首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The crude fat and protein content of the total body was estimated by X‐ray computer tomography (CT) and determined by chemical analyses during a feeding experiment with sexually matured common carp. Between 21 and 35 serial scans were taken of altogether 41 fish and samples from the homogenized body were prepared for chemical analyses. Experimental fish with an average body weight of 1453 g originated from a commercial stock of mirror carp. Two feeding regimes (carp feed and carp feed+ad libitum maize) were applied for 57 days and followed by a fasting period of 27 days. Both feeding regimes significantly increased the crude fat content of the whole body that did not decrease during fasting in spite of high water temperature (22°C). No significant changes were observed in crude protein content. The variables used for producing the prediction equations were taken from the density values of the Hounsfield scale, on a range between ?90 and +160, by summing the frequencies within each interval of 10 values. Whole body fat content could be estimated with R2=0.89?0.91 accuracy with the principal component analysis using data of all (seven) body regions and only dorsal fin region respectively. Adequate linear regression model could not be calculated by the same procedure for crude protein. Three‐dimensional ‘volumetric’ estimation of fat tissue was also carried out on the basis of fat index showing high correlation with measured fat content. The changes of body composition of individual fish can be followed by sequential CT scanning.  相似文献   

2.
Electromyogram (EMG) telemetry studies that involve remotely monitoring the locomotory activity and energetics of fish are contributing important information to the conservation and management of fisheries resources. Here, we outline the development of this rapidly evolving field and formulate the studies conducted that utilize this technology. To date, more than 60 studies have been conducted using EMG telemetry that spans 18 species. Several general trends were observed in the methodology of the studies that we have highlighted as standards that should be adopted associated with transmitter customization, electrode placement and surgical technique. Although numerous studies have been methodological, there are still some deficiencies in our basic understanding of issues such as the need for individual calibration and the method of reporting or transforming data. Increasingly, this technology is being applied to address issues in conservation, management and aquaculture production. At present, the technology has been most frequently applied to the study of animal activity or energetics and to migration. Several recent studies have also focused on addressing more basic questions in ecological and evolutionary biology (e.g. parental care dynamics) similar to the large body of literature that has been collected for other taxa (e.g. marine mammals, birds), using activity telemetry. Collectively, studies conducted using EMG telemetry have contributed important information on free‐swimming fish that was previously difficult to obtain. EMG telemetry is particularly effective for examining behaviour at temporal and spatial scales that are difficult using other techniques. The development of an ultrasonic transmitter based on the same proven principles as those used in the current radio transmitter technology will permit studies in other environments (i.e. marine, brackish, deep water) and on different species of fish. We encourage the continued development and refinement of devices for monitoring the activity and energetics of free‐swimming fish, and also encourage researchers to consider EMG telemetry as a tool for addressing questions that are not effectively answered with other techniques.  相似文献   

3.
Juvenile matrinxã, Brycon cephalus, were submitted to sustained swimming for 72 days at 1.0 body length s?1. Exercised fish (EF) grew more than non‐EF and their feed conversion ratio (FCR) improved; haematological responses demonstrated a decrease in haemoglobin and mean cell haemoglobin contents and increase in the mean cell volume. In the plasma, sodium, ammonia and amino acid concentrations increased; plasma triglycerides decreased while free fatty acids increased. Liver glucose, free amino acids, ammonia, the rate protein per fish weight and total lipid content increased, while the glycogen per fish ratio declined. Glutamate dehydrogenase (GDH) activity increased while pyruvate kinase (PK) and lactate dehydrogenase (LDH) decreased. White muscle glucose, lactate, the glycogen per fish‐weight ratio and total lipid content exhibited a decrease in their values; ammonia, free amino acids and the protein per fish‐weight ratio increased. GDH and PK decreased their activities. In the red muscle glycogen store, the glycogen per fish‐weight ratio and glucose were reduced. Juvenile matrinxãs, under sustained swimming, were physiologically and biochemically adapted to exercise as indicated by improved blood flow, transport and oxygen uptake, FCR, amino acid and protein incorporation and growth. Continuous exercise is a good practice for B. cephalus cultivation.  相似文献   

4.
Smallmouth bass in thermally heterogeneous streams may behaviourally thermoregulate during the cold period (i.e., groundwater temperature greater than river water temperature) by inhabiting warm areas in the stream that result from high groundwater influence or springs. Our objectives were to determine movement of smallmouth bass (Micropterus dolomieu) that use thermal refuge and project differences in growth and consumption among smallmouth bass exhibiting different thermal‐use patterns. We implanted radio transmitters in 29 smallmouth bass captured in Alley Spring on the Jacks Fork River, Missouri, USA, during the winter of 2012. Additionally, temperature archival tags were implanted in a subset of nine fish. Fish were tracked using radio telemetry monthly from January 2012 through January of 2013. The greatest upstream movement was 42.5 km, and the greatest downstream movement was 22.2 km. Most radio tagged fish (69%) departed Alley Spring when daily maximum river water temperature first exceeded that of the spring (14 °C) and during increased river discharge. Bioenergetic modelling predicted that a 350 g migrating smallmouth bass that used cold‐period thermal refuge would grow 16% slower at the same consumption level as a fish that did not seek thermal refuge. Contrary to the bioenergetics models, extrapolation of growth scope results suggested migrating fish grow 29% more than fish using areas of stream with little groundwater influence. Our results contradict previous findings that smallmouth bass are relatively sedentary, provide information about potential cues for migratory behaviour, and give insight to managers regarding use and growth of smallmouth bass in thermally heterogeneous river systems.  相似文献   

5.
This study compares diagnostic imaging tools in detecting the parasitic swimbladder nematode Anguillicoloides crassus in Anguilla anguilla (L.) and focuses on ultrasound in an attempt to develop a non‐destructive, field diagnostic test. Ultrasound use could allow the parasite to be diagnosed without decreasing the number of critically endangered European eels through post‐mortem. In the preliminary study, eels were examined with computed radiography, computed tomography, magnetic resonance imaging, 14 MHz high‐end ultrasound and 5 MHz low‐end portable ultrasound, and the results were compared with post‐mortem findings. This ultrasound scanning technique did not produce any promising results. A second batch of eels was examined using the same high‐end and low‐end ultrasounds, but employing a different scanning technique and comparing the results with post‐mortem. This second study, scanning along the midline from below, allowed for the detection of anomalies associated with moderately infected animals. None of the eels used in this study were severely infected; thus, no conclusions can be made regarding the use of ultrasound in those animals. Overall, it was found that none of the techniques were useful in diagnosing mildly infected individuals; therefore, no single diagnostic imaging tool is sensitive enough to replace post‐mortem for definite diagnosis.  相似文献   

6.
Fish are commonly infected with non‐tuberculous mycobacteria (NTM), which should be regarded as potential pathogens when handling aquarium fish and equipment. This study examined 107 aquarium fish from pet shops. Cultivation of the fish samples using different selective media was conducted for identification of NTM. Isolates were identified using the GenoType Mycobacterium common mycobacteria and additional species assays, sequencing of the 16S rRNA and rpoB genes, and real‐time PCR assay for identification of Mycobacterium (M.) marinum. Among the investigated fish, 79.4% (85/107) were positive for mycobacteria, with 8.2% (7 of 85) having two mycobacterial species present. Among the positive fish, the common pathogens M. marinum, Mycobacterium fortuitum (M. fortuitum group) and Mycobacterium chelonae were identified in approx. 90% of fish and other NTM species in 10%, including Mycobacterium peregrinum/septicum, Mycobacterium gordonae, Mycobacterium arupense, Mycobacterium kansasii, Mycobacterium ulcerans and Mycobacterium setense. The well‐known human pathogen M. marinum was present in 10.6% of the positive fish (9 of 85). The species of mycobacteria identified in the study are not only recognized as aquarium fish pathogens, but can also cause pathology in humans. Microbiological and clinical communities should therefore be sensitized to the role of NTM in infections associated with exposure to aquarium fish.  相似文献   

7.
A close relationship between adult abundance and stock productivity may not exist for many marine fish stocks, resulting in concern that the management goal of maximum sustainable yield is either inefficient or risky. Although reproductive success is tightly coupled with adult abundance and fecundity in many terrestrial animals, in exploited marine fish where and when fish spawn and consequent dispersal dynamics may have a greater impact. Here, we propose an eco‐evolutionary perspective, reproductive resilience, to understand connectivity and productivity in marine fish. Reproductive resilience is the capacity of a population to maintain the reproductive success needed to result in long‐term population stability despite disturbances. A stock's reproductive resilience is driven by the underlying traits in its spawner‐recruit system, selected for over evolutionary timescales, and the ecological context within which it is operating. Spawner‐recruit systems are species specific, have both density‐dependent and fitness feedback loops and are made up of fixed, behavioural and ecologically variable traits. They operate over multiple temporal, spatial and biological scales, with trait diversity affecting reproductive resilience at both the population and individual (i.e. portfolio) scales. Models of spawner‐recruit systems fall within three categories: (i) two‐dimensional models (i.e. spawner and recruit); (ii) process‐based biophysical dispersal models which integrate physical and environmental processes into understanding recruitment; and (iii) complex spatially explicit integrated life cycle models. We review these models and their underlying assumptions about reproductive success vs. our emerging mechanistic understanding. We conclude with practical guidelines for integrating reproductive resilience into assessments of population connectivity and stock productivity.  相似文献   

8.
The accumulation of excess fat in fish might impair the health of fish in aquaculture. This paper introduces an online sequential extreme learning machine (OS‐ELM) into region‐of‐interest (ROI) detection of adipose tissues in fish digitalized by means of magnetic resonance imaging (MRI). Three typical economic fish species, turbot (Scophthalmus maximus L.), large yellow croaker (Pseudosciaena crocea R.) and Japanese seabass (Lateolabrax japonicus), were selected to compose into digital physiological atlas. We manually labelled with ITK‐SNAP discriminating adipose tissue regions as standard references. Then, single‐hidden‐layer feedforward neural networks (SLFNs) were established to deduce the potential mathematical criterion for fat detection via OS‐ELM for each fish species. We further carried out classical adaptive segmentation to extract details in fat location and distribution of adipose tissues. The quantitative correspondence regarding adipose tissues regions, between 3D voxel representation in MRI and chemical measurement in real fish, have been statistically investigated across each species. The experimental results showed that our online fat detection automatically through MRI is consistent with the standard references, and the recognition rate for three fish species could be up to 89.13% ± 5.32%, 91.43% ± 6.68% and 93.08% ± 6.57% on average, with FAR rate 5.35%, 4.05%, 3.39% and FRRs of 5.52%, 4.52% and 3.53% respectively. Those 3D volumes involved in fat region counting keep pace with the real weights of adipose tissues across species, which implies we might utilize 3D voxel counting to quantify fat accumulation in adipose tissues in a species‐dependent manner. The proposed mechanism brings comparative performances for fat detection and evaluation at a much faster speed, which could help high‐throughput insights into fat metabolism process in fish.  相似文献   

9.
The substitution of fish oil with wax ester‐rich calanoid copepod‐derived oil in diets for carnivorous fish, such as Atlantic salmon, has previously indicated lower lipid digestibility. This suggests that the fatty alcohols (FAlc) present in wax esters may be a poorer substrate for intestinal enzymes than the fatty acids (FA) in triacylglycerol (TAG), the major lipid in fish oil. The hypothesis tested was that the possible lower utilization of dietary FAlc by salmon enterocytes is at the level of uptake and that subsequent intracellular metabolism was identical to that of FA. A dual‐labelled FAlc–FA metabolism assay was employed to determine simultaneous FAlc and FA uptake and relative utilization in enterocytes isolated from pyloric caeca of Atlantic salmon fed either a diet supplemented with fish oil or wax ester‐rich Calanus oil. The diets were fed for 10 weeks before caecal enterocytes from each dietary group were isolated and incubated with equimolar mixtures of either [1‐14C]16:0 FA and [9,10(n)‐3H]16:0 FAlc, or [1‐14C]18:1n‐9 FA and [9,10(n)‐3H] 18:1n‐9 FAlc. Uptake was measured after 2 h with relative utilization of labelled FAlc and FA calculated as a percentage of uptakes. Differences in uptake were observed, with FA showing higher uptake than FAlc, and 18:1 chains a higher uptake than 16:0. A proportion of unesterified FAlc was possibly recovered in the cells, but the majority of FAlc was recovered in lipid classes such as TAG and phospholipids indicating substantial conversion of FAlc to FA followed by esterification. However, incorporation of FA and FAlc into esterified lipids was higher when derived from FA than from FAlc. Twenty‐five to fifty percentage of the absorbed 16:0 FA was recovered in TAG fraction of the enterocytes compared with 15–75% of 18:1 FA. Twenty to thirty percentage of the absorbed 16:0 FA was recovered in the phosphatidylcholine fraction of the enterocytes compared with only 5–15% of the 18:1 FA. Less than 15% of the fatty chains taken up by the cells were used for energy production, with significantly higher oxidation of 18:1 in enterocytes from fish fed the fish oil diet compared with the Calanus oil diet. However, overall, dietary copepod oil had little effect on FAlc and FA metabolism. Metabolic modification by elongation and/or desaturation was generally low at 1–5% of the uptake. We conclude that our hypothesis was generally proved in that the uptake of FAlc by salmon enterocytes was lower than the uptake of FA and that subsequent intracellular metabolism of FAlc was similar to that of FA. However, unesterified FAlc was possibly recovered in the cells suggesting that the conversion to FA may not be concomitant with uptake.  相似文献   

10.
Defining the oceanic habitats of migratory marine species is important for both single species and ecosystem‐based fisheries management, particularly when the distribution of these habitats vary temporally. This can be achieved using species distribution models that include physical environmental predictors. In the present study, species distribution models that describe the seasonal habitats of two pelagic fish (dolphinfish, Coryphaena hippurus and yellowtail kingfish, Seriola lalandi), are developed using 19 yr of presence‐only data from a recreational angler‐based catch‐and‐release fishing programme. A Poisson point process model within a generalized additive modelling framework was used to determine the species distributions off the east coast of Australia as a function of several oceanographic covariates. This modelling framework uses presence‐only data to determine the intensity of fish (fish km?2), rather than a probability of fish presence. Sea surface temperature (SST), sea level anomaly, SST frontal index and eddy kinetic energy were significant environmental predictors for both dolphinfish and kingfish distributions. Models for both species indicate a greater fish intensity off the east Australian coast during summer and autumn in response to the regional oceanography, namely shelf incursions by the East Australian Current. This study provides a framework for using presence‐only recreational fisheries data to create species distribution models that can contribute to the future dynamic spatial management of pelagic fisheries.  相似文献   

11.
Manipulation of the ratio of amylopectin (α‐[1,4] and α‐[1,6] linked glucose) to amylose (α‐[1,41 linked glucose) starches in the carbohydrate fraction of the diet has been used to improve carbohydrate and lipid metabolism in mammalian models. A 10‐wk feeding trial was conducted to determine the effect of dietary amylopectin/amylose ratio on growth and composition of growth of advanced sunshine bass (Morone chrysops × M. saxatilis) fingerlings (60 g, initial weight). Fish were fed cold‐pelleted, semipurified, isonitrogenous (35% crude protein), isocaloric (3.6 kcaVg protein), isolipidic (5%) diets containing 25% carbohydrate. The carbohydrate fraction of the diets was composed of either glucose, dextrin, 100% amylopectin/0% amylose, 70% amylopectin/30% amylose, or 30% amylopectin/70% amylose. Diets differing in ratios of amylopectin/amylose were achieved by adjusting the proportion of high‐amylopectin (100% amylopectin) to high‐amylose (70% amylose) corn starch. Diets were fed to fish in quadruplicate 76‐L tanks (seven fish/tank) connected to a brackish water (5‐7%v) recirculating culture system with biofiltration. Weight gain ranged from 195 to 236% of initial weight (60 g) and was significantly greater (P < 0.1) for fish fed diets containing 25% carbohydrate as dextrin or as 70% amylose and significantly lower in fish fed diets in which carbohydrate was composed of 30% amylose, 100% amylopectin, or glucose. Feed efficiency ranged from 0.52 to 0.61 and was higher in fish fed the diet containing the highest concentration of amylose and lower in fish fed the diet containing glucose. Hepatosomatic index was highest (2.71) in fish fed the diet containing glucose and lowest (1.401.45) in fish fed diets containing high‐amylose cornstarch. Intraperitoneal fat ratio was distinctly lower in fish fed diets containing some amylose as compared to those fed diets without amylose. Liver lipid was significantly lower (4.8%) in fish fed the diet containing glucose and almost twice as high (7.3‐8.9%) in fish fed the diets containing any starch. Glycogen content of the liver decreased from approximately 12% in fish fed the diet containing glucose to 5% in fish fed the diets containing amylose. Muscle proximate composition and ratio were unaffected by the dietary treatments. Fasting levels (15 h) of blood glucose in fish reared for 10 wk on the diet containing glucose were significantly elevated (5.5 mmol/L) when compared to fasting levels of those that had been reared on diets containing starch (3.4‐1.1 mmol/L). Fish fed the diet containing glucose exhibited maximum blood concentrations (14.6 mmoVL) 4 h postprandial then rapidly declined to nearly fasting levels within 8 h postprandial. In contrast, maximum plasma glucose concentrations in fish fed diets containing starch were roughly half (6.8‐8.1 mmol/L) those of fish fed the diet containing glucose. Blood glucose in fish fed diets containing dextrin or predominantly amylopectin starch remained elevated longer than that of fish fed diets containing glucose or predominantly amylose starch. Glycemic response appeared to decrease with increasing dietary amylose content. These data suggest that feeding diets in which a greater portion of the starch is amylose may be a useful strategy for improving carbohydrate use in sunshine bass.  相似文献   

12.
13.
Hydropower‐related damage to fish remains a great challenge, making objective monitoring of turbine‐related fish injury a necessity. The catch of fish at turbine outlets is currently realised by net fishing, but potential catch‐related injuries are largely unknown. Catch efficiency and fish‐friendliness in relation to fish handling, exposure time, floating debris and fish biomass of four fish recovery installations were assessed using seven species. Highly species‐specific lethal and sublethal effects were observed. Exposure time had the strongest effects on catch‐related damage, being up to 150‐fold increase after 12 hr compared to 1 hr. Up to 84% mortality occurred in the most sensitive species Thymallus thymallus L. Besides exposure time, higher current speed and biomass within the net resulted in greater fish damage. To minimise catch‐related effects, keeping emptying periods <1–2 hr and considering the effects of current speed, fish and debris biomass are crucial to increase data comparability among studies.  相似文献   

14.
The glucose transporters (GLUTs) play vital role in mediating the glucose uptake process, the movement of glucose across plasma membranes. In this study, three GLUTs, GLUT1, GLUT2 and GLUT4 were cloned and characterized form pearl gentian grouper, a hybrid grouper, and their expressions in response to dietary carbohydrate level (8.02%, 11.89% and 16.08%) were investigated after feeding. The full‐length cDNA of GLUT1, GLUT2 and GLUT4 were 2,104, 3,759 and 2,815 bp, respectively, encoding a putative protein of 491, 508 and 505 amino acids respectively. The results of sequence and phylogenetic analysis revealed that grouper GLUTs were highly conserved and clustered together with their corresponding teleost orthologues, rather than mammals. In addition, GLUT1 was ubiquitously expressed in all detected tissues with relative high expressions in heart and brain. GLUT2 is relatively abundant in some certain tissues that release glucose, such as liver and intestine, and GLUT4 was expressed primarily in muscle and eye. The elevated dietary carbohydrate level had no significant difference on the expression of GLUT1 in grouper liver. The expression of GLUT2 in grouper liver was significantly up‐regulated with the increasing dietary carbohydrate from 8.02% to 11.89%, and therefore down‐regulated significantly. Meanwhile, the expression of GLUT4 in grouper muscle increased significantly with increasing dietary carbohydrate. Results of this study indicate that the up‐regulation of GLUTs in fish contribute to maintain glucose equilibrium to some extent when fish were fed with high carbohydrate diets.  相似文献   

15.
Monogenean worms are ectoparasites that are known to be infectious to a wide variety of fish. Few species of monogenean parasites have been reported in the olfactory chamber of fish in current peer‐reviewed literature. However, the impacts of these parasites on the olfactory system are not well understood. In this study, the effects of Gyrodactylus salmonis on the olfactory system structure and performance were investigated in rainbow trout (Oncorhynchus mykiss). The olfactory performance of the infected fish was examined using an electro‐olfactography (EOG) technique, while the ultrastructure of the olfactory rosette was studied using scanning electron microscopy (SEM) and light microscopy (LM). The infected rainbow trout displayed reduced responses to two standard olfactory cues (L‐alanine and TCA). The SEM micrographs revealed that many regions of the olfactory epithelium in the infected fish were heavily pitted and the LM examination of the olfactory epithelium showed local proliferation of mucous cells in the sensory regions as compared to the control group. The results of this study demonstrated that G. salmonis causes physical damage to the olfactory system of fish that lead to olfactory impairment.  相似文献   

16.
射频识别技术(RFID)在鱼道监测中的应用   总被引:1,自引:0,他引:1  
过鱼效果的监测评价及相应技术优化是鱼道成功运行的保证。通过对比射频识别技术与其他水生生物监测技术之间的优缺点,从鱼类生理伤害度、监测精度、标签遗失率以及适用鱼类个体尺寸范围和监测成本等方面,阐述了射频识别技术在鱼道监测工作中的优越性。结合射频识别技术在鱼道内部通过效果、鱼道进口吸引效果和鱼道河流连通性修复方面的应用,概括了射频识别技术应用现状及其所包含的关键技术,加强射频识别技术的研究对鱼道监测、评价、优化具有重大意义。  相似文献   

17.
Analysing how fish populations and their ecological communities respond to perturbations such as fishing and environmental variation is crucial to fisheries science. Researchers often predict fish population dynamics using species‐level life‐history parameters that are treated as fixed over time, while ignoring the impact of intraspecific variation on ecosystem dynamics. However, there is increasing recognition of the need to include processes operating at ecosystem levels (changes in drivers of productivity) while also accounting for variation over space, time and among individuals. To address similar challenges, community ecologists studying plants, insects and other taxa increasingly measure phenotypic characteristics of individual animals that affect fitness or ecological function (termed “functional traits”). Here, we review the history of trait‐based methods in fish and other taxa, and argue that fisheries science could see benefits by integrating trait‐based approaches within existing fisheries analyses. We argue that measuring and modelling functional traits can improve estimates of population and community dynamics, and rapidly detect responses to fishing and environmental drivers. We support this claim using three concrete examples: how trait‐based approaches could account for time‐varying parameters in population models; improve fisheries management and harvest control rules; and inform size‐based models of marine communities. We then present a step‐by‐step primer for how trait‐based methods could be adapted to complement existing models and analyses in fisheries science. Finally, we call for the creation and expansion of publicly available trait databases to facilitate adapting trait‐based methods in fisheries science, to complement existing public databases of life‐history parameters for marine organisms.  相似文献   

18.
Fisheries management is slowly evolving from its traditional single‐species focus to a more holistic ecosystem‐based approach. Yet, limits for exploitation are almost always set based on single‐species models, treating species as isolated entities. This is problematic since the sustainability of a fishery hinges on its effects on the exploited community as a whole. Here, we develop a novel analytical approach of estimating exploitation rates that are sustainable with respect to the state of whole fish communities. Our approach simultaneously addresses species interactions, environmental covariates and natural variability of population sizes, yet it is framed around a simple and accessible objective. We derive Ecologically Sustainable Exploitation Rates, that is exploitation rates associated with a maximum acceptable probability (determined by management) that any interacting species decreases to an unacceptably low population size. Using models fitted to an exploited fish community, we show how accounting for species interactions constrains the possibilities for ecologically sustainable exploitation. The conventional omission of species interactions may thus result in overestimated exploitation limits. Moreover, our application rendered a counterintuitive result: it suggests that the exploitation of one species should increase, as compared to mean historical levels, for the purpose of conservation of the community as a whole. Such insights could impossibly be gained using single‐species approaches, illustrating the need to adopt multispecies models in fisheries management. Analytical derivation of Ecologically Sustainable Exploitation Rates offers a mean to do so.  相似文献   

19.
The influence of carbohydrate level and complexity on in vitro hepatic glucose utilization and lipogenesis were determined in hybrid striped bass, Morone chrysops ♀ × Morone saxatilis ♂. Six isocaloric, isonitrogenous diets containing glucose, maltose, or dextrin at two different levels (200 or 400 g kg?1 diet) were fed to adult fish for 15 weeks. Liver explants were obtained at near‐maximum postprandial glycaemic response and incubated with radioactive labelled substrates. Glycogen synthesis from [14C]glucose was not different among treatments and was less than 14CO2 formation. 14CO2 production increased as a function of carbohydrate level but was unrelated to carbohydrate complexity. There was no detectable conversion of [14C]glucose to lactate for any treatment. Rates of de novo lipogenesis from [1‐14C]acetate were high in comparison to [U‐14C]glucose or [9,10‐3H]palmitate incorporation into liver lipids and differed in response to carbohydrate level and complexity. [9,10‐3H]palmitate esterification was an order of magnitude less than glycogen and CO2 production but 4–10 times greater than [14C]glucose incorporation into liver lipids. Palmitate incorporation did not differ among treatments. Incorporation of [14C]glucose into liver lipids was higher in fish fed diets containing 400 g kg?1 carbohydrate. These data support the idea that glucose is not a major oxidative substrate in hybrid striped bass and indicate that the level of soluble carbohydrate should be limited to 200 g kg?1 diet or less for hybrid striped bass.  相似文献   

20.
  • 1. A classification scheme for ecohydraulic‐based mesohabitat units was developed for a summer low‐flow period. Mesohabitat unit designations were based on the integration of three‐dimensional channel hydraulics, geomorphic maintenance processes of bed morphology, and biological resource needs of fish. Ecological relevance of the units was evaluated by a study of fish mesohabitat use patterns, and species relationships to feeding guild. By portraying the stream as a mosaic of hydraulic habitat patches that provide specific biotic resource needs, this study's aim was to advance how ecological information may be incorporated into the stream restoration design process.
  • 2. Nine mesohabitat units were designated, including pool‐front, ‐mid, and ‐rear units, scour pool, simple and complex riffles, glide, submerged point bar, and channel expansion marginal deadwater. Physical habitat structure differed among the nine mesohabitat units by length, water depth, and bed slope and complexity. Fish were collected in specific unit volumes by use of prepositioned areal electrofishing devices, in which distinct patterns of fish mesohabitat use were observed.
  • 3. A key finding was the differences in fish assemblages among the pool units, in which fish densities were greatest in the pool‐front and scour pool units. Also, fish density in the pool‐front unit was positively correlated with pool entrance slope. Biomass was greatest in the pool‐front and ‐mid units, and it was correlated with maximum mid‐pool depth. Density and biomass were generally lowest in the pool‐rear unit. Other unique relationships were also observed among the mesohabitat units.
  • 4. Based on feeding guild, patterns of fish mesohabitat use were observed for this summer low‐flow period; insectivores dominantly used pool‐front and scour pool units, herbivores dominantly used complex riffle units, and piscivores used pool‐front and ‐mid units.
  • 5. Useful ecological information was derived from fish species‐habitat relationships observed in this study, linking mesohabitat units with species requirements for food resources. Such findings support advancements to ecological design strategies for stream restoration that promote hydraulic habitat diversity.
Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号