首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
A multiobjective optimization model has been presented for allocating irrigation waters in a rice paddy area. Water-saving practices conducted on the field-plot basis are considered and expressed in the optimal water allocation problem in the regional scale. Irrigation water allocated to the blocks of paddy fields is divided into two components of a basic amount and a safety margin in order to mitigate the effect of hydrological and hydraulic uncertainties on the study area. Four competing management objectives with regard to total rice yield, total water-saving cost, equity of water allocation, and safety of water supply are defined in the linear programming formulation so that noninferior solutions can be procured which are informative and persuasive in decision-making. Applicability of the optimization model is examined using water allocation problems for a hypothetical irrigation system. It is demonstrated that the optimization model can provide satisficing solutions where the four objectives are harmonized under substantial variations of total water supply to the irrigation system.  相似文献   

2.
Temporary water trading is an established and growing phenomenon in the Australian irrigation sector. However, decision support and planning tools that incorporate economic and biophysical factors associated with temporary water trading are lacking. In this paper the integration of an economic trading model with a hydrologic water allocation model is discussed. The integrated model is used to estimate the impacts of temporary water trading and physical water transfers. The model can incorporate economic and biophysical drivers of water trading. The economic model incorporates the key trade drivers of commodity prices, seasonal water allocations and irrigation deliveries. The hydrologic model is based on the Resource Allocation Model (REALM) framework, which facilitates hydrologic network simulation modelling. It incorporates water delivery system properties and operating rules for the main irrigation and urban centres in a study area.The proposed integration method has been applied to a case study area in northern Victoria, Australia. Simulations were conducted for wet and dry spells, a range of commodity prices and different irrigation distribution system configurations. Some example analyses of scenarios incorporating water trading were undertaken. From these analyses potential bottlenecks to trade that constrain the economic benefits from temporary water trading were identified. Furthermore, it was found that in certain areas of the system, trading can make impacts of long drought spells worse for water users, e.g. irrigators. Thus, the integrated model can be used to quantify short-term and long-term third party impacts arising from temporary water trading. These findings also highlight the need to link “paper trades” (estimated by economic models) to physical water transfers (estimated by biophysical models).  相似文献   

3.
The greatest water consumption takes place during irrigation of arid and semiarid areas, therefore, water resource management is fundamental for sustainability. For correct management, several tools and decision-making systems are necessary while paying close attention to aspects such as profitability, water cost, etc. Water resources are scarce and some of them are of low quality. This extremely delicate situation occurs in some regions of the world and it explains increasing water cost. In Europe, the policies relating to water use (2000/60/EC) pay particular attention to the need of its protection and conservation. To ensure this, a large number of measures, including the establishment of prices which really correspond to their usage costs, have been set forth. Water subsidies are relatively important in all European countries. In this study, a specific methodology is applied to a Spanish semi-arid region. It is useful and easy to apply, not only by farmers, but also by water managers and politicians in charge of policy. The methodology also helps in the decision-making process about water cost in agriculture. In this area (Hydrogeological System 08.29, Spain), the resources are mainly underground water with a high variable cost and without any direct subsidies. This model allows us to analyse the effect of different water costs and to find the optimum strategy giving the maximum gross margin in line with water cost and its main determining factors (irrigation system, climatic variability, etc.).The methodology is based on the effect of irrigation on crop yield with its production function, integrating the effect of application efficiency. In this way, a relationship between gross margin and gross irrigation depth is obtained. Working with permanent irrigation systems and four crops (barley, garlic, maize and onion), the main conclusion is that the optimum gross irrigation depths are always fewer than those necessary for maximum crop yield and when irrigation depths are fewer water cost increases. Irrigation depths, which maximise the economic efficiency in the use of water (€ m−3), are fewer than those which maximise the gross margin; therefore, this aspect must be considered in irrigation scheduling. The results also show important differences among crops, depending on their water requirements and their economic profitability.  相似文献   

4.
This paper develops a non-linear programming optimization model with an integrated soil water balance, to determine the optimal reservoir release policies, the irrigation allocation to multiple crops and the optimal cropping pattern in irrigated agriculture. Decision variables are the cultivated area and the water allocated to each crop. The objective function of the model maximizes the total farm income, which is based on crop–water production functions, production cost and crop prices. The proposed model is solved using the simulated annealing (SA) global optimization stochastic search algorithm in combination with the stochastic gradient descent algorithm. The rainfall, evapotranspiration and inflow are considered to be stochastic and the model is run for expected values of the above parameters corresponding to different probability of exceedence. By combining various probability levels of rainfall, evapotranspiration and inflow, four weather conditions are distinguished. The model takes into account an irrigation time interval in each growth stage and gives the optimal distribution of area, the water to each crop and the total farm income. The outputs of this model were compared with the results obtained from the model in which the only decision variables are cultivated areas. The model was applied on data from a planned reservoir on the Havrias River in Northern Greece, is sufficiently general and has great potential to be applicable as a decision support tool for cropping patterns of an irrigated area and irrigation scheduling.  相似文献   

5.
基于不确定性区间作物水分生产函数,选取春小麦、玉米、棉花和白兰瓜这4种典型作物,建立不确定性条件下灌溉水资源优化配置模型,并将气象因子(蒸发蒸腾量和相对湿度)的不确定性引入其中,以反映气候变化对灌区配水的影响.结果表明,在石羊河流域民勤地区,玉米单方水经济效益较低,故其优化灌溉定额相比现状灌溉定额变化较大.棉花是单方水经济效益最大的作物,其次是白兰瓜,所以当可用水量短缺时,在确保粮食安全的前提下,为降低因灌溉缺水而带来的经济损失,要优先保证棉花和白兰瓜灌溉用水.引入气象因子的灌区水资源优化配置模型区间优化配水定额范围更广,反映出气象因子对灌区配水的影响.本研究验证了不确定性方法在实际应用的可行性,可为灌区水资源合理分配提供更可靠的科学依据.  相似文献   

6.
Mexico passed a new water law in 1992 that shifted from state-managed water policy to a regulated market-oriented policy with tradable water rights. Water trading will initially be closely supervised by government agencies, but the law includes a number of provisions that will allow liberalization of water markets as water users become more involved in operation and management of water and gain experience in water trading. Incentives for the Mexican water policy reforms include the growing economic value of increasingly scarce water; the rising budgetary costs from highly subsidized capital development and operations and maintenance for irrigation and water supply systems; and general liberalization of the Mexican economy, which has raised the cost of maintaining relatively inflexible water allocation systems that cannot respond to changing incentives.  相似文献   

7.
Drip irrigation systems and irrigation strategies like deficit irrigation (DI) and partial root drying (PRD) are potential water saving irrigation systems and strategies. This paper analyses the Serbian farmer's economic incentive to use these water saving systems and strategies instead of the present sprinkler irrigation. The analysis is a partial budgeting analysis, based on irrigation application efficiency from the literature, standard figures for power requirements, pumping efficiency and friction losses for various sources of water and pressure requirements, yields and water use from recent Serbian field experiments, as well as prices and cost structures for potatoes collected in the Belgrade region. The analysis shows that changing the present system and strategy can save a significant amount of water (almost 50%). At the same time, however, irrigation costs are also significantly increased (more than doubled), and the total production costs are increased by 10% (deficit drip irrigation) and 23% (PRD). Increased taxes on water, investment subsidies, increased energy prices, and an increased yield or yield quality may provide incentives for farmers to change to new systems and strategies. The analysis indicates that a 0.80 to 1.97 € m−3 water tax is needed to make deficit drip irrigation and PRD profitable. The socioeconomic cost of providing water for irrigation and the alternative value of saved water are probably not that high. Thus, water taxation may not be a socioeconomic efficient means to improve the irrigation water productivity of Serbian potato production. Drip irrigation and PRD may, however, also increase the yield quality, and a 10-23% quality premium (price increase) is needed to make deficit drip irrigation and PRD profitable.  相似文献   

8.
Agriculture consumes about 70% of water available in the Occupied Palestinian Territories. Domestic and industrial users utilize 30% of the water supply. Water resource managers are considering the policy of reallocating a portion of the water supply from agriculture to other uses. It is believed that increasing irrigation water prices could influence water consumption and thus make water available for non-agricultural (more economic) uses. This paper examines the impacts of water pricing on agricultural water consumption and farming profitability and provides some guidelines for policy makers regarding water pricing as a tool to manage scarce water resources. We estimate a regression model describing agricultural water consumption as a function of water prices, irrigated land area, farm income, and irrigation frequency, using data collected in a survey of about 150 farmers in the Tulkarm district. We conclude that irrigation water prices are perceived as high and comprise a large portion of total farming expenses. Therefore, attempts to increase irrigation water prices in the Tulkarm district might jeopardize farming feasibility and might have substantial impacts on agricultural water consumption. Nevertheless, many farmers would continue farming even if the water prices were increased beyond their willingness to pay threshold.  相似文献   

9.
This study analyzes the effects of irrigation modernization on water conservation, using the Riegos del Alto Aragón (RAA) irrigation project (NE Spain, 123354 ha) as a case study. A conceptual approach, based on water accounting and water productivity, has been used. Traditional surface irrigation systems and modern sprinkler systems currently occupy 73% and 27% of the irrigated area, respectively. Virtually all the irrigated area is devoted to field crops. Nowadays, farmers are investing on irrigation modernization by switching from surface to sprinkler irrigation because of the lack of labour and the reduction of net incomes as a consequence of reduction in European subsidies, among other factors. At the RAA project, modern sprinkler systems present higher crop yields and more intense cropping patterns than traditional surface irrigation systems. Crop evapotranspiration and non-beneficial evapotranspiration (mainly wind drift and evaporation loses, WDEL) per unit area are higher in sprinkler irrigated than in surface irrigated areas. Our results indicate that irrigation modernization will increase water depletion and water use. Farmers will achieve higher productivity and better working conditions. Likewise, the expected decreases in RAA irrigation return flows will lead to improvements in the quality of the receiving water bodies. However, water productivity computed over water depletion will not vary with irrigation modernization due to the typical linear relationship between yield and evapotranspiration and to the effect of WDEL on the regional water balance. Future variations in crop and energy prices might change the conclusions on economic productivity.  相似文献   

10.
The non-uniformity of soils, weather, fields, cropping pattern and canal systems in most surface irrigation schemes makes irrigation water management complex, but optimum performance is important particularly in irrigation schemes with limited water supply. This paper focuses on the performance of irrigation water management during the area and water allocation with a case study of an irrigation scheme in the semi-arid region of India. Often the irrigation managers or authorities of these heterogeneous irrigation schemes also need to deal with different allocation rules. The allocation plans and the corresponding water delivery schedules during the allocation process were estimated with the help of a simulation–optimisation model for different allocation rules based on cropping distributions (free and fixed), water distributions (free and fixed-area proportionate), irrigation depth (full, fixed depth and variable depth irrigation) and irrigation interval (from 14 to 35 days). The performance measures of productivity (in terms of net benefits and area irrigated), equity (in water distribution), adequacy and excess were assessed for these different allocation plans and schedules. These were further compared with the performance measures of the existing rule (fixed depth irrigation at a fixed interval). The analysis revealed that these performance measures are in some cases complimentary and in other cases conflicting with each other. Therefore, it would be appropriate for the irrigation managers to understand fully the nature of the variation in performance measures for different allocation rules prior to deciding the allocation plans for the irrigation scheme.  相似文献   

11.
The main objective of this paper is to estimate the willingness of farmers to pay for groundwater resources under different conditions of water supply regimes. Information available on water supplies, areas under irrigation and market conditions were the basis of the calculations. In order to identify solutions that maximize the total net income subject to resource restraints, parametric linear programming models were used to derive farmers’ willingness to pay for irrigation water. Results showed that there is potential to decrease water consumption and to reallocate it in an optimal way. Optimal reallocation increased the net agricultural income in the study area. The water demand for agriculture reacts to increasing water prices in a quite elastic manner over a long interval, whereas it reacts inelastic in the case of a decrease of the overall water supply by 15%. Farmers are willing to pay two and a half times the prevailing price of groundwater. The results show that the water values in the region are underestimated and the decision makers can impose a price level for groundwater from US$ 0.14 to 0.35/m3 without having any impact on the cropping pattern or the planted area.  相似文献   

12.
A linear programming model was developed to assess the impact of different water prices on cultivated areas, irrigation water demand, net income and optimal cropping pattern in the Northern Jordan Valley (NJV). The results reveal that the price for irrigation water does not reflect any elasticity in the range of water prices between 0.01 and 0.06 JD/M3 indicating constant real economic water price of 0.06 JD/M3. The change in cultivated areas as well as water demand (reduction) starts at water price 0.07 JD/M3. The expected reductions under optimal cropping patterns are 5%, 24%, and 60% for cultivated area and 4.7%, 18.9%, and 31% for water demand with water prices at 0.07, 0.1, and 0.16 JD/M3, respectively. Significant reductions in net incomes are resulted with increasing water prices over current average water price of 0.025 JD/M3. The expected reductions in net incomes are 33.6%, 53.8%, and 81.4% at water prices 0.07, 0.1, and 0.16 JD/M3, respectively. This result reflects the low land profitability as a result of low land productivity and/or low farm gate sale prices for most crops grown in NJV. The study also shows the inconsistency in quantity of water supplied and water demanded, leading to unbalanced water budget on monthly level and inconsequence, a noticeable waste in the quantity of available water during winter months, although there is a net surplus of water over the year. While the findings of this research reveal that a water price in the range of 0.07?C0.1 JD/M3 does not significantly influence the farmers' socio-economic parameters in the NJV, it may help reach the stated goal of saving water especially when monthly distributions of irrigation water are based on real crops water demands and actual cropping patterns.  相似文献   

13.
Production benefits of improved allocation of irrigation water are often difficult to measure. In situations of irrigated wet rice cultivation, bothex post estimates of such benefits andex ante estimates of the maximum potential benefits of further improvements in allocation of a given water supply are possible using a conceptual framework which (1) functionally relates weekly water supplies to weekly measures of average water shortage on individual paddy fields; (2) aggregates the weekly water shortage measures into a seasonal water shortage index; and (3) relates, via a production function, the seasonal water shortage index to yields. An empirical application of this framework estimates the potential increase in production from further improvements in water allocation in one Philippine irrigation system to be negligible.  相似文献   

14.
Irrigated agriculture in the European Union (EU) is currently adapting to new conditions including the principle of the full recovery of water service costs, the reduction of water availability and the increasing variability in the prices of agricultural products. This has fostered an increasing number of economic analyses to investigate farmers’ behaviour by means of mathematical programming techniques including Positive Mathematical Programming (PMP) models.However PMP models generally consider only activities observed in the reference period even if, under new policies and market conditions, farmers can adopt irrigation techniques they have not used previously. In particular, under increasing water costs or decreasing water availability, farmers can introduce Deficit Irrigation (DI) techniques that might not have been profitable earlier.We propose an extension of the PMP approach to include DI techniques not observed in the reference period. These alternative techniques are identified by means of a crop growth model developed by the FAO. We apply our methodology to a Mediterranean area using three sets of simulations involving: increases in water costs, reductions in water availability, and changes in the prices of the products obtained from irrigated crops.Lacking observations of alternative irrigation techniques, our approach captures potential technology adjustments and assesses the impact of changes in water policy and market conditions in a better way.Simulation results show that increasing water costs do not motivate adoption of DI techniques. Rather, farmers are induced to save water by switching from full irrigation to deficit irrigation when water availability is reduced or the prices of irrigated crops are increased.  相似文献   

15.
灌区灌溉用水时空优化配置方法   总被引:1,自引:0,他引:1  
将传统的灌溉水量在作物间的优化分配模型和建立的渠系工作制度多目标优化模型与地理信息系统相集成,提出了基于空间决策支持系统的灌区灌溉用水优化配置的新方法.综合考虑了灌区内作物、土壤、气象站点、渠系布置的空间差异、年季间气象以及作物不同生育阶段对应参数的时间差异.与传统优化方法相比,该方法可根据管理者对优化精度的要求,灵活选择优化尺度,同时,简化了求解时空优化配水问题的繁琐程度,结果表现形式更加丰富.在此基础上建立的空间决策支持系统界面友好,运行效率高,可移植性和通用性强.经实例验证,优化后的配水方案与原配水方案相比较,灌溉总用水量减少296%,产量增加243%,水分生产率提高05 kg/m3,灌溉净效益增加168%.优化后配水方案具有将有限的水资源向经济价值较高作物转移的趋势.该方法为灌区灌溉用水优化配置提供了新思路.  相似文献   

16.
MOPECO: an economic optimization model for irrigation water management   总被引:2,自引:0,他引:2  
Water is a natural, sometimes scarce, and fundamental resource for life, essential both for agriculture in many regions of the world and also to achieve sustainability in production systems. Maximizing net returns with the available resources is of the utmost importance, but doing so is a complex problem, owing to the many factors that affect this process (e.g. climatic variability, irrigation system configuration, production costs, subsidy policies). The MOPECO model is a tool for identifying optimal production plans, and water irrigation management strategies. The model estimates crop yield, production and gross margin as a function of the irrigation depth. Finally, these gross margin functions are used to determine an optimum cropping pattern and irrigation strategy to maximize the gross margin on a farm in a specific scenario. Since the relationships between the variables are generally non-linear and the number of alternative strategies is quite large, the optimum process is complex and computationally intensive. Genetic algorithms are therefore used to identify optimal strategies. This paper describes the MOPECO model, which comprises three computing modules: (1) estimation of net water requirements; (2) derivation of the relationship between gross margin and irrigation depth; and (3) identification of the crop planning and the water volumes to be applied. The results obtained by applying the MOPECO model to a specific irrigable area in a semi-arid area of Spain, with great deficits and high water costs, are also included and discussed. These results usually show that the irrigation depth for maximum benefits is lower than that necessary to obtain maximum production. In some areas of Spain, horticultural crops are nearly always part of the optimum alternative. The crops that become part of the optimum alternative are mainly horticultural crops with a high gross margin and low water requirements. The irrigation depths selected for the ideal crop rotation are included among the irrigation depth of maximum economic efficiency and the maximum gross margin irrigation depth. Both are lower than that necessary for the maximum yield. This model helps farmers, extension services, and other agents to analyse, make decisions and optimize water management.Communicated by A. Kassam  相似文献   

17.
The interpretation of soil water dynamics under drip irrigation systems is relevant for crop production as well as on water use and management. In this study a three-dimensional representation of the flow of water under drip irrigation is presented. The work includes analysis of the water balance at point scale as well as area-average, exploring uncertainties in water balance estimations depending on the number of locations sampled. The water flow was monitored by detailed profile water content measurements before irrigation, after irrigation and 24 h later with a dense array of soil moisture access tubes radially distributed around selected drippers. The objective was to develop a methodology that could be used on selected occasions to obtain ‘snap shots’ of the detailed three-dimensional patterns of soil moisture. Such patterns are likely to be very complex, as spatial variability will be induced for a number of reasons, such as strong horizontal gradients in soil moisture, variations between individual sources in the amount of water applied and spatial variability is soil hydraulic properties. Results are compared with a widely used numerical model, Hydrus-2D. The observed dynamic of the water content distribution is in good agreement with model simulations, although some discrepancies concerning the horizontal distribution of the irrigation bulb are noted due to soil heterogeneity.  相似文献   

18.
A linear programming (LP) based optimization model and a simulation model are developed and applied in a typical diversion type irrigation system for land and water allocation during the dry season. Optimum cropping patterns for different management strategies are obtained by the LP model for different irrigation efficiencies and water availability scenarios. The simulation model yields the risk-related irrigation system performance measures (i.e. reliability, resiliency and vulnerability) for the management policies defined by the optimization model. The alternative strategies are evaluated in terms of all performance criteria (i.e. net economic benefit, equity and reliability) simultaneously through a trade-off analysis using a multi-criteria decision making method (compromise programming). For the case study of the Kankai irrigation system in Nepal, with equal preference to the objectives, a management strategy with equal share of water among the project subareas appears to be the most satisfactory alternative under water shortage conditions. The existing water allocation policy is not economically efficient. Deficit irrigation in Early paddy appears attractive under favorable hydrologic scenario, particularly if accompanied by measures to improve existing irrigation system efficiency.  相似文献   

19.
This paper examines the changing profile of water traders (both allocation and entitlement traders) in the Goulburn-Murray Irrigation District in Australia, and examines the efficiency of the water allocation and entitlement markets from 1998-99 to 2003-06. The results suggest that the profile of traders in the early and mature stages of the water allocation market differ greatly. In addition, the profile of allocation traders is significantly dissimilar from that of water entitlement traders at all stages of water market development. The decision to buy or sell water allocations was more likely to be associated with a farmer's socioeconomic characteristics and the type of farm, while the decision to buy or sell water entitlements was more likely to be associated with the extent of existing farm infrastructure and farm productivity. Finally, there was strong evidence to suggest that trading in the water allocation market has become more efficient over time, though there is no evidence to suggest the same for the water entitlement market.  相似文献   

20.
This paper focuses on irrigation schemes under rotational water supply in arid and semiarid regions. It presents a methodology for developing plans for optimum allocation of land area and water, considering performance measures such as productivity, equity and adequacy. These irrigation schemes are characterized by limited water supply and heterogeneity in soils, crops, climate and water distribution network, etc. The methodology proposed in this paper, therefore, uses a previously developed simulation–optimization model (Area and Water Allocation Model, AWAM) that considers the heterogeneity of the irrigation scheme in the allocation process, and modifies this to take account of equity and adequacy of supply to irrigated areas. The AWAM model has four phases to be executed separately for each set of irrigation interval over the irrigation season: 1. generation of irrigation strategies for each crop–soil–region combination (CSR unit), 2. preparation of irrigation programmes for each irrigation strategy, 3. selection of specified number of irrigation programmes for each CSR unit and 4. optimum allocation of land area and water to different parts of the irrigation scheme (allocation units) for maximizing productivity. In the modified AWAM model, the adequacy is included at Phase-2 (by including only the irrigation programmes for full irrigation of each CSR unit) and equity is included at Phase-4 (by including the constraints for equity). The paper briefly discusses the applicability of the modified AWAM model for a case study of Nazare medium irrigation scheme in Southern India. The results of the case study indicated that the performance measures of productivity, equity and adequacy conflict with each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号