首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于ARM与ZigBee的温室环境无线监控系统设计   总被引:1,自引:0,他引:1  
针对农作物生长有线监控系统的局限性,采用ATM板作为下位机对农作物生长环境进行监控,利用PID闭环控制系统反馈调节机制对ZigBee无线网络监控模型进行了改进,提高了系统反应的灵敏度,设计了一个新的ZigBee无线传感器网络。该无线传感器网络利用可视化显示技术,可以对农作物生长过程中土壤的温度和湿度进行实时在线监测。系统选用三轴数字加速度传感器ADXL345作为环境监测的传感器,采用IIC方式和ZigBee无线网络节点进行互联,利用数据选择性输出,节省了数据传输成本,降低了数据冗余量,从而节省比较多的传感器网络能量,为现代农业技术研究提供了技术参考。  相似文献   

2.
<正>物联网在设施农业中的应用,是对农作物生长环境进行监测和改造,是在田地里铺设各种传感器,安装自动化设备,搭建传感器网络,建立监控中心,从而构建农作物生长决策系统、监测系统。利用各种传感器对空气温湿度、光照强度、土壤温湿度、日照数等数据进行实时采集,以获得农作物生长的当前环境条件。决策系统通过传感器网络获取数据后,再根据农作物在每个阶段的生长要求,对这些数据参数进行分析,通过分析种植环境因素对农作物长  相似文献   

3.
为解决农业大棚环境数据采集不方便、不准确的问题,课题组以物联网技术为基础,集成传感器、无线通信网络、嵌入式系统、组态控制等多种技术,设计了一套基于ZigBee的农业大棚监测系统,实现对大棚内农作物生长数据的精准采集和对大棚内数据的实时监测,并通过数据融合和滤波算法进行了数据优化。测试结果表明:通过功能测试和数据分析可以验证系统功能模块均能够平稳、有效地运行;通过监控界面可以监测农业大棚的实际运行状况,提高农业管理人员的工作效率,监测效果良好。证明该系统可以实现对农业数据的精准采集和显示,能给农业从业者提供准确的决策依据。  相似文献   

4.
为进一步了解农业作业环境,提升农作物种植的效率与产量,在全面理解农业物联网的原理及应用组成基础上,对农业环境的监控系统进行了设计。针对数据采集模块的传感装置进行选型、数据传输模块的通信协议进行设置、硬件电路模块进行布置,以嵌入式数据库处理数据,进行监控系统控制终端显示和监控试验。结果表明:监控系统形成了一个较为完整的服务器处理结构体系,采集到了参数数据与仪器测得误差控制在5%范围内,方案可行,运行良好,可对类似监控设备及系统设计提供参考。  相似文献   

5.
在传统农业逐步向智能农业发展的过程中,需要对农作物生长的各种环境数据进行监测。为此,设计一种能够监测农作物生长环境数据的系统。该系统采用无线传感器网络,基于ZigBee技术实现传感器节点间的数据传输。利用LEACH算法进行网络数据融合,提高无线传感器网络的存活时间。通过卡尔曼滤波完成节点间的数据融合,提升系统的数据采集精确度。试验结果表明,当网络传输300帧后,系统大部分节点仍然是存活的,与实际人工采集结果基本相同,温度误差小于0.2℃,二氧化碳浓度误差小于4 ppm,光照强度误差小于1 Lux。  相似文献   

6.
系统采用组态王软件与PLCS7-200相结合,设计了一种蔬菜温室温湿度监控系统,给出了系统的结构、软件设计和组态过程。监控系统根据蔬菜生长的环境条件,对环境温湿度参数进行实时采集,控制各种控制单元输出,从而使农作物达到最优的生长环境。使用组态软件设计的上位机监控系统,能方便地构造适应自己需要的数据采集,实现了实时数据监控管理,保证信息在全范围内的畅通,以适应农业现代化的需要。  相似文献   

7.
随着精细农业的发展,农作物生长指标和环境参数的监测十分关键。传统的人工采集分析方法存在严重滞后性,无法完成对农作物生长状况的实时监控,导致农业生产效率低下。为有效提升农作物生产质量和产量,基于大数据技术,完成了智能安全监控平台设计。通过对农业生产大棚进行需求分析,完成大棚智能安全监控平台系统架构的设计,并对数据管理服务器、Web服务器及客户端服务器分别进行优化设计;构建了大数据分析Hadoop服务器集群架构,完成了智能安全监控平台软件功能结构和数据库结构的设计。实践应用表明:基于大数据分析的智能安全监控平台能够实时监测农作物生长状态,实现农业生产设备的智能精确控制,且为农业生产提供十分准确的生产决策信息,提升了农业生产效益。  相似文献   

8.
随着现代技术的发展,精细农业的应用越来越广泛,凭借着对农作物生长环境的全面监测,农业监测站的规模逐渐扩大。由于农作物生长环境参数种类繁多、数量庞大,且对环境实时性要求较高,导致农业监测站在处理农作物生长环境参数时存在一定的局限性。为此,针对现有农业监测站进行了优化研究,开发了基于信息管理的农业监测站系统,进行了系统总体方案的设计,并引进数据库技术、传感器技术及通信技术等先进技术,完成了系统数据库设计以及功能模块设计。该系统监测参数全面、数据实时性强,能够有效指导农业生产作业,节约水资源和农业生产成本,提高农业生产效率,具有一定的推广价值。  相似文献   

9.
为建立一个农业病虫害无线智能视频监控系统,首先提出系统构建的逻辑模型以及在整个病虫害监控、诊断与防治专家系统中的位置,然后给出网络组网的拓扑结构。通过整合智能分析处理模块和数据库设计模块,开发系统集成软件管理平台。通过该系统可以实现农作物病虫害的远程数据采集、自动监控、智能检测和远程管理,从而可以精准分割出农作物生长过程中的病害和虫害,为后续的病虫害特征提取与识别打下良好的基础。  相似文献   

10.
谭励  李冬  郭雪  于重重 《农机化研究》2013,35(3):145-148,153
为了解决农业生产环境的监控成本高和监控设备不利于布线等问题,设计了基于Zigbee无线传感器网络的温室监测系统解决方案。通过无线传感器网络将收集到的数据进行分析处理、远程监控和环境报警,达到对温室精确控制目的,节约了成本,提高了生产效率。实验结果表明,系统的实用性和有效性较好。  相似文献   

11.
设计了一种基于无线传感器网络的智能化温室环境监控系统,实现了对温室内多个采集节点的温度、湿度以及光照强度的远程监控,并且通过上位机的温室环境监控软件实现了数据的显示与处理。此外,为了更合理地调控温室环境,系统建立了各种环境预测模型,对未来一段时间内温室的环境数据值进行了预测,以避免异常的发生,极大地减小农作物的经济损失。该系统结构设计合理,有良好的可维护性和可扩展性,能够满足温室环境监控的应用需求。  相似文献   

12.
为了快速、全面地获取农作物生长过程中的参数变化(土壤墒情、雨量、地下水位),满足农业生产对信息的需求,提高粮食产量,设计开发了基于Cortex-M3的农作物生长参数监测系统。系统用多种智能传感器组成传感器网络,能够实时采集雨量、土壤含水率和地下水位数据,经软件解析、处理后,通过GPRS网络实现数据的无线传输。系统供电采用太阳能电池板和铅酸蓄电池两种方式,提高了设备野外工作的稳定性。硬件设计采用Cortex-m3内核的stm32f103作为MCU,相比于ARM系列,功耗降低了1/4,速度快了1/3。软件设计开发了数据采集、无线通信和在线访问等程序,通过浏览器,即使在远离监测点的异地,也能够实时查看设备状态和访问历史数据。经实践验证,系统能实现数据的稳定传输,适合农作物生长参数的实时监测。  相似文献   

13.
结合物联网技术与现代农业生产,设计了一种农业大棚生产环境监控系统。系统由农作物生产环境监控模块、野外气象监测站、控制系统模块及管理决策平台等部分组成。部署在农业大棚内的传感器节点,采用具有自组网特点的ZigBee网络,实时采集农作物的生产信息,协调节点通过以太网将采集到的数据传输至用户端管理平台,并存储于数据存储中心;设计了多网融合、风光互补野外气象监测装置,能够根据用户选择,通过NB-IOT、LoRaWAN、WiFi、4G、以太网,完成野外的温度、湿度、光照、粉尘、风速风向、降雨量等环境,以及气象数据的传输。与此同时,系统支持自动、手动两种控制方式,用户能够通过手机APP、PC,查看农作物生产过程的实时数据,完成农业大棚内风机、卷帘、加湿器、节水灌溉装置等现场设备的控制操作。实践表明:系统在农业科技园区部署后,农业技术人员能够根据农业生产的实时监测数据,判断农作物生长的最佳条件,实现农业大棚生产的科学分析、统筹与管理,有效提高了农业大棚的管理效率,降低了人工成本,使得农业智慧化程度有了较大的提升。  相似文献   

14.
基于GSM网络和485总线的农业监控系统设计   总被引:2,自引:0,他引:2  
针对传统农业检测仪器的不足,结合西北地区实际需求,融合仪器仪表检测技术、自动化控制技术、传感器技术、远程监控和局域网技术,采用分体式模块结构的思想,设计一种远程监控、智能调节的农业仪器监控系统来调节大棚的环境气候,确保农作物处于适宜的生长环境。  相似文献   

15.
基于物联网技术的智慧农业大棚设计与应用   总被引:3,自引:0,他引:3  
利用无线传感器网络、无线Mesh宽带网络和视频实时监控等物联网相关核心技术,对农业大棚内大气和土壤环境进行全面实时监测,实时反馈控制和告警,对大棚内农作物生长状态、大棚安全的视频监视,完成大棚农作物种植的科学化。经过对单个大棚的具体实施,表明智慧农业大棚符合实际应用的需要,使用效果良好。通过物联网技术对大棚农作物生产方式的改进,提升大棚种植的信息化水平,本系统具有较好的扩展性,具备对大范围大棚群种植管理的优势。  相似文献   

16.
在当前智慧农业的大环境下,农作物生长过程的识别与监控问题一直是一项具有挑战性的任务,基于此提出一种基于物联网的远程温室视觉监控系统,系统通过LoRa无线通信技术监测温室内的温湿度、光照强度等环境参数,能够及时监测到农作物的生长状况,并实现自动通风、自动补光等功能。在PC端的Qt上位机实时监测温室内的环境信息并控制环境参数,通过OV9726摄像头对农作物进行监测,所获得的生长状态信息传输到S3C6410集中控制模块进行处理,结合克隆选择算法和朴素贝叶斯分类器对叶片进行识别处理。本系统采用LoRa模块进行自组网来实现环境监测,将Linux操作系统移植到集中控制模块,为视觉系统软硬件平台的搭建做准备工作,所使用的组合算法能够使得农作物叶片识别率达到95.3%,识别时间达到8.4 ms,对于叶片识别精度等方面有着明显的提升,经过实验充分验证本系统所使用的设备与算法的有效性。  相似文献   

17.
正农业灌溉智能化系统是利用计算机技术、电子信息技术和物联网遥感技术对农作物灌溉状况进行实时监测、控制和管理,实现了机井水位、农业灌溉用水量的远程和动态监测,以及数据的无线远程采集和监控。与传统的灌溉技术相比,智能遥控灌溉测控系统依托物联网信息技术为机井配置了远程智能监控设备,以高效节水信息化管理系统为平台,建立了完善的现代化农业灌溉管理服务和智能监测体系。通过4G网络互联实现数据共  相似文献   

18.
无线传感器网络在温室农业监测中的应用   总被引:6,自引:3,他引:3  
针对传统温室农业数据采集系统存在的问题, 提出了一种使用无线传感器网络技术组建农业温室监控系统的设计方案,实现了作物生长环境的无线监控,解决了传统温室农业布线的繁琐性和局限性,为提高温室环境信息管理自动化程度和设施农业种植决策提供依据, 顺应传感器的无线化与网络化的趋势.  相似文献   

19.
环境是设施农业中最重要的因素,因此需要对其进行准确的监测和控制。设施农业中安装了大量的传感器,适应利用物联网对生产环节进行监控。为此,基于物联网技术,设计了一个农业设施群的环境监控系统。信息感知层监测环境数据,通过信息传输层的ZigBee无线通讯网络传输给应用管理层;应用管理层接收数据并进行分析和存储,形成控制指令驱动执行相应的操作。在温室4种蔬菜种植环境的测试中,系统能够根据设定值对温度、光照强度、土壤含水量和害虫数量进行准确的监测和控制,各环境因子都维持在蔬菜最适的生长条件范围内。  相似文献   

20.
利用GSM网络作为无线智能监控系统的信息传输平台,具有原理简单、保密性高和覆盖面广等特点。为此,在分析传统农作物信息采集方法不足与现代设施农业设备应用局限性的基础上,结合我国以家庭为单位的小规模农业生产模式,介绍了一种基于GSM短消息业务的无线传感器监测系统。利用Atmegal128L丰富的外围资源,将单片机、无线传感器、GSM移动通信网和短消息通知服务等有机结合,为小规模农作物环境因子实时监测提供了一种低成本的解决方案。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号