea birds, as well as supporting a large commercial fishery. In this case study, we investigate the underlying factors affecting recruitment and how these in turn affect productivity of the North Sea sandeel using long‐term data and modelling. Our results demonstrate how sandeel productivity in the central North Sea (Dogger Bank) depends on a combination of external and internal regulatory factors, including fishing and climate effects, as well as density dependence and food availability of the preferred zooplankton prey (Calanus finmarchicus and Temora longicornis). Furthermore, our model scenarios suggest that while fishing largely contributed to the abrupt stock decline during the late 1990s and the following period of low biomass, a complete recovery of the stock to the highly productive levels of the early 1980s would only be possible through changes in the surrounding ecosystem, involving lower temperatures and improved feeding conditions. To that end, we stress the need for ecosystem‐based management accounting for multiple internal and external factors occurring within the broader context of the ecosystem in which forage fish species, such as sandeel, play an important and integral part.  相似文献   

8.
The American sand lance (Ammodytes americanus, Ammodytidae) and the Northern sand lance (A. dubius, Ammodytidae) are small forage fishes that play an important functional role in the Northwest Atlantic Ocean (NWA). The NWA is a highly dynamic ecosystem currently facing increased risks from climate change, fishing and energy development. We need a better understanding of the biology, population dynamics and ecosystem role of Ammodytes to inform relevant management, climate adaptation and conservation efforts. To meet this need, we synthesized available data on the (a) life history, behaviour and distribution; (b) trophic ecology; (c) threats and vulnerabilities; and (d) ecosystem services role of Ammodytes in the NWA. Overall, 72 regional predators including 45 species of fishes, two squids, 16 seabirds and nine marine mammals were found to consume Ammodytes. Priority research needs identified during this effort include basic information on the patterns and drivers in abundance and distribution of Ammodytes, improved assessments of reproductive biology schedules and investigations of regional sensitivity and resilience to climate change, fishing and habitat disturbance. Food web studies are also needed to evaluate trophic linkages and to assess the consequences of inconsistent zooplankton prey and predator fields on energy flow within the NWA ecosystem. Synthesis results represent the first comprehensive assessment of Ammodytes in the NWA and are intended to inform new research and support regional ecosystem‐based management approaches.  相似文献   

9.
New Zealand has led the world in restoration of marine fisheries since the introduction of the Quota Management System in 1986, but challenges remain in minimizing the ecosystem‐level effects of industrialized fishing. We analysed existing long‐term fisheries data sets from 1931 to 2015 in New Zealand to resolve trends in important ecological properties of major exploited fish communities. Increases in community dissimilarities of catch composition in 1931 and 1972, followed by increasing total landings, highlight major expansions of fishing grounds and exploited species during these periods. Mirroring global patterns, the remarkable rise in fishing power, demand and generation of new markets in New Zealand have all contributed to this expansion. Marine Trophic Indices (MTIs) of landings have decreased together with total catch after the year 2000, reflecting smaller catches with a higher composition of lower trophic‐level species in recent years. Differences in relative abundance of species estimated between fisheries‐dependent and fisheries‐independent data were observed, where high‐value species displayed better agreement in relative abundance between data sets. Despite being under a Quota Management System, temporal development of MTI values relative to the timing of industrial expansion of fisheries was remarkably similar to those observed in the North Sea and Brazil, with a single expansion and decline. MTI values presented better long‐term stability in the US fisheries analysed. Analysis of long‐term data and the development of well‐resolved ecological baselines will be the first step towards applying EBM to New Zealand fisheries, in keeping with global trends in fisheries management.  相似文献   

10.
Since the 1950s, invertebrate fisheries catches have rapidly expanded globally to more than 10 million tonnes annually, with twice as many target species, and are now significant contributors to global seafood provision, export, trade and local livelihoods. Invertebrates play important and diverse functional roles in marine ecosystems, yet the ecosystem effects of their exploitation are poorly understood. Using 12 ecosystem models distributed worldwide, we analysed the trade‐offs of various invertebrate fisheries and their ecosystem effects as well as ecological indicators. Although less recognized for their contributions to marine food webs, our results show that the magnitude of trophic impacts of invertebrates on other species of commercial and conservation interest is comparable with those of forage fish. Generally, cephalopods showed the strongest ecosystem effects and were characterized by a strong top‐down predatory role. Lobster, and to a lesser extent, crabs, shrimp and prawns, also showed strong ecosystem effects, but at lower trophic levels. Benthic invertebrates, including epifauna and infauna, also showed considerable ecosystem effects, but with strong bottom‐up characteristics. In contrast, urchins, bivalves, and gastropods showed generally lower ecosystem effects in our simulations. Invertebrates also strongly contributed to benthic–pelagic coupling, with exploitation of benthic invertebrates impacting pelagic fishes and vice versa. Finally, on average, invertebrates produced maximum sustainable yield at lower levels of depletion (~45%) than forage fish (~65%), highlighting the need for management targets that avoid negative consequences for target species and marine ecosystems as a whole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号