首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
为探究无人机航空喷施时花生冠层雾滴沉积分布规律,设计无人机不同喷雾作业参数对花生冠层的雾滴沉积分布影响的试验。该试验以DJ T20型多旋翼电动无人机进行作业,以清水代替农药喷施采集雾滴沉积数据,以图像处理软件Depositscan来分析采集来的水敏纸数据。结果表明:各组试验的雾滴沉积分布趋势均相似,在靶区内雾滴沉积大致呈正态分布,受环境风场的影响,大量雾滴在中心航线左侧沉积,受无人机起飞时速度和高度的影响,各区域内第一条采样带R1的雾滴沉积效果较好;从雾滴沉积量、沉积密度均匀性分析可知,当飞行速度为2.5 m/s、喷雾流量为1.6 L/min,飞行高度为3.5 m时,喷雾效果最佳,为最佳作业组合;飞行高度、飞行速度对靶区内雾滴沉积量、雾滴沉积均匀性影响均显著。该研究对提高无人机喷施效率具有十分重要的指导意义。  相似文献   

2.
花生结荚期是提高花生群体质量、促进产量形成的关键阶段,此时正值高温高湿期,容易遭受病虫害的影响,在这一时期做好病虫害防控对于花生高产具有重要意义。为探究花生结荚期使用植保无人机施药时,飞行参数对雾滴沉积特性的影响,采用三因素五水平的正交试验方法,研究极飞P30植保无人机飞行高度、飞行速度、喷药量对雾滴覆盖率、雾滴沉积密度和雾滴沉积量的影响。极差分析结果表明,飞行高度为2 m、飞行速度为3.5 m/s、喷药量为15 000 mL/hm~2时雾滴覆盖率和雾滴沉积量最优,分别为5.48%、0.448μL;飞行高度为2.5 m、飞行速度为3.5 m/s、喷药量为15 000 mL/hm~2时雾滴沉积密度最优;并得出飞行参数对雾滴沉积影响的主次顺序。使用SPSS对试验结果进行方差分析,结果表明,喷药量对雾滴沉积特性的影响均为极显著。本试验可为花生结荚期进行植保无人机施药作业参数确定提供参考依据。  相似文献   

3.
为深入分析无人机进行施药作业过程中飞行高度和飞行速度对喷药效果带来的影响,对无人机喷药系统进行了设计。以无人机整体施药运作机理为载体,结合作业过程中的喷雾流量、雾滴粒径及飞行速度等核心参数,选择雾滴沉积密度、雾滴沉积覆盖率、雾滴沉积均匀度为衡量指标,建立喷药系统理论控制模型,并进行喷药系统的硬件系统设计和软件程序编写,展开无人机施药效果试验。结果表明:在一定的施药流量控制条件下,不同飞行高度的雾滴沉积平均覆盖率整体呈现出下降趋势,且当无人机选择飞行高度H=1.4m、飞行速度V=0.5m/s组合参数条件下,该喷药系统的雾滴沉积覆盖率为26.9%,雾滴粒径分布均匀度达90%以上,雾滴沉积密度保持在70%以上,为最佳施药参数组合。  相似文献   

4.
为获得相对较好的植保无人机水稻病虫害防治效果,以小型四旋翼农用植保无人机开展水稻喷雾试验,采用三因素三水平正交试验法对无人机喷头流量、作业高度、飞行速度的三个作业参数优化组合。根据雾滴沉积密度和沉积量及其均匀性结果,较佳的作业参数是喷头流量3.0 L/min、作业高度2.5 m、飞行速度4.5 m/s;影响雾滴沉积密度的因素主次顺序为作业速度、飞行高度、喷头流量,而影响沉积量均匀性的因素主次顺序亦是作业速度、飞行高度、喷头流量。通过优选植保无人机作业参数,既能提高喷雾雾滴沉积效果,又为获得较好病虫害防治效果奠定基础。  相似文献   

5.
粳稻多旋翼植保无人机雾滴沉积垂直分布研究   总被引:8,自引:0,他引:8  
为研究多旋翼植保无人机低空喷施作业过程中,水稻垂直方向雾滴沉积的分布规律,在水稻冠层叶片、中部叶片、底部叶片分别放置了雾滴测试卡,收集植保无人机喷洒过程中的雾滴信息。使用清水代替农药来模拟喷施过程,利用雾滴沉积分析软件i DAS分析雾滴测试卡,得出植保无人机雾滴在水稻垂直方向的分布结果。试验结果表明:植保无人机低空喷雾在水稻垂直方向的雾滴覆盖率存在显著差异,有效喷幅内旋翼下方区域的雾滴覆盖效果最好,而远离旋翼的位置,雾滴覆盖率较差。从水稻垂直方向的不同位置分析,雾滴总体覆盖率为冠层54.86%,中部32.69%,底部24.7%;水稻垂直各位置的粒径分布中,平均粒径范围处于110~140μm之间,粒径大小适合植物病虫的防治。冠层的点密度最大,而水稻中间部位和水稻底部的点密度分布较为相似;水稻中部雾滴扩散比(0.465)优于冠层(0.38)和底部(0.31),整体喷雾的雾滴扩散比与相对粒谱宽度的数值均低于正常值(0.67)。  相似文献   

6.
无人机喷雾参数对粳稻冠层沉积量的影响及评估   总被引:2,自引:0,他引:2  
主要研究了植保无人机在水稻灌浆期喷施磷酸二氢钾(KH2PO4)的作业效果及八旋翼无人机喷雾参数对水稻叶片雾滴沉积分布的影响,测试分析了无人机在水稻灌浆期植保作业时雾滴的沉积效果。研究采用雾滴测试卡接收雾滴,通过调节无人机的作业高度进行雾滴沉积量评估试验。根据作业高度不同,共设计3组试验,高度分别是3、4、5m。结果表明:不同作业高度时,雾滴在水稻冠层和下层具有不同的沉积效果,且分布均匀性的变异系数也不同。作业高度5m时,雾滴在水稻叶片上的总沉积量最少,均匀性最差,冠层和下层的变异系数分别为92.11%、150.29%;作业高度3m时,雾滴在水稻叶片上的总沉积量高于4m和5m时的沉积量,均匀性较好,冠层和下层的变异系数分别为32.94%、49.47%。3组作业高度均显示:雾滴在水稻冠层的沉积量高于下层叶片,叶片正面的沉积量高于反面,叶片反面沉积量可达到正面叶片的1/2以上。本研究对八旋翼无人机高效利用、提高农药喷施作业效率、增加水稻产量具有深远的意义。  相似文献   

7.
植保无人机喷施除草剂喷头选择及参数优化   总被引:1,自引:0,他引:1  
植保无人机因其具有灵活、精确的特点,在全球范围内得到迅猛发展。为获得相对较好的植保无人机喷雾雾滴沉积效果,应用电动四旋翼植保无人机在冬小麦除草过程中进行施药试验,研究喷头类型(防飘喷头DG11003型和原装喷头SX11001VS型)及喷液量(7.5、15.0、22.5及30.0 L/hm~2)对雾滴沉积分布的影响,为优选植保无人机田间除草作业参数提供数据参考。使用DepositScan软件分析雾滴沉积参数,包括不同采样点的雾滴覆盖率和雾滴密度。试验结果表明:防飘喷头DG11003的雾滴密度(27.9~73.0个/cm~2)显著大于原装喷头SX11001VS(13.7~47.2个/cm~2),而对于雾滴覆盖率二者无显著差异,其变化范围分别为2.1%~10.4%及2.0%~9.9%,同时雾滴覆盖率及密度均随喷液量增大而增大;根据不同处理雾滴沉积的变异系数差异可以看出,喷液量对雾滴沉积的均匀性无显著影响。但两种喷头类型对雾滴沉积影响差异显著,防飘喷头DG11003变异系数较小,对雾滴沉积效果更好,其雾滴覆盖率及雾滴密度变异系数的变化范围分别为43.6%~73.4%及46.0%~49.4%。论述应用植保无人机在冬小麦除草剂喷施作业时,喷液量及喷头类型对雾滴在小麦冠层的沉积分布的影响,综合分析可得,选用防飘喷头DG11003在喷液量较大的条件下进行施药,其效果最佳。该研究可为植保无人机对麦田除草剂的合理喷施提供参考和指导。  相似文献   

8.
为获得相对较好的植保无人机喷雾雾滴沉积效果,提高病虫害防治效果,本文采用喷头流量、作业高度、飞行速度的三因素三水平正交试验法,应用小型四旋翼农用植保无人机进行喷雾试验。根据雾滴沉积密度和沉积量及其均匀性数据结果,分析得出影响雾滴沉积密度和均匀性,以及沉积量的因素主次顺序均为飞行速度、喷头流量、作业高度,而影响沉积量均匀性的因素主次顺序则是作业高度、喷头流量、飞行速度;较佳的作业参数组合是喷头流量2.5 L/min、作业高度2.5 m、飞行速度2.0 m/s,此参数组合下,雾滴覆盖率为17.4%,雾滴粒径DV.1、DV.5、DV.9分别为263.39μm、546.33μm、872.67μm,雾滴密度及其变异系数分别为97.30个/cm~2、57.97%,雾滴沉积量及其变异系数分别为1.45μL/cm~2、42.70%。通过优选植保无人机作业参数,不仅可以提高喷雾雾滴沉积效果,还将为获得较好病虫害防治效果奠定基础。  相似文献   

9.
多旋翼植保无人机风场下喷洒方式对有效喷幅的影响   总被引:1,自引:0,他引:1  
为研究多旋翼无人机风场下喷头布置对有效喷幅的影响,基于SolidWorks 2016软件对多旋翼无人机前、中、后螺旋桨喷洒区域风场进行模拟仿真分析。在此风场下,通过改变喷头安装位置,研究机身前方两个螺旋桨不同旋向时无人机旋翼风场对雾滴有效喷幅的影响。试验结果表明,无人机旋翼旋向和喷头布置对有效喷幅有显著影响:当机身前方两个螺旋桨为内旋、飞行速度为4m/s、飞行高度为2m时,喷头前置和后置的有效喷幅分别为3m和2m;相比机身前方两个螺旋桨为外旋时,雾滴总沉积密度分别高出26.8%和66.7%,且有效喷幅分别多出1m和0.5m。该结果可为无人机植保作业过程中耦合风场扰动下雾滴的漂移、沉积的进一步研究提供参考。  相似文献   

10.
针对玉米中后期封行后高地隙植保机难以下田、传统植保无人机雾滴穿透性差导致病虫害难以防控等问题,本文将脉冲烟雾机的热力雾化和低量喷雾技术与高效率的植保无人机进行结合,提出了植保无人机搭载热雾喷施系统的植保作业方案,设计了热雾喷施管路与遥控作业系统,并开展了灌浆期玉米植保作业试验。以清水代替农药进行喷雾作业,在试验区域设置水平和垂直采样点,通过水敏试纸收集沉积在各采样点的雾滴,并利用雾滴分析软件测出热雾植保无人机雾滴在不同采样区域的沉积分布结果。试验结果表明:喷雾区域采样范围-2~6m的雾滴粒径和雾滴密度分布差异较为明显,在距喷口0~2m水平位置雾滴较为集中,垂直方向玉米冠层至底层的雾滴粒径和密度依次减小,整个采样区域内雾滴密度均超过20个/cm2。雾滴覆盖率和沉积量总体变化趋势一致,其中,距喷口前方1m位置各垂直采样层叶片正面的雾滴覆盖率均取到最大值,从上层到地表依次为18.02%、13.48%、4.37%和2.11%,冠层叶片正面雾滴沉积量在此区域也达到最大值,为0.36μL/cm2,整体上叶片正面的雾滴覆盖率和雾滴沉积量均大于同位置叶片反面数值。此外,除少数采样点位置因雾滴重叠、黏连导致雾滴谱宽度大于2μm以外,其他采样点的数据均符合低容量喷洒条件下雾滴谱宽度小于等于2.0μm的技术指标。该研究可为热雾植保无人机在玉米等高秆作物中后期植保作业的参数优化和使用提供参考依据。  相似文献   

11.
风场是影响航空喷施雾滴沉积分布特性的重要因素之一。为了揭示多旋翼无人机旋翼下方风场对雾滴沉积分布的影响机理,通过无人机旋翼风场测量系统测量多旋翼电动无人机旋翼下方的风场分布,同时结合航空喷施雾滴在水稻冠层的沉积情况,分析旋翼下方X、Y、Z 3个方向的风场对雾滴沉积分布的影响,并对试验结果进行了方差分析和回归分析。结果表明:在无人机旋翼下方3向风场中,X和Y向风速对有效喷幅区内雾滴沉积量的影响不显著,Z向风速的影响极显著;X向风速对有效喷幅区内雾滴沉积穿透性的影响不显著,Y和Z向风速的影响分别为显著和极显著;X和Y向风速对雾滴沉积飘移的影响均不显著,Z向风场的影响显著;且当水平方向上X、Y向风速峰值越小、垂直方向上Z向风速峰值越大时,雾滴沉积均匀性越好,最佳值达到36.44%。另外,有效喷幅区内雾滴沉积量与因素Z向风速之间的回归模型及有效喷幅区内雾滴沉积穿透性与因素Y和Z向风速之间的回归模型的决定系数R~2分别为0.868和0.842,表明模型可以为实际作业提供指导。  相似文献   

12.
植保无人机作业过程中,旋翼下洗气流不仅会对雾滴沉积效果产生影响,还会对作物冠层产生扰动作用。揭示冠层扰动区域的特点,有助于理解无人机作业特征,可为优化雾滴沉积效果和施药系统提供理论依据。本文通过航拍方法和机器视觉技术研究了无人机下洗气流对作物冠层的影响。结果表明:单旋翼和多旋翼无人机下洗气流所引起的作物冠层扰动区域特征有明显差异。悬停时,单旋翼无人机的冠层扰动区域呈环状,面积较大;多旋翼无人机呈圆形面积较小。作业时因受机身不对称结构影响,单旋翼无人机前进和倒退两种飞行姿态的冠层扰动区域特征有所不同,前进时冠层扰动区域面积小且不规则,倒退时,扰动区域面积较大且呈U状分布包裹机头;多旋翼无人机2种飞行姿态下冠层扰动区域面积和形状基本一致。作业速度对冠层扰动区域特征有显著影响。速度低时,扰动区域较为集中,呈近似椭圆形分布植株摆动剧烈;速度高时,下洗气流扫掠而过,扰动区域呈长条状分布,植株摆动很小。当P20型植保无人机速度为3、4、5、6 m/s时,冠层扰动区域平均滞后距离分别为1.77、2.71、3.61、4.31 m。扰动区域滞后距离和无人机飞行速度成正比,对两者关系进行回归分析,得出决定系数R~2为0.875 4。此外,速度越大,下洗气流对自然风的抵抗作用越弱,冠层扰动区域位置不稳定,不利于抑制雾滴漂移。  相似文献   

13.
雾滴大小、气象条件和施药装备的作业参数对雾滴的覆盖范围、靶标的吸附性能有影响。无人飞机(UAV)是目前有助于高效喷雾的现代施药技术装备。然而作业参数对靶标区和脱靶区的影响依然尚待确定。开展了田间试验并运用沉积扫描软件测定了在田外除草中不同飞行高度(2 m和3 m)和飞行速度(2 m/s和3 m/s)下雾滴的沉积量、覆盖密度、覆盖率和雾滴直径。结果表明,当无人飞机在处理T_1中以2 m/s速度、2 m高度飞行时,靶标区域平均沉积量最高,为2.29μL/cm~2,飞行航线中央0点位置的覆盖率达到36.19%。处理T_1、T_2、T_3和T_4在飞行航线中央的雾滴谱相对宽度分别为0.70、1.01、1.03、1.05。处理T_1体积中值直径(VMD,也即D_(v0.5))最大,为448.75μm;而处理T_4的D_(v0.5)最小,为238.95μm。单旋翼无人飞机在脱靶区的沉积量几乎可以忽略不计。本研究为无人飞机运营商、农民和生产企业提供了参考,从而优化航空植保技术在除草上的应用。  相似文献   

14.
农业生产过程面临病虫草害的严重威胁,喷洒农药是较为常用的防治方法。随着农业飞行器的推广,以无人机作为载具的航空喷施发展迅速,成为当前最为理想的农药喷洒方式。无人机喷药的雾滴沉积特性对防治效果有很大影响,是当前研究的重点。为此,设计了一种无人机喷药的雾滴沉积效果检测系统,利用无线传感网络进行航线控制,进行采样点定位以及飞行速度、高度和下方风场的数据采集。结果表明:飞行速度和高度对雾滴沉积量有相似的影响,飞行速度对雾滴沉积量的影响大于飞行高度,而雾滴沉积均匀性主要受到无人机飞行速度的影响。该检测方法具有较高的准确性,可为拓宽无线传感网络的应用范围提供依据。  相似文献   

15.
随着植保无人飞机作业面积的增加,雾滴飘移风险也日益凸显,尤其以除草剂飘移风险危害最高。为明确除草剂溶液对雾滴粒径的影响及植保无人飞机喷施除草剂雾滴沉积飘移分布特性,本研究通过室内雾化室测定了植保无人飞机安装的离心转盘雾化喷头喷洒清水及常用的15种麦田除草剂溶液的雾滴粒径分布,并通过田间试验在药箱中添加荧光示踪剂(60 g/hm2)测定喷施作业区和飘移区的雾滴沉积量分布。室内测定结果表明,与清水相比,除草剂溶液对雾滴粒径影响显著。除唑草酮水分散粒剂外,其余溶液经离心转盘雾化喷头喷洒后,雾滴体积中径较清水均有所降低,且最大降低22.0%;小雾滴(V<150 μm)比例均有所增加,最大增加50.8%。田间飘移试验表明,植保无人飞机喷洒150 μm雾滴,在环境侧风风速为3.76 m/s时,作业区的雾滴沉积覆盖度和雾滴沉积密度仅为风速0.74 m/s时的41.3%和42.2%,且均匀性显著降低。在飘移区下风向12 m位置,雾滴沉积量为作业区的10%以下;下风向50 m处,雾滴沉积量低于检测限(0.0002 μL/cm2)。飘移比率随风速的增加而增加,当风速达到3.76 m/s时,雾滴飘移比率达到46.4%。不同侧风风速下,90%的累积飘移位置在4.8~22.4 m。对飘移区沉积量与飘移距离、侧风风速拟合,结果表明下风向沉积量与风速呈正比。本研究为植保无人飞机冬麦田不同风速作业下的雾滴飘移距离提供数据支持,为喷雾飘移缓冲带、飘移风险评估提供依据。  相似文献   

16.
植保无人机旋翼下洗气流对喷幅的影响研究   总被引:3,自引:0,他引:3  
基于XV-2植保无人机,利用流体仿真,探究了该无人机旋翼下洗气流的速度分布特性。在此基础上,分析了在下洗气流影响下的雾滴运动方式,并进行实地测试。仿真分析说明:旋翼下洗气流从中心向外的流速差使流场从上向下有向外的铺展效应,使得喷幅增大,且喷幅与飞行高度成正比;旋翼外沿的卷扬气流使得喷幅范围内的雾滴沉积数出现2个峰值。试验结果表明:当飞行高度为6 m时,有效喷幅为10 m;飞行高度8 m时,有效喷幅为12 m。2种飞行高度下的雾滴分布均匀性基本一致。试验结果与仿真结果基本一致。研究结果可为无人机喷雾系统设计和航空植保作业参数的选择提供参考依据。  相似文献   

17.
密闭空间雾滴沉积状态参数的显微图像解析   总被引:4,自引:1,他引:3  
针对植保机械喷雾取样技术存在的不足,提出了利用显微图像结合数字图像处理技术对密闭空间中雾滴的沉积状态参数进行取样和分析的方法.利用该方法对棚室内雾滴覆盖率、沉积密度和均匀性等参数进行了试验和分析.试验结果表明,随距离增加,雾滴覆盖率先上升后下降,而雾滴沉积密度的变化趋势正好相反;栅室内距地面高度0.4~0.8m范围内,雾滴的覆盖率和沉积密度基本不随高度变化.用雾滴覆盖率、沉积密度和均匀性来表示整个喷雾场雾滴的沉积状态是有效、可行的.  相似文献   

18.
近年来,应用植保无人机防治农业有害生物已成为中国植保机械发展的一大新亮点。无人机旋翼提供飞行升力的同时具有下洗气流场,低空低量施药作业雾滴沉积分布质量优劣与旋翼下洗气流场的作用密不可分。为探究植保无人机旋翼下洗气流场对喷雾效果的影响,本研究以当前植保无人机主流机型——“X型”布局八旋翼无人机为研究对象,采用实际作业测试方式,利用微气象测量系统测定无人机飞行状态下旋翼下方不同水平位置下洗气流场风速,同时采用诱惑红示踪剂水溶液代替农药喷雾获取喷雾沉积分布情况,重点对下洗气流场分布实测结果进行可视化分析,包括不同飞行高度、不同速度下旋翼下洗气流场分布特性与雾滴沉积分布特性以及二者的相互关系。测试结果显示:八旋翼植保无人机飞行过程中随着飞行速度加快(1.0~6.0 m/s)和飞行高度升高(1~2 m),冠层位置XYZ三向下洗气流场总体表现为气流强度由强到弱、分布状态由集中到分散的变化趋势;X方向气流来源于下洗气流与外界空气相互作用产生的卷扬气流,对喷施雾滴的作用为逆飞行方向;Y方向为下洗卷扬气流以及地面效应共同作用的结果,对雾滴的作用为垂直于航线朝向两侧;Z方向为下洗气流竖直向下方向分量,对雾滴下降沉积具有直接促进作用;飞行速度与下洗气流场范围内风速峰值(P<0.05,r=-0.836)和有效喷幅内平均沉积量(P<0.05,r=-0.833)均表现出显著负相关;在飞行速度为1.0 m/s和3.0 m/s时,雾滴沉积量与下洗气流场风速均呈现极显著正相关关系(P<0.01,r>0),即垂直地面方向的下洗气流场越强,有效喷幅内沉积的雾滴越多;速度加快至6.0 m/s,风速显著降低,气流场对雾滴沉积的促进作用逐步消失(P>0.05)。因此,植保无人机作业时飞行速度不应设置超过6.0 m/s,避免因下洗气流场作用减弱而导致雾滴损失。本研究结果可为改善低空低量施药作业质量和无人机田间作业规范的制定提供技术参考和支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号