首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The production performance of genetically improved farmed tilapia (GIFT, Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) in periphyton‐based systems were studied in farmers' ponds at Mymensingh, Bangladesh. Fifteen ponds (200–300 m2 area and 1.0–1.5 m in depth) were used to compare five stocking ratios in triplicate: 100% GIFT, 75% GIFT plus 25% prawn, 50% GIFT plus 50% prawn, 25% GIFT plus 75% prawn and 100% prawn. Ponds were stocked at a total density of 20 000 GIFT and/or prawn ha?1. Bamboo poles (mean diameter 6.2 cm and 5.5 pole m?2) were posted in pond bottoms vertically as periphyton substrate. Periphyton biomass in terms of dry matter (DM), ash‐free DM and chlorophyll a were significantly higher in ponds stocked with prawn alone than in ponds with different combinations of GIFT and prawn. Survival of GIFT was significantly lower in ponds stocked with 100% GIFT (monoculture) whereas, that of prawn was significantly higher in its monoculture ponds indicating detrimental effects of GIFT on prawn's survival. Individual weight gains for both species were significantly higher in polyculture than in monoculture. The highest total fish and prawn yield (1623 kg GIFT and 30 kg prawn ha?1) over 125–140 days culture period was recorded in ponds with 75% GIFT and 25% prawn followed by 100% GIFT alone (1549 kg ha?1), 50% GIFT plus 50% prawn (1114 kg GIFT and 68 kg prawn ha?1), 25% GIFT plus 75% prawn (574 kg GIFT and 129 kg prawn ha?1) and 100% prawn alone (157 kg ha?1). This combination also gave the highest economic return. Therefore, a stocking ratio of 75% GIFT plus 25% prawn at a total density of 20 000 ha?1 appeared to be the best stocking ratio in terms of fish production as well as economics for a periphyton‐based polyculture system.  相似文献   

2.
The study was carried out to quantify the periphyton biomass developed on glass substrates over time, to investigate the effects of periphyton quantity and fish size on the ingestion rate by fish, and to determine the feed conversion ratio (FCR) of periphyton by tilapia Oreochromis niloticus. Periphyton was grown in two fertilised 1000‐l tanks on glass slides and monitored as dry matter (g), ash‐free dry matter (g) and chlorophyll a concentrations (mg) per unit surface area (m2) over a six week period. Ingestion rate was determined for two sizes of tilapia (7 and 24 g) which were provided with four different periphyton densities. Determination of FCR was made after feeding three individual fish ad libitum with periphyton for two weeks. Periphyton ash‐free dry matter increased sharply during the first half of the trial with a peak being recorded at week 3 (75.5 g m?2). Productivity was 2.4 g ash‐free dry matter m?2 d?1 during the first three weeks. Mean chlorophyll a concentration showed a cyclic pattern throughout the study with the lowest value being measured during the last week. Ingestion rates were 0.90 and 0.18 mg dry matter g fish body weight?1 h?1 for small and medium fish respectively. Ingestion rate among small fish increased significantly (P < 0.05) with periphyton density, but not for medium size fish. Although periphyton ash content was high (55% dry matter), fish growth was sustained. Fish harvested 70% of total periphyton dry matter that was offered to them. The FCR for periphyton was 2.81 on a dry matter basis and 1.34 on an ash‐free dry matter basis.  相似文献   

3.
ABSTRACT

Ten locally available substrates, five biodegradable and five non-degradable, were evaluated for their potential to harbor periphyton in cement tanks fertilized with poultry manure. The tanks were fertilized regularly and the periphyton was allowed to grow for 70 days. Weekly samples of periphyton and plankton were collected for enumeration and biochemical analyses. Among the substrates, earthen tiles harbored negligible amount of periphyton. The phytoperiphyton genera encountered on the substrate belonged mainly to Chlorophyceae (14 genera), followed by Cyanophyceae (2 genera), Chrysophyceae (1 genus), Bacillariophyceae (1 genus), and Dinophyceae (1 genus). Nauplius, Keratella, Diaptomus, Cyclops, Moina, Chironomus and insect eggs were the zooplankton encountered on substrates. Phytoplankton density was higher on tyre (86,426 cells or colonies/cm2) and palm leaf (85,808 cells or colonies/cm2) and lowest on ceramic tile (21,081 cells or colonies/cm2). Glass plates harbored the highest number of zooplankton species per unit area (1050 cells or colonies/cm2), while arecanut leaf-sheath had the lowest (210 cells or colonies/cm2). All five families of phytoplankton present on the substrates were also present in tank water. While periphyton contained 26 genera, tank water had only 24. Periphytic dry matter, ash, ash-free dry matter, plankton density on substrates and water showed a general increase with respect to time. Polyvinyl chloride (PVC) (0.972 mg/cm2), glass (0.913 mg/cm2), and bamboo (0.897 mg/cm2) had higher periphytic dry matter and ceramic tile (0.262 mg/cm2) the lowest. All the proximate composition parameters of periphyton, except nitrogen free extract (NFE) varied significantly (P < 0.05) between the substrates. The moisture content of periphyton ranged from 85.58% (bamboo) to 95.27% (arecanut leaf-sheath). Crude protein was high in periphyton from bamboo (3.77%) and tyre (3.66%) and low in that from arecanut leaf-sheath (0.99%).  相似文献   

4.
The effects of four rates of application of fertilizer, with cow manure (3000 kg ha−1), urea (100 (kg ha−1) and triple super phosphate (TSP) (100 kg ha−1) (treatment F)), treatment F × 0.5 (treatment 0.5F), treatment F × 1.5 (treatment 1.5F) and treatment F × 2 (treatment 2F), on periphyton, plankton and water quality in tropical freshwater ponds were studied. The highest periphyton biomass in terms of dry matter (3.27 mg cm−2 substrate), ash-free dry matter (2.06 mg cm−2 substrate) and chlorophyll a (7.49 µg cm−2 substrate) developed in treatment 1.5F. The ash content of periphyton was lower in treatment 1.5F (38% of dry matter) than in other treatments (57–66% of dry matter). Total ammonia and chlorophyll a of water increased with fertilization rate. Treatment 1.5F (cow manure, urea and TSP at rates of 4500, 150 and 150 kg ha−1 respectively) appears to be the optimum, yielding high quantity and quality periphyton. By supplying a substrate area for periphyton equivalent to the pond surface, it was estimated that this level of fertilization could support a fish production of around 5000 kg ha−1 y−1, without recourse to supplementary food.  相似文献   

5.
The present research investigated the effect of stocking density on pond (75 m2, depth 1.2 m) production of Nile tilapia (Oreochromis niloticus) and freshwater prawn (Macrobrachium rosenbergii) stocked at a fixed 3:1 tilapia:prawn ratio. Three stocking densities were tried in triplicate: 20 000 ha−1 (treatment TP‐20), 30 000 ha−1 (TP‐30) and 40 000 ha−1 (TP‐40). The ponds were provided with bamboo as substrate for periphyton development. Bamboo poles (mean diameter 5.5 cm and 5.0 poles m−2) were posted vertically into pond bottoms, resulting in 60% additional substrate area in each pond. On average, 43 genera of algae and 17 genera of zooplankton were identified from pond water, whereas 42 genera of algae and six genera of microfauna were attached to bamboo substrates. No differences were observed between treatments in the ash‐free dry matter (AFDM), chlorophyll a and phaeophytin a content of periphyton (P>0.05). Survival of tilapia and prawn and individual weight gain of tilapia were lower (P<0.05) in treatment TP‐40. The net yields were higher (P<0.05) in treatments TP‐30 (2209 and 163 kg ha−1 105 day−1 of tilapia and prawn respectively) and TP‐40 (2162 and 141 kg ha−1 of tilapia and prawn respectively) than in treatment TP‐20 (1505 and 136 kg ha−1 of tilapia and prawn respectively). The net tilapia yields were quadratic correlated (R2=0.92) with fish stocking density. The cost–benefit analysis shows that the net profit margin was highest in treatment TP‐30 (69%), followed by TP‐20 (50%) and TP‐40 (44%).  相似文献   

6.
The project evaluated the effect of installing scrap bamboo (‘kanchi’) as a substrate for periphyton on growth and production of the indigenous major carp calbaush, Labeo calbasu (Hamilton). The impacts of fish grazing on the periphyton community were also assessed. Six ponds were used, three of which were provided with kanchi poles (700 per pond, spaced 30 cm apart). Ponds were limed and fertilized and stocked with L. calbasu fingerlings (mean total length = 5.16 cm; mean weight = 2.10 g) at a rate of 10 000 fingerlings ha–1 (75 fish per pond). There were no statistically significant differences in water quality between treatments, although differences in phytoplankton community composition were observed. Zooplankton numbers were the same in both treatments. While there was clear evidence that periphyton was being exploited by the fish, Chlorophycae being most affected, grazing was insufficient to cause significant reductions in total periphyton densities. Fish survival and specific growth rates (SGRs) were significantly higher in ponds with substrates, production in treatments with and without scrap bamboo substrate being 712.90 and 399.11 kg ha–1, respectively, over the 120-day period. However, production in both treatments was low in comparison with other studies, water temperatures (23.6–32.7 °C) being less than optimum for growth. It was concluded that kanchi and other locally available materials might be used to increase the production of some species of fish, although further evaluation of production economics is required.  相似文献   

7.
The effects of periphyton, grown on bamboo substrates, on growth and production of two Indian major carps, rohu, Labeo rohita (Hamilton) and gonia, Labeo gonius (Linnaeus), were studied at the Bangladesh Agricultural University, Mymensingh. For each species, five ponds were provided with bamboo substrates and five ponds without substrate (control). Ponds were stocked at a rate of 10 000 ha?1 in both treatments. There was no discernible difference in water quality parameters between treatments. A large number of plankton (39 genera) showed periphytic nature and colonized the bamboo substrates. Rohu grew faster, resulting in a 77% higher net production (P < 0.05) in the ponds with bamboo substrates compared with the ponds without substrate. In contrast, the growth and production of gonia did not vary significantly (P > 0.05) between the substrate and control ponds. Rohu seems to be a more suitable candidate for periphyton‐based aquaculture systems than gonia.  相似文献   

8.
A 60‐day indoor trial was conducted to study the effect of periphyton supplementation on metabolic and immune responses in tiger shrimp, Penaeus monodon. Periphyton developed over bamboo substrate in outdoor tanks (15 m2) was used as dietary supplement for P. monodon (2.02 ± 0.04 g) reared in 1000 L FRP tanks. Graded levels of periphyton were included in shrimp basal diets: 0% (P0), 3% (P3), 6% (P6), 9% (P9) and P0 diet with natural periphyton (NP) over bamboo substrate. At the end of the trial, P6 and NP showed significantly higher (P < 0.01) growth rate, 23.9% and 20%, respectively, compared with control, P0. Comparatively, lower level of metabolic enzymes, such as lactate dehydrogenase, malate dehydrogenase, aspartate aminotransferase and alanine aminotransferase, was recorded in treatments P3, P6 and NP compared with control, P0. The periphyton‐supplemented group, P3 had significantly higher (P < 0.05) superoxide dismutase (15.83 ± 0.96) and catalase activity (15.73 ± 0.69) compared to 6.88 ± 2.84 and 9.15 ± 0.67 unit mg?1 protein min?1, respectively, in P0. Similarly, higher total haemocyte counts, 32.58 ± 1.30, 28.51 ± 3.12 and 27.26 ± 4.43 × 106 cells mL?1, were recorded in P6, NP and P3, respectively, compared to P0, 23.57 ± 1.80 × 106 cells mL?1. After challenge with Vibrio harveyi, P3 recorded the highest relative percentage survival 67% followed by NP (58%) and P6 (42%) compared with control. However, treatment with highest periphyton inclusion (P9) did not differ significantly with P0 on growth and immunological parameters. This study indicates that periphyton supplementation at 3–6% level improves growth, immune response and metabolic activities in P. monodon.  相似文献   

9.
The objectives of this study were to determine how periphyton and phytoplankton biomass vary with grazing pressure by tilapia Oreochromis niloticus, to evaluate the growth performance of fish when substrate is introduced and to calculate the efficiency of nitrogen utilization in substrate and non‐substrate systems. Ten circular 1000‐L plastic tanks were filled with 15 cm of loamy soil bottom and water. Five different treatments were applied: eight tilapias with substrate (treatment 8T/S), eight tilapias without substrate (treatment 8T), four tilapias with substrate (treatment 4T/S), four tilapias without substrate (treatment 4T) and no tilapia with substrate (treatment 0T/S). Each week, 2 g of NaNO3 and 3.5 g of single superphosphate (SSP) were applied to each tank. Sixteen glass slides (1 m×4 cm×4 mm) were installed vertically in the tank bottom, one portion extending above the water surface and equally spaced within the water column in all substrate tanks. Periphyton and phytoplankton quantity and quality, water quality, fish growth and proximate fish composition were measured. Because of grazing, phytoplankton and periphyton biomass decreased after the introduction of fish to the tanks. The periphyton biomass was higher in non‐fish tanks (treatment 0T/S) throughout the experiment than that in tanks with fish (treatments 8T/S and 4T/S). The periphyton biomass was similar in the 4T/S and 8T/S treatments, suggesting that the grazing pressure on periphyton biomass reached threshold levels. Fish ate 25–36% of the total standing biomass every day. Tilapia growth was significantly higher in treatments with substrate. Nitrogen retention was double in substrate ponds compared with in control ponds. There were no significant effects of periphyton substrate or fish density on body composition of fish.  相似文献   

10.
A survey of integrated agriculture–aquaculture systems (IAAS) was carried out in four different agroecologies, an irrigated and three rainfed agroecologies (drought‐prone, rainfed lowland and rolling land), in Northeast region of Thailand, of tropical wet:dry climate. Fish culture system of IAAS varied with agroecology but not with the length of farmers' experience in IAAS farming. The size of pond holdings in the rainfed lowland agroecology was estimated to be significantly smaller (P≤0.05) than in the three other agroecologies. The highest average extrapolated gross fish yield of 2.3 tonnes ha?1 was recorded in the irrigated agroecology and this was significantly higher (P≤0.01) than in the three rainfed agroecologies: drought‐prone (1.1 tonnes ha?1), rainfed lowland (0.5 tonnes ha?1) and rolling land (0.4 tonnes ha?1). Higher fish yield in the irrigated agroecology was associated with longer stocking period and higher amount of pond inputs. Average income of IAAS households from fish also varied across agroecology in a fashion that was noted for yields. However, the farm pond played a pivotal role in the diversification of the farming system in rainfed agroecologies, as it was essentially the only source of water supply for fruit and vegetables production. While fish culture in all agroecologies was a low‐input system, intensification through fertilization of ponds with chemical fertilizers can be envisaged to increase fish production in IAAS in Northeast Thailand.  相似文献   

11.
Two experiments were conducted at the Asian Institute of Technology, Pathumthani, Thailand to investigate the fate of chlortetracycline (CTC) residue in chicken manure and its effect on integrated chicken–fish farming system. During the first experiment, broiler chickens were raised and CTC residues in their manure were analysed. Chicken fed diets containing 0, 50, 200 and 800 CTC mg kg?1 had CTC residue levels of 0, 0.9, 3.8 and 6.5 CTC ng g?1. Once the diet containing CTC was withdrawn, CTC in the manure dropped to negligible amounts (0, 0, 0.2 and 0.5 CTC ng g?1) within 1 day. Integrated chicken–fish farming systems were simulated during the second experiment to determine the fate of antibiotic residues in chicken manure in aquaculture environment. Chickens were fed a CTC‐free diet and a feed containing CTC at 200 mg kg?1. Ten 4 m3 square concrete tanks (2 × 2 × 1 m) were used for the experiment. Five tanks were fertilized with CTC‐contaminated manure and the remaining five tanks were fertilized with CTC‐free manure at a rate of 100 kg dry matter ha?1 day?1. Sex‐reversed Nile tilapia (Oreochromis niloticus) was stocked at 12 fish tank?1 on the 14th day after chicken manure application. The immuno‐radio microbial receptor assay (Charm II test) revealed that edible fish muscle, fish intestinal tract and sediment were contaminated by CTC at rates of 7.21, 22.104 and 1.788 ng g?1, respectively, after 45 days. Chlortetracycline was detected on day 20 in the water column and gradually increased from 0.26 to 12.13 ng g?1. Chlortetracycline residues were not detected in fish or the aquatic environment of the CTC‐free treatment. The results demonstrate the potential for antibiotic residue accumulation in fish and aquatic environment when CTC‐contaminated chicken manure is used for pond fertilization.  相似文献   

12.
An experiment was conducted to compare the efficiency of biofilm production in natural and artificial substrates and to study their effect on water quality and growth of Etroplus suratensis. Four different substrates were used for biofilm formation: paddy straw (T1), sugarcane bagasse (T2), polyvinylchloride (PVC) pipe (T3) and plastic sheet (T4). The experiment was carried out in mud-bottomed fibre-reinforced plastic tanks (300 L) in triplicates. About 3000 cm2 surface area (600 g) of each substrate was suspended in water supplemented with fertilizers. Only cow dung and urea were applied in control tanks. The tanks were stocked with 25 fishes with average weight of 9.1 ± 0.22 g. The overall mean value of heterotrophic bacteria in substrate was found higher in straw followed by bagasse, plastic and PVC. The dominant genera of bacteria in the substrate were Bacillus, Pseudomonas and Micrococcus in that order of preponderance. The mean phytoplankton and zooplankton density on the substrates were higher in bagasse followed by straw, plastic and PVC. The biofilm developed on the substrate significantly reduced the ammonia nitrogen and nitrite-nitrogen content of water. The growth of fishes was significantly (P < 0.05) higher in substrate-based treatments than that in the control with better results in bagasse followed by straw, plastic and PVC. The conclusions of the present study are that biofilm produced on natural substrates, especially on bagasse, enhanced growth of E. suratensis and reduced the necessity of water exchange during the culture, which certainly decreases the cost of Etroplus production.  相似文献   

13.
A 28‐week feeding trial was conducted in concrete tanks with Nile tilapia, Oreochromis niloticus (L.) with an average initial weight and length of 61.9±6.03 (g fish?1) and 17.6±0.45 (cm fish?1), respectively, to examine the effect of two protein levels and three feeding levels (% body weight (BW) day?1) on growth performance, production traits and body composition. Twelve 4‐m3 concrete tanks (2 × 2 × 1.25 m, long, width and height) were each stocked with 100 fish and fed diets containing either 25% or 30% crude protein at rates of 1%, 2% and 3% BW daily (2 × 3 factorial experiment). The results revealed that there was no significant increase in growth rate with increasing dietary protein levels, whereas there was significant increase in growth rate with increasing feeding levels (P≤0.05). The same trend was also observed for mean BW (g), mean body length (cm), production rate (kg m?3), specific growth rate (SGR % day?1), feed conversion ratio (FCR), condition factor (K) and survival rate (%). The best final mean BW (g), final mean body length (cm), SGR (% day?1), FCR, K, production rate (kg m?3) and survival rate (%) were recorded in groups of fish fed with 25% dietary protein at the 2% feeding level. Whole fish fat and energy contents were not significantly influenced (P>0.05) by protein levels and feeding levels. Protein and ash contents were significantly (P≤0.05) influenced by feeding level, but not by dietary protein level. Economic evaluation indicated that dietary protein 25% (diet A) at the 2% BW day?1 feeding level was the most cost‐effective and affordable feed strategy for farmers. We conclude that a 25% protein diet fed at 2% BW day?1 is recommended for adult Nile tilapia reared in concrete tanks.  相似文献   

14.
An 8‐week comparative slaughter experiment was carried out to determine the effect of dietary protein and lipid on growth, apparent digestibility (AD) and nutrient retention of polka dot grouper Cromileptes altivelis. Fingerlings were fed diets that varied in crude protein (CP) at 55 g kg?1 increments between 410 and 630 g kg?1 dry matter (DM) and at either a moderate (150 g kg?1 DM) or high (240 g kg?1DM) lipid concentration. Each diet was fed to satiety twice daily to four replicate tanks (110 L) of fish. One replicate block of tanks comprised 150 fish of mean (±SD) initial weight of 9.6 ± 0.29 g, which were distributed equally to 10 tanks. The other three replicate blocks of tanks comprised 300 fish of 12.6 ± 0.45 g, which were distributed equally to 30 tanks. Tanks were provided with filtered and heated (29 ± 0.5 °C) seawater in a flow‐through system within a laboratory where photoperiod was maintained at 12 : 12 h light–dark cycle. Voluntary food intake was not significantly affected by either the CP or lipid concentration of the diet (mean ± SD of 1.93 ± 0.146 g week?1) but there was a trend for intake to be higher on the moderate compared with the high lipid diets (mean ± SEM of 1.97 versus 1.89 ± 0.033 gweek?1, respectively). Daily growth coefficient (DGC) and food conversion ratio (FCR) improved linearly (P < 0.01) with increasing dietary CP (from 0.94 to 1.35% day?1 for DGC and 1.58 to 1.00 g DM g?1 wet gain for FCR) and these responses were almost coincident for each of the lipid series. The AD of CP increased linearly with increasing dietary CP (from 46.8 to 74.1%) and was independent of dietary lipid. Apparent digestibility of energy increased curvilinearly with increasing dietary CP, with the quadratic component being more prominent for the high‐lipid series. Increasing the amount of lipid in the diet markedly increased the lipid content of the fish from an initial composition (mean ± SD) of 173 ± 7.3 g kg?1 to a final composition (mean ± SEM) of either 217 or 250 ± 5.9 g kg?1 for moderate and high‐lipid series, respectively. Total body lipid content tended to increase linearly with increasing dietary CP for the high‐lipid series but with an opposite effect for the moderate‐lipid series. The retention of digestible nitrogen decreased linearly with increasing dietary CP but at a steeper rate for the moderate, compared with the high, lipid series (from 62.7 to 35.7%, slope ?0.115 for moderate‐lipid and 54.6 to 41.9%, slope ?0.050 for high‐lipid). A quadratic function of dietary CP concentration best explained the retention of digestible energy with the curvilinearity being more marked for the high, compared with the moderate, lipid diet series. While there was some indication that ingested lipid spared dietary protein, the results showed a far greater propensity of polka dot grouper fingerlings to use protein as the prime dietary energy source. Diets for juvenile polka dot grouper should contain not less than 440 g digestible protein kg?1 DM and at least 150 g lipid kg?1 DM.  相似文献   

15.
A 95‐day feeding trial was conducted to evaluate the effects of dietary crude protein level on total body weight gain and protein gain of juvenile (4.89 ± 0.57 g) South African abalone (Haliotis midae). Six semi‐purified diets containing casein, fish meal and cottonseed meal as protein sources, and with crude protein levels ranging from 54.8 to 479.2 g kg?1 dry matter (DM), were fed to four tanks containing 30 abalone each in a continuous flow system. No differences (P > 0.05) were found in moisture, ash or lipid content of soft‐body tissue as dietary crude protein level increased, indicating that differences (P < 0.05) in soft‐body protein content were solely due to dietary crude protein level. The relationships between dietary crude protein level and total body weight gain and protein gain were analysed by broken‐line and second‐order polynomial regression models. Based on total body weight gain, 358.7 g kg?1 DM dietary protein from good quality sources is recommended for maximum growth of juvenile H. midae, while, if dietary protein is reduced to 280.7 g kg?1 DM, growth will be depressed with 5 g kg?1.  相似文献   

16.
The experiments on the intensive–extensive system were carried out between 2008 and 2010 in three ponds (area 310 m2, depth 1 m) serving as extensive units, where cages were placed as an intensive units (volume 10 m3) one in each pond. In the intensive units, African catfish (Clarias gariepinus) was cultured and fed with pellet whilst common carp (Cyprinus carpio) was stocked in each extensive unit and raised without any artificial feeding. Three different setups of extensive ponds were tested: the additional artificial plastic substrate for periphyton development equalled to 0, 100 and 200 % of the pond surface area (PP0 %, PP100 % and PP200 %) at feed loading level of 1.2, 1.9 and 2.8 gN m?2 day?1 in 2008, 2009 and 2010, respectively. The additional net fish yields in the extensive unit were 2.8–6.5 t ha?1 in PP0 %, 5.1–8.1 t ha?1 in PP100 % and 2.1–4.3 t ha?1 in PP200 %. The nitrogen recovery in the additional fish yields of extensive ponds, expressed as the percentage of feed load, was 5.6–6.1, 6.8–10 and 2.1–6.1 % in the treatments PP0 %, PP100 % and PP200 %, respectively. The combined fish production resulted in higher protein utilisation by 22–26 %; even this ratio can be increased by 33–45 % with periphyton application.  相似文献   

17.
Four locally available biodegradable substrates—sugarcane (Saccharum officinales) bagasse, palm (Borasus flabellifera) leaf, coconut (Cocos nucifera) leaf, and bamboo (Bambusa bambos) mat—were evaluated for the production of periphyton and a polyculture of rohu (Labeo rohita) and common carp (Cyprinus carpio) in poultry-manured ponds. Chlorophyll-a, phaeophytin-a, and total pigment content of periphyton were not significantly different (P > 0.05) among substrate types. Dry matter and ash-free dry matter of coconut leaf periphyton were significantly higher (P < 0.05) than that of the other substrates. All four substrates induced significantly (P < 0.05) higher growth, production, and survival of rohu and common carp. Among the substrates used, coconut leaf was more effective in enhancing fish production.  相似文献   

18.
Coral reef fish are collected from the wild and exhibited in aquaria worldwide. Some of the fish spawn in captivity; however, the eggs are usually neglected. In this study, we collected the eggs spawned naturally in the exhibit tanks, hatched and cultured them indoor in 2000‐L fibreglass tanks (initial density = 18 000 egg tank?1). We applied an inorganic fertilization method commonly used in freshwater fish culture in raising these coral reef fish larvae. We maintained inorganic phosphorus concentration at 100 μg P L?1 and inorganic nitrogen at 700 μg N L?1 daily in the fertilized group (n = 4), while the control tanks (n = 4) were fed with rotifers (10 ind mL?1). Chlorophyll a at particle sizes of both 0.45–20 μm and >20 μm, as well as NH3‐N, NO3‐N, and PO4‐P concentrations were significantly higher in the fertilized group than the control. Zooplankton in the size groups of 10–50 μm (mainly flagellates) and 50–100 μm (mainly ciliates) were abundant (about 10~60 ind mL?1) during 3–7 days in fertilized tanks. The average larval fish survival rate at 21 day after hatch in fertilized group was consistently higher than the control in two trials. The experiments demonstrated that the inorganic fertilization approach can be successfully adapted for coral reef fish culture in an aquarium to achieve sustainable exhibits.  相似文献   

19.
Growth and survival of hatchery‐bred Asian catfish, Clarias macrocephalus (Günther), fry reared at different stocking densities in net cages suspended in tanks and ponds were measured. The stocking densities used were 285, 571 and 1143 fry m?3 in tanks and 114, 228 and 457 fry m?3 in ponds. Fish were fed a formulated diet throughout the 28‐day rearing period. Generally, fish reared in cages in ponds grew faster, with a specific growth rate (SGR) range of 10.3–14.6% day?1, than those in cages suspended in tanks (SGR range 9–11.3% day?1). This could be attributed to the presence of natural zooplankton (copepods and cladocerans) in the pond throughout the culture period, which served as additional food sources for catfish juveniles. In both scenarios, the fish reared at lower densities had significantly higher SGR than fish reared at higher densities. In the pond, the SGR of fish held at 228 and 457 m?3 were similar to each other but were significantly lower than those of fish held at 114 m?3. The zooplankton in ponds consisted mostly of copepods and cladocerans, in contrast to tanks, in which rotifers were more predominant. Per cent survival ranged from 85% to 89% in tanks and from 78% to 87% in ponds and did not differ significantly among stocking densities and between rearing systems. In conclusion, catfish nursery in cages suspended in tanks and ponds is density dependent. Catfish fry reared at 285 m?3 in tanks and at 114 m?3 in ponds had significantly faster growth rates than fish reared at higher densities. However, the desired fingerling size of 3–4 cm total length for stocking in grow‐out culture can still be attained at stocking densities of 457 m?3 in nursery pond and 571 m?3 in tanks.  相似文献   

20.
An experiment was conducted to compare rice straw mat and kanchi (bamboo sticks) as substrates in periphyton‐based polyculture systems. The experiment had three treatments: (a) no substrate (control), (b) rice straw as a substrate (3 × 2.7 kg pond?1) and (c) kanchi as a substrate (390 kanchi pond?1). Fingerlings (n=40) of rohu, Labeo rohita (24.5±0.5 g); mrigal, Cirrhinus mrigala (25.1±0.6 g); catla, Catla catla (25.8±0.5 g); common carp, Cyprinus carpio (27.6±0.6 g), and silver carp, Hypophthalmichthys molitrix (30.4±0.9 g) were stocked at a 3:2:2:2:1 ratio and cultured for 90 days. There were no differences in the number of plankton, periphyton and macro‐zoobenthos among the treatments. The total plate count of bacteria was higher in the rice straw treatment (41 320 million cfu m?2) than that in the kanchi treatment (11 780 million cfu m?2). Growth and the final mean weight of rohu, catla and common carp were higher in the substrate treatments than those in the control. Rice straw and kanchi treatment, respectively, resulted in 38% and 47% higher combined total weight gain over control. Gross margin analysis showed that rice straw treatment resulted in more profit than the control and kanchi treatment. Therefore, rice straw has the potential to be used to increase production in the low‐input rural aquaculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号