首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
玉米果穗剥皮装置影响剥皮性能的试验分析   总被引:3,自引:1,他引:2  
利用自制玉米果穗剥皮装置试验台,通过单因素试验,分析了压送器叶轮轴间距对剥净率、落粒率和籽粒破损率的影响规律.通过正交试验,得出了压送器转速、剥皮辊转速、剥皮辊倾角、剥皮辊长度和压送器叶片距剥皮辊距离等参数的最优组合,从而为玉米剥皮装置的优化设计提供了依据.  相似文献   

2.
针对制种玉米利用大田玉米剥皮机作业籽粒损失大等现象,本文对剥皮过程中制种玉米果穗与剥皮机构间的碰撞和摩擦进行理论分析,得到了影响剥皮效果的主要因素,建立了玉米果穗-剥皮机构系统的离散元与多体动力学柔性模型,利用DEM-MBD联合仿真技术对制种玉米与剥皮机构互作过程进行模拟研究,采用Box-Behnken试验设计原理,以压送器与剥皮辊间距、剥皮辊转速和剥皮辊间隙为试验因素,以果穗平均前进速度和最大受力为试验指标,进行三因素三水平试验,最后进行台架试验和田间试验。理论分析结果表明:玉米果穗沿剥皮辊轴线方向的前进速度和剥皮过程中所受的作用力能够分别表征苞叶剥净率与籽粒损失率;试验结果表明,制种玉米剥皮机构最佳工作参数组合:压送器与剥皮辊间距为32mm、剥皮辊转速为430r/min、剥皮辊间隙为-0.3mm,此时玉米果穗苞叶剥净率为93.33%,籽粒脱落率为1.802%,籽粒破损率为1.203%,机具田间试验与台架试验结果误差小于3%。试验所用剥皮辊满足制种玉米剥皮的性能要求,所用方法能够为制种玉米剥皮机构的改进提供参考。  相似文献   

3.
针对我国鲜食玉米收获过程中剥皮装备机械工作效率低、剥皮损坏率高等问题,在现有剥皮装置结构的基础上,设计了一种“柔性分段辊型+螺旋调节架”组合式和橡胶频率振动板相匹配的柔性剥皮装置。根据鲜食玉米物理特性,对鲜食玉米剥皮过程进行力学与运动学分析,确定了影响剥皮性能的主要因素,并对该剥皮装置进行了结构设计及参数分析。运用ANSYS Workbench/LS-DYDA模块对鲜食玉米果穗剥皮过程进行仿真,根据理论分析和仿真结果设计了剥皮样机,开展了剥皮试验。为获得样机最佳试验物料,以果穗长度、果穗直径、果穗含水率作为试验因素进行单因素试验,确定长度为260~280 mm、直径为64~66 mm、含水率为66.5%~69%的果穗作为剥皮机正交试验物料的样品。利用Design-Expert软件设计三因素三水平正交试验,以剥皮辊转速、剥皮辊倾角和振动板振动频率作为试验因素,以苞叶剥净率、籽粒破损率作为试验指标。结果表明:对苞叶剥净率和籽粒破损率影响由大到小均为剥皮辊转速、剥皮辊倾角、振动板振动频率;最优参数组合为:剥皮辊转速478.72 r/min、剥皮辊倾角8.05°、振动板振动频率259.20次/...  相似文献   

4.
以黄淮海地区为代表的一年两熟制地区,由于玉米可生长期短、收获时间紧,收获时果穗含水率较高,摘穗时易产生断茎,且苞叶与果穗贴合紧密,剥皮作业质量效果较难保证,剥净率与啃穗率、脱落籽粒破损之间矛盾突出。目前,对高含水率(≥40%)果穗剥皮装置的系统理论与试验研究均较少,因而本文设计了5因素玉米剥皮试验装置,可以进行槽型布置和平面布置两种剥皮装置的室内试验。通过调整压送器与剥皮辊距离、剥皮辊倾角、剥皮辊转速、压送轮转速及剥皮辊组合形式等关键因素水平,以苞叶剥净率、啃穗落粒率和籽粒破损率为评价指标,进行多因素多水平正交试验,确定剥皮装置的最佳参数组合,为玉米联合收获机剥皮装置选型和参数设计提供依据。  相似文献   

5.
为推进玉米生产全程机械化进程及提高玉米剥皮效率,辽宁省农业机械化研究所研制了玉米剥皮机.该机剥皮机构由压送器和剥皮辊组成.试验表明:剥皮部件宜选用铸铁辊和橡胶辊组合且槽型排列的剥皮辊;剥皮效果与高度差H值的大小有关,H的取值范围应在使玉米穗重心处在两剥皮辊水平中心距的中点附近,以提高剥净率;剥皮辊的最佳工作参数为直径D=72 mm、长度Lb=1075mm、转速n=320 r/min、速度v=1.21 m/s、倾角θ=10°;选用可调弹簧压板式压送器,其弹簧压紧力为15~25 Pa;该机剥净率为80%~95%、破碎率低于1%、损失率低于2%,具有生产效率高、能量消耗低、结构合理简单、维护和操作方便等优点,能够较好地满足玉米剥皮的技术要求.  相似文献   

6.
玉米通用剥皮机构设计与试验   总被引:1,自引:0,他引:1  
针对玉米联合收获机的重要部件——玉米剥皮装置通用性差等问题,设计了可更换不同辊型、调节转速以及调节两辊相对位置角的玉米通用剥皮机构。以先玉335为试验材料,进行了剥皮辊配置形式、转速和两辊相对位置角的3因素3水平正交试验,分析了各参数对剥皮性能:玉米苞叶剥净率、籽粒破碎率、籽粒损失率的影响,确定了最优组合方案:剥皮辊配置形式为螺旋橡胶辊与凸棱螺旋橡胶辊交替排列;剥皮辊转速为350r/min;两辊相对位置角为30°。  相似文献   

7.
为推进玉米生产全程机械化进程及提高玉米剥皮效率,辽宁省农业机械化研究所研制了玉米剥皮机。该机剥皮机构由压送器和剥皮辊组成。试验表明:剥皮部件宜选用铸铁辊和橡胶辊组合且槽型排列的剥皮辊;剥皮效果与高度差H值的大小有关,H的取值范嗣应在使玉米穗重心处在两剥皮辊水平中心距的中点附近,以提高剥净率;剥皮辊的最佳工作参数为直径D=72mm、长度,Lb=1075mm、转速n=320r/min、速度v=1.21m/s、倾角θ=10°;选用可调弹簧压板式压送器,其弹簧压紧力为15-25Pa;该机剥净率为80%-95%、破碎率低于1%、损失率低于2%,具有生产效率高、能量消耗低、结构合理简单、维护和操作方便等优点,能够较好地满足玉米剥皮的技术要求。  相似文献   

8.
种子玉米在剥皮过程中存在大量的籽粒破碎、脱落等损失问题,严重影响种子玉米的单产与经济效益。因此,本研究采用理论分析、离散元仿真与正交试验相结合的方法,探究种子玉米果穗与剥皮机构的互作机理,确定剥皮机构的最优工作参数组合以优化种子玉米剥皮过程。首先,对种子玉米果穗在剥皮机构中的受力及运动进行了理论分析,探究了在剥皮过程中剥皮机构-种子玉米的相互作用关系,并确定了影响剥皮性能的主要因素。其次,基于DEM建立种子玉米果穗-剥皮机构相互作用仿真模型,通过对玉米果穗籽粒损伤及脱落分析,确定了剥皮辊转速、剥皮辊倾角和摆杆摆幅的较优工作范围。最后,根据Box-Behnken设计方法,设计了三因素三水平的正交试验,通过方差分析和响应面分析,筛选出种子玉米剥皮机构的最佳工作参数组合:剥皮辊转速为300r/min,剥皮辊倾角为10°,摆杆摆动幅度为5°,此时苞叶剥离率为94.13%,籽粒脱落率为1.564%,籽粒破碎率为1.292%。试验获得的剥皮装置的最优工作参数组合,明显提高了种子玉米的剥皮效果。  相似文献   

9.
玉米果穗剥皮装置的参数研究   总被引:1,自引:0,他引:1  
利用自制剥皮装置试验台,选择影响剥皮性能的压送器转速、剥皮辊转速、剥皮辊倾角三个主要参数作为设计变量,通过二次回归通用旋转组合试验和优化设计,得出了各参数的最优组合.为玉米果穗剥皮装置的设计提供了依据.  相似文献   

10.
收获机械结构复杂多样,使用季节性强,且用户多样性、定制化需求特征明显,传统研发模式存在设计周期长、效率低和质量难以保证等问题。本文以玉米联合收获机果穗剥皮装置为研究对象,根据剥皮装置结构特征、技术参数和性能评价指标之间的关系,提出了基于知识工程的玉米果穗剥皮装置设计方法。首先明确剥皮装置设计流程,制定模块化设计方案,按照功能划分为专用件模块、通用件模块和标准件模块,其中专用件模块为剥皮装置核心组成部件,主要包括剥皮辊、压送器,通用件模块包括喂入辊、输送机构、排杂器、传动机构和果穗回收机构等,标准件模块包括传动件、连接紧固件和轴承等。然后按照标准、规范和约束范围,建立剥皮装置相关设计知识库,分析玉米品种特性、作业形式、传动方案、结构参数和工作参数之间的数学关系,同时利用框架式表示法对剥皮装置进行分解,建立自顶向下的谱系层次结构。基于果穗运动学和动力学分析,融合文献资料、试验数据和专家经验,建立了剥皮装置工作性能评价模型,包括苞叶剥净率评价模型、籽粒损失率评价模型和籽粒破碎率评价模型。基于Visual Studio平台,融合知识库、推理机、评价模型和系统人机界面,开发了基于知识工程的玉米剥皮装置设计系统,实现用户需求参数输入下设计参数的实时计算输出及参数评价。基于上述研究,以TPJ16型玉米果穗剥皮装置参数为例,在交互界面输入功率7.5kW、喂入量16.6t,计算获取剥皮装置关键结构参数和运动参数,并进行设计参数的性能评价,求解结果表明该剥皮装置的苞叶剥净率为96.01%,籽粒破碎率为1.42%,籽粒损失率为3.25%。  相似文献   

11.
浮动式玉米单穗脱粒装置设计与试验   总被引:5,自引:0,他引:5       下载免费PDF全文
为实现玉米脱粒机脱粒间隙可自动调节,减小玉米脱粒过程中的机械损伤,设计了浮动式玉米单穗脱粒装置。该脱粒装置主要由间隙浮动调节装置、喂入料斗、离散辊、脱粒辊和差速辊等组成,具有脱粒间隙自动调节和玉米果穗喂入自动分离、逐个排出功能。选取离散辊转速、脱粒辊转速和差速辊转速为试验因素,以玉米籽粒的破损率和未脱净率为试验指标,采用二次回归正交旋转组合的试验方法,对浮动式玉米单穗脱粒装置进行了参数优化试验。优化结果为:离散辊转速为234 r/min、脱粒辊转速为511 r/min、差速辊转速为91 r/min,在最优参数组合下的实际籽粒破损率为0.25%、未脱净率为0.76%、玉米芯完整度为100%。  相似文献   

12.
针对国内制种玉米种穗缺少相应的收获机,而制种玉米收获劳动强度大,现有玉米收获机的果穗损失率、落地籽粒损失率等技术指标不能满足使用要求等问题,设计了对中拉茎切柄、柔性摘穗、快速清种制种玉米种穗收获机。简述了整机结构和工作原理,对关键部件进行了理论分析、设计计算和选型,通过田间试验对该机的可靠性和实用性进行验证。以割台拉茎辊转速、前进速度、排杂风机转速作为试验因素,以果穗损失率和落地籽粒损失率为性能指标,进行了三因素三水平正交试验,通过方差分析获得最优参数组合为前进速度4.83km/h、割台拉茎辊转速788r/min、排杂风机转速1200r/min,此时果穗损失率为1.83%,落地籽粒损失率为1.01%。将对应参数进行试验验证,得到验证试验结果为:果穗损失率1.85%,落地籽粒损失率1.01%。优化结果与验证试验结果基本一致,整机各项性能指标满足使用要求。  相似文献   

13.
针对目前我国竹笋剥皮机械化程度低的问题,设计一种刀削结合滚动摩擦进料竹笋剥皮机。根据竹笋物理特性参数和人工剥笋原理,对竹笋剥皮过程进行力学与运动学分析,确定了影响剥皮效率、损伤率和剥净率的主要因素为刀片安装倾角、剥皮辊转速以及滚筒与剥皮辊轴心高度差,在此基础上,给出了竹笋剥皮机关键部件的设计依据。为获得样机最佳试验物料,以竹笋长度、基部直径作为试验因素进行单因素试验,确定长度为300~320mm、基部直径为29~32mm的竹笋作为剥皮机正交试验物料样本。利用Design-Expert软件设计三因素三水平正交试验,并结合实际工作情况确定最优参数组合,结果表明:当刀片安装倾角为30.12°、剥皮辊转速为229.18r/min、滚筒与剥皮辊轴心高度差为15.43mm时,笋肉损伤率为6.81%,笋皮剥净率为94.59%。在该条件下开展验证试验,得到损伤率、剥净率分别为7.10%、93.22%,与优化参数基本一致,满足剥笋要求。  相似文献   

14.
我国的玉米剥皮装置普遍存在着作业效率低、剥净率低、破损率高、加工工艺性差及维修更换成本高等问题,严重制约了玉米机械收获的使用与发展。为此,进行了新型玉米剥皮辊的设计与试验。研究结果表明:与传统剥皮装置采用全橡胶辊或铸铁辊相比,新疆玉米剥皮辊有效地解决了胶辊寿命低、铁辊破损率高的难题,其剥净率93%、籽粒损失率0.91%、籽粒破碎率0.69%,增加使用寿命2~3倍,降低了维护成本,剥皮性能有了很大提高。  相似文献   

15.
针对云南地区地形特点、玉米种植模式及玉米品种,根据现有玉米收获技术设计了小型玉米收获机,阐述了整机、传动系统、摘穗装置、剥皮装置、切碎还田装置的设计及特点。对整机部件进行合理配置,使整机的设计结构紧凑;摘穗辊采用金属与橡胶两种材料结合的方式,能够有效降低摘穗过程中玉米果穗的损伤率;对剥皮装置进行设计及优化改进,有效提高了玉米苞叶剥净率,降低了玉米果穗的损伤率及玉米籽粒破碎率。田间试验表明:机具作业状态符合玉米收获机行业标准,平均损失率为3.5%,苞叶剥净率为88.6%,籽粒破碎率≤1%,回转式切碎装置对玉米秸秆的切碎效果较好,可为云南地区的玉米收获机械化发展提供借鉴。  相似文献   

16.
根据农艺过程中对玉米剥皮装置的要求,设计了与4YW-2型玉米联合收获机配套使用的玉米剥皮装置,该部分主要由入料口、剥皮装置、压送装置、输送搅龙及传动装置等部分组成,可以一次作业完成玉米穗的传送、剥皮、玉米与苞叶的分隔收集等作业。为此,以玉米苞叶的剥净率、落籽率、籽粒损失率和生产率为主要指标,计算了部分零部件的结构尺寸。该玉米剥皮装置在4YW-2型玉米联合收获机上配置紧凑协调,作业顺畅可靠,玉米剥皮过程中剥净率达90%以上、作业损失率低于4%,保证了联合收获的作业性能指标,提高了联合收获机的生产效率。  相似文献   

17.
辊搓圆筒筛式谷子清选装置设计与试验   总被引:3,自引:0,他引:3  
为解决谷子初脱后因物料中残留谷码多、含水率高而导致清选含杂率和损失率较高的问题,设计了辊搓圆筒筛式谷子清选装置。该装置主要由谷码辊搓装置、圆筒筛装置、横流风机和离心风机等组成,实现了先脱谷码后清选的功能。选取离心风机转速及角度、横流风机转速、圆筒筛转速和谷码辊搓装置主动辊转速作为试验因素,籽粒含杂率和损失率作为试验指标进行了正交试验,试验表明:谷码辊搓装置主动辊转速250 r/min、离心风机角度3°、小圆筒筛转速60 r/min、离心风机转速700 r/min、中圆筒筛转速60 r/min、大圆筒筛转速70 r/min,横流风机转速600 r/min为该清选装置的最优组合。对该参数组合进行验证试验,并对该装置清选性能进行对比试验,结果表明,在最优组合条件下籽粒含杂率为1.64%、总损失率为0.86%,该装置籽粒含杂率与总损失率均低于传统型风机圆筒筛式和风机振动筛式清选装置。  相似文献   

18.
针对甘蔗剥叶装置存在的剥叶后含杂率高、剥叶元件易折断和磨损的问题,设计了各级转速受控式甘蔗剥叶装置。该装置输入输出上、下辊具有仿形功能,剥叶元件采用新型材质。经过对比试验,从3种高分子材料中优选出最适合做剥叶元件的材质,并通过正交试验优化工作参数。该装置优化后的工作参数即输入输出辊转速250r/min、第1级剥叶辊转速1 150r/min、第2级剥叶辊转速2 300r/min时,含杂率为3.1%,折断率为12.5%。  相似文献   

19.
油葵联合收获机清选装置结构优化与试验   总被引:2,自引:0,他引:2  
针对油葵联合收获作业过程中存在籽粒含杂率及损失率偏高的问题,测定油葵脱粒后脱出物的尺寸特征和悬浮特性,通过机构的运动学分析与物料的受力分析,确定了油葵联合收获机清选装置主要结构参数与工作参数。以风机转速、振动频率和分风板倾角为影响因素,油葵籽粒含杂率和籽粒损失率为评价指标,开展工作参数优化试验,单因素试验结果表明,清选装置较优工作区间为:风机转速1100~1300r/min、振动频率3~5Hz、分风板倾角20°~40°;设计Box-Behnken试验,建立了响应面回归模型,并进行参数优化,结果表明:各试验因素对含杂率和损失率影响显著性大小顺序均为风机转速、振动频率、分风板倾角;当风机转速1200r/min、振动频率4Hz、分风板倾角27°时,试验结果表明平均油葵籽粒含杂率为4.25%,平均籽粒损失率为1.82%,满足油葵联合收获机清选的国家标准要求。  相似文献   

20.
与大田玉米剥皮作业相比,种子玉米剥皮对苞叶剥净率、籽粒破碎率和落粒率具有较高的农艺要求。针对种子玉米缺乏高效低损的剥皮手段问题,采用TRIZ理论联合显式动力学仿真与高速摄像技术开展了种子玉米剥皮机构设计方法研究。首先,基于TRIZ理论解决了种子玉米剥皮机构关键结构设计问题,并完成了剥皮机构的详细设计;其次,利用LS-DYNA进行了剥皮系统-种子玉米果穗的显式动力学仿真,分析种子玉米果穗运动过程及受力情况,验证了剥皮机构设计的合理性;搭建了高速摄像试验台,通过对种子玉米剥皮过程高速摄像的逐帧分析,并与仿真结果相比,得出3种工况下速度最大误差分别为0.035、0.066、0.095m/s,验证了剥皮辊分段设计的合理性;最后选择苞叶剥净率、籽粒破碎率及落粒率为性能指标开展了种子玉米剥皮试验,在3种工况下,试验结果满足种子玉米剥皮机构的性能指标要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号