首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
土壤水分条件是棉花生长和发育的重要因素。为了研究塔里木灌区膜下滴灌棉田土壤水分特征,于2014年4月18日至10月31日采用中子仪对膜下滴灌棉田0~120cm土壤水分进行观测,分析了不同生育期土壤含水率的时空变化,采用水量平衡原理计算了膜下滴灌棉田耗水量。结果表明:4月中旬到7月中旬为土壤水分稳定期,7月中旬到8月底为土壤水分剧烈变化期,8月底到10月底为缓慢消耗期;0~20cm为土壤水分活跃层,20~60cm为土壤水分次活跃层,60~120cm为土壤水分稳定层;灌溉入渗水主要分布在0~40cm;膜下滴灌棉田苗期、蕾期、花铃期、吐絮期的耗水强度分别为0.63、2.62、7.01、0.71mm/d。  相似文献   

2.
半干旱黄土区典型林地土壤水分消耗与补给动态研究   总被引:2,自引:2,他引:0  
通过对半干旱黄土丘陵沟壑区几种典型林地生长季土壤水分进行动态监测,研究不同林种对土壤水分消耗和补给的影响。结果显示,土壤总含水率大小依次为草地、沙棘、河北杨、油松、山杏,并且这一次序主要来源于120 cm深度(相对稳定层)以下的差异;不同林地及草地土壤含水率季节变化表现基本一致,3—8月波动下降,8—10月持续上升;各林地及草地土壤水分在0~60 cm内变化活跃,60~120 cm内由上至下逐渐趋于稳定,120~200 cm内保持相对稳定;林种、土壤深度、月份3种因素单独作用和交互作用均造成土壤水分差异显著;水分补给期后各林地土壤水分仍处于一定亏缺状态。  相似文献   

3.
不同灌水定额条件下土壤水分空间变化特征研究   总被引:4,自引:0,他引:4  
通过时域反射仪,对不同灌水定额下土壤含水率的变化进行了试验研究,分析了不同灌水定额下的土壤含水率随深度变化的曲线特征。因灌水量不同,土壤水分曲线从"3"型到"7"型再到"2"型曲线,规律性地揭示了灌水量对不同深度土壤水分变化曲线的渐变影响。同时研究了土壤水分运移的时间效应和垂直分布特征,通过图表规律的汇总将0~180 cm土层按其土壤水分运移规律进行划分。土壤湿度的垂直变化可分为4层:活跃层(0~30 cm);贮水层(30~60 cm);缓变层(60~100 cm);均稳层(100~180 cm)。利用克立格法对各试验小区在N-S方向上进行了空间插值分析。采用多项式拟合与峰值拟合探讨这2种拟合方程在土壤含水率垂直分布上的应用。  相似文献   

4.
四川盆地丘陵区土壤水分垂直变异特征研究   总被引:1,自引:0,他引:1  
根据四川盆地丘陵区重庆市璧山县青杠墒情站点土壤水分每天的动态监测资料,用小波分析的谱相分析方法研究了土壤水分的垂直异质性。结果表明:土壤水分变化是个随机平稳的波动序列;就时间变异来看,其变异有一定的隐周期,大致可分为3~5月的次波动期、7~9月的剧烈波动期、10~2月的相对稳定期。就土壤的垂向变化来看,站点的0~10 cm的变异高于10~20、20~40 cm层变异;各层变异之间存在一定的因果关系,可用互谱密度系数表示,但受降水、蒸发、作物利用等多种因素的制约,并未表现出完全的同步响应关系。  相似文献   

5.
利用2011-2015年贵州喀斯特区域53个土壤湿度自动观测站逐日土壤湿度观测及气象台站观测资料,应用EOF分析了10~100 cm土壤湿度空间分布特征以及与可能蒸散和降水的关系,结果表明:(1)10~20,30~50,60~100 cm空间分布较为相近,威宁、沿河、正安、印江、思南地区各层土壤湿度较小,铜仁、安顺、都匀地区均较大。(2)10~50 cm土壤湿度7、9月中旬相对偏低,3、5月中旬居中,11、1月中旬偏高; 60~100 cm土壤湿度相差不大。(3)10~100cm土壤湿度场方差累计贡献率超过98%,第一主分量最大值在黔西北及东南等地区,最小值在黔西地区;(4)镇远、纳雍、凤冈春季可能蒸散对土壤湿度的影响较小;夏季可能蒸散对10~50 cm影响的滞后时间为一旬,60~100 cm相关性较低;秋季可能蒸散对10~50 cm土壤湿度滞后一或两旬,与60~100 cm滞后不明显;冬季可能蒸散对10~50 cm土壤湿度的影响较小。(5)春季,镇远降水对10~60 cm土壤湿度影响的滞后时间为两旬,纳雍降水对土壤湿度影响不明显,凤冈春季降水对10~30 cm土壤湿度滞后时间为当旬或一旬;夏季镇远、纳雍、凤冈降水对10~30 cm土壤湿度滞后当旬或一旬;秋季镇远、纳雍、凤冈降水对土壤湿度影响不明显。冬季镇远、凤冈降水对10、20 cm影响滞后时间为一旬。  相似文献   

6.
陕北黄土区陡坡坡面因子对土壤水分的影响   总被引:1,自引:0,他引:1  
为加快黄土高原植被恢复和植被构建速度,在研究陕北黄土区吴起县坡度、坡向分布特征的前提下,分别选取阴坡、半阴坡、半阳坡、阳坡的陡坡,每个坡向选取4个坡度级(35°,45°,55°,65°),分别分析其0~100 cm土层深度的土壤水分并进行聚类分析.结果显示:研究区内坡度在35°以上陡坡占当地总面积的39.00%左右;且阴向坡面积52.65%多于阳向坡47.35%;研究区内0~100 cm土层深度的土壤含水量随着土层深度的增加呈现增加趋势,且趋势越来越平缓;坡度越大,土壤含水量的垂直变化越强烈,阴坡坡度与陡坡土壤含水量的相关性最为显著;坡向因子主要影响坡面整体水分状况,而对陡坡土壤水分垂直空间分布规律影响较小;坡度、坡向和成坡时间因子对坡面土壤含水量的影响主要集中在0~40 cm土层深度内,对较深层土壤含水量影响作用较小;系统聚类分析结果同样显示,土壤含水量较为活跃的层次主要集中在0~40 cm土层深度内,阳坡35°坡面活跃层可达90 cm左右.  相似文献   

7.
为了探求不同水氮量组合下非饱和冻融土壤介质中土壤温度的时空变化规律,设置了3个施肥水平(100、300和500 kg/hm2)、两个灌水量(375和750 m3/hm2)组成6种水肥灌溉组合。结果表明:冻融期灌水施肥地块地表处土壤温度较不灌水地块低,地温在土壤剖面上呈"高-低-高"分布趋势,不稳定冻结期灌水施肥地块0~10 cm地温处于较低值。稳定冻结前期,0~30 cm地温升降明显且变化大,30~150 cm地温变化较小;稳定冻结后期土壤比热容量增加,地温变化较稳定冻结前期平缓。消融期地温对外界气温敏感程度增大,0~30 cm地温变异性增加。整个冻融期,0~20cm地温波动幅度较大,30~90 cm地温变化平缓;整个冻融期0~30 cm土壤平均温度在W750下高于N0W0,而W375对土壤温度影响不明显;30~150 cm地温并非随水肥量单调增加而升高,N300W375和N500W750对30~150 cm土壤増温效果较佳,且灌水量愈高増温效果愈明显。灌水施肥地块0~20 cm土壤温度与N0W0绝对灰色关联度(0.791~0.977)高于30~90cm(0.960~0.995),水氮量组合对0~20 cm土壤温度影响较大,对30 cm以下影响微弱。  相似文献   

8.
黄土高原丘陵沟壑区小流域坡面土壤水分分布特征   总被引:1,自引:0,他引:1  
为探明黄土高原丘陵沟壑区小流域坡面土壤水分分布状况,选取延安市一典型小流域黄土坡面设置定位观测试验,采用Trime-PICO TDR进行土壤水分观测,并分析坡面土壤水分的时空变化特征。结果表明:坡面土壤水分含量随着坡位的下降,呈逐渐增大趋势,且在湿润期增加明显,下坡位土壤水分含量比上坡位大5.33%;在季节上的差异表现为在干旱期土壤表层水分差异较大,湿润期整个土壤剖面上土壤水分含量差异均较大;在植物主要生长期(5-10月),坡面土壤水分含量呈现出增加-减少-增加-减少的循环波动趋势,且其波动程度随着坡位的下降而增大;随着土壤深度的增加,土壤水分含量的变异性减小,其中0~20 cm土层含水量的变异性最大,可达到38.1%,140~160 cm土层含水量的变异性最小,为2.9%。  相似文献   

9.
通过田间微区试验,研究了相同施氮水平下单施无机氮(C0)、50%无机氮+50%有机氮配施(C1)和单施有机氮(C2)对冬小麦-夏玉米体系土壤水分变化和水分利用的影响。结果表明,冬小麦和夏玉米体系内土壤水分周年变化规律明显,可分为:土壤水分调整期、土壤水分相对稳定期、快速失墒期和土壤水分恢复期4个阶段。相同施氮水平下增碳可提高0~160cm土壤贮水量0.52%~0.83%和底墒8.08~16.1mm,可降低茬口水分损失1.42~4.90mm。周年耗水量、产量和水分利用效率随碳用量的提高而增加,与C0处理相比,C1和C2处理周年水分利用效率分别提高了4.12%和7.26%。  相似文献   

10.
宋扬  周维博  李慧 《节水灌溉》2016,(9):124-128
基于泾惠渠灌区30a的气象资料,采用CROPWAT模型分析了泾惠渠灌区作物蒸发蒸腾量及灌溉需水量的变化,并运用SPSS软件,计算了灌区作物需水量与气象因子的相关系数。分析表明:玉米蒸发蒸腾量平均值为524.33mm,蒸发蒸腾量高峰期出现在7月中旬到8月下旬;棉花蒸发蒸腾量平均值为869.13mm,峰值出现时间与玉米一致;灌区玉米在抽雄-开花期灌溉需水量为130.12mm,籽粒形成-乳熟期灌溉需水量为359.32mm,9月下旬以后,灌溉需水量下降;棉花生育期需水量空间分布比较均匀,平均值为869 mm,整个灌区灌溉需水量平均值为453.6mm,棉花苗床期灌溉需水量开始增加,花铃期达到最大值,吐絮期灌溉需水量减小;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,与日照时数相关性较大。  相似文献   

11.
基于南方红壤丘陵区油茶树“七月干果,八月干油”的敏感需水期特征,本试验采用传统钻土取样烘干法选择在典型油茶林地连续定位抽样监测7月-9月份油茶林地需水关键期的土壤含水量,分析了油茶林地土壤水分动态变化特征及其水分有效性。结果表明:土层0-10cm范围土壤含水量受大气气候及灌溉等因素影响强烈,波动幅度比较大,较长时间含水量低于植物凋萎点以下;油茶树吸水根系分布密集的土层30-100cm范围内土壤平均含水量相对高,土壤含水量大多数高于凋萎点且波动幅度小, 仍随着季节性缓慢波动;仍有个别时段深层土壤含水量低于凋萎点,油茶树可能处于亏水胁迫期。这有可能导致油茶挂果率、出油率等产量降低。  相似文献   

12.
番茄根系层土壤水分变化规律及标定方法研究   总被引:1,自引:1,他引:1  
研究了番茄根系层土壤含水率的变化规律及番茄根系在土层的分布状况,从而准确确定根系层耗水最强烈的区域。结果表明,番茄根系层土壤含水率及波动幅度随距植株水平距离的增加而递减。距植株5cm处土壤含水率最小值从苗期的10cm土层下降到开花结果期的20cm土层。苗期一个灌水周期内,距植株15cm处苗期土壤含水率随土层深度的变化随灌水后时间推移趋于平缓,开花结果期10~20cm土层土壤含水率达到最小。苗期和开花结果期,距植株25cm处土壤含水率均表现为10cm以上土层变化较大,10cm以下土层土壤含水率随深度变化不大。苗期到开花结果期,土壤水分低值区域范围水平方向扩大,竖直方向扩大并下移。苗期可用距植株5cm处0~10cm土层含水率,开花结果期可用距植株5cm处0~30cm土层含水率计算作物蒸腾量。  相似文献   

13.
通过CROPWAT模型分析泾惠渠灌区冬小麦和玉米蒸发蒸腾量及灌溉需水量的变化,同时运用SPSS软件,计算灌区作物需水量与气象因子的相关系数,分析结果表明:冬小麦整个生育期蒸发蒸腾量平均值为634.04 mm,蒸发蒸腾量最高峰出现在4月中旬—5月中旬,灌区各分区蒸发蒸腾量趋势基本一致;玉米蒸发蒸腾量平均值为525.22 mm,蒸发蒸腾量高峰期出现在7月中旬—8月下旬,其中三原最大为535.97 mm,富平最小为514.68 mm;灌区冬小麦在播种—越冬期灌溉需水量最低,返青—拔节期需水量增加;灌区玉米在拔节—抽雄期需水量增加,灌溉平均需水量为133.04 mm;7月—8月为籽粒形成乳熟期,需水量为359.15 mm,至9月下旬,玉米灌溉需水量下降;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,气温、日照时数和相对湿度是影响作物需水量的主要因素.  相似文献   

14.
通过CROPWAT模型分析泾惠渠灌区冬小麦和玉米蒸发蒸腾量及灌溉需水量的变化,同时运用SPSS软件,计算灌区作物需水量与气象因子的相关系数,分析结果表明:冬小麦整个生育期蒸发蒸腾量平均值为634.04 mm,蒸发蒸腾量最高峰出现在4月中旬—5月中旬,灌区各分区蒸发蒸腾量趋势基本一致;玉米蒸发蒸腾量平均值为525.22 mm,蒸发蒸腾量高峰期出现在7月中旬—8月下旬,其中三原最大为535.97 mm,富平最小为514.68 mm;灌区冬小麦在播种—越冬期灌溉需水量最低,返青—拔节期需水量增加;灌区玉米在拔节—抽雄期需水量增加,灌溉平均需水量为133.04 mm;7月—8月为籽粒形成乳熟期,需水量为359.15 mm,至9月下旬,玉米灌溉需水量下降;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,气温、日照时数和相对湿度是影响作物需水量的主要因素.  相似文献   

15.
为提出有效措施预防黄土高原西部地区春小麦生产受到气象和农业干旱的影响,估算了1961—2018年期间、时间尺度1~6个月标准化降水蒸散指数(Standardized precipitation evapotranspiration index, SPEI)以及深度0~10cm和深度10~40cm的土壤水分亏缺指数(Soil moisture deficit index, SMDI),探究了气象和农业干旱时空变化规律;利用DSSAT-CERES-Wheat模型模拟了黄土高原西部7个站点春小麦1961—2018年的生长要素和产量数据,分析了其时空变化规律;并研究了气象和农业干旱对春小麦生长过程及产量的影响。结果表明:以甘肃临夏站为例,时间尺度1~6个月SPEI和SMDI的干湿状态总体上一致,SPEI总体呈现干湿交替,深度0~10cm的SMDI以及深度10~40cm的SMDI的变化基本一致,均呈现变湿润的趋势。DSSAT-CERES-Wheat模型模拟黄土高原西部春小麦生长过程和产量方面的效果良好(决定系数R2为0.65~0.84);1961—2018年春小麦最大叶面积指数和地上生物量无明显变化趋势,而产量在2005年之后有增加的趋势。开花期和灌浆期的干旱对春小麦生长过程以及产量的影响更大,SMDI与春小麦生长和产量要素之间的关系比SPEI更为密切,表明农业干旱对春小麦生长和产量的影响更大,其中深度0~10cm的SMDI比深度10~40cm的SMDI影响程度大。时间尺度2个月的深度0~10cm的SMDI是干旱背景下影响春小麦生长和产量的关键时间尺度。本研究为黄土高原西部春小麦生产应对气象和农业干旱提供了参考。  相似文献   

16.
入渗产流是水循环的重要环节,膨胀性土会改变土壤水分运动参数,从而对降雨入渗产流过程产生影响。以具有膨胀性的黄绵土和娄土为研究对象,在室内模拟降雨条件下,研究了土壤膨胀性对4种厚度(分别为10、20、30、40cm)的土壤容重、累积入渗量、径流强度等土壤水分运动参数的影响,并采用Philip公式、Kostiakov公式和Horton公式对土壤水分运动特征曲线拟合。结果显示:各种厚度的膨胀性土壤受到膨胀力和重力双重作用均导致表层0~10 cm土壤平均干容重相对减小,10 cm以下深度土壤干容重随深度增加而相对增加。随着土壤厚度增大,黄棉土和娄土的土壤累积入渗量变小。径流强度随历时增加而增加,然后稳定,且因不同土层土壤颗粒稳定性不同影响波动幅度。Philip公式拟合效果不理想,Kostiakov公式只适用于土壤饱和段的拟合,而Horton公式考虑到膨胀土体积变化影响土壤饱和过程中土壤水入渗速率,适用于初始入渗至稳定入渗的过程。  相似文献   

17.
【目的】揭示黄土塬区深剖面土壤水的氢氧同位素(δ~2H、δ~(18)O)分布特征。【方法】于2015年8月采用土芯钻探的方式以20 cm为采样间隔,在长武塬采取98 m(其地下水埋深为95 m)深剖面原状土样。根据测定的土壤水δ~2H和δ~(18)O值,将剖面分为浅层(0~10 m)、深层(10~84 m)、过渡层(84~95 m)和地下水层(95~98 m)4层,并采用经典统计学方法分析了整个剖面土壤水氢氧稳定同位素的变异特征。【结果】δ~2H在浅层、深层、过渡层和地下水层的平均值分别为-78.6‰、-75.2‰、-74.6‰、-76.5‰,δ~(18)O在相应4层的平均值分别为-10.9‰、-9.9‰、-10.2‰、10.4‰,δ~2H和δ~(18)O均在10 m以上的浅层最为贫化。δ~2H在浅层、深层、过渡层和地下水层的标准差分别为11.8‰、2.6‰、1.4‰、1.2‰,δ~(18)O在相应4层的标准差SD分别为1.6‰、0.5‰、0.3‰、0.3‰。δ~2H和δ~(18)O值在浅层波动较大,变异系数10%,属于中等变异;而10 m以下相对稳定,变异系数Cv10%,属于弱变异;变异系数随深度的增加而逐渐减小。δ~2H和δ~(18)O的标准差均随深度增加逐渐减小。【结论】对于以活塞流补给为主的深厚黄土高原地区,深层土壤水氢氧同位素在剖面的变异较小,因此,可利用氢氧同位素趋于稳定的上层土壤水代替深层土壤水来进行地下水补给的研究。  相似文献   

18.
通过田间试验,研究了膜下滴灌条件下,不同灌溉定额对春玉米生育期土壤水盐空间分布特征的影响.结果表明土壤含水量的时空分布受灌溉水量的影响.在灌溉期,0~20 cm土层土壤水分含量明显增加.随灌水定额的增加,土壤脱盐深度呈增大的趋势,其中,0~20 cm土层土壤脱盐现象明显,40~100 cm土层土壤积盐现象明显.在春玉米生育后期,灌水定额对滴灌带间的土壤淋洗作用较前期明显.在非灌溉期,由于较强烈的蒸发蒸腾作用,土壤含水量持续降低,作物的主要根系吸水层0~60 cm土层土壤水分含量阶段性变化明显.土壤盐分随土壤水分向上运移,在0~40 cm土层发生积盐现象,40~100 cm土层发生脱盐现象,畦灌方式在0~100 cm土层内均发生脱盐现象.膜下滴灌条件下,春玉米在拔节期前0~100 cm土层土壤含水率和含盐率变异系数分别属于中等变异和弱变异强度,之后两者均属于中等变异强度,且土壤含盐率变异强度始终低于土壤含水率.  相似文献   

19.
承德围场地区土壤水分扩散率的研究   总被引:3,自引:1,他引:3  
通过试验研究了承德围场地区的土壤水分扩散率,结果表明:土壤剖面的水分扩散率在1.0×10-2~1.6×10 cm2/min变化,尤以第2层即耕作层土壤水分扩散率最大,第3层最小。扩散率与含水量符合经验公式D()θ=aebθ,呈指数函数变化,经统计分析均达到显著水平;土壤容重、孔隙大小、孔隙类型及土壤颗粒组成中粘粒含量对土壤水分扩散率都有一定的影响。  相似文献   

20.
通过田间试验研究了不同灌溉制度对土壤水分及制种玉米农艺性状及产量的的影响。试验结果表明,在苗期~拔节期,灌水处理主要影响土壤0~60cm的土壤水分分布。灌浆期~成熟期进行灌水处理对提高土壤0~100cm土壤蓄水量无明显的促进作用。相同灌溉定额条件下,不同灌水次数对产量有一定的影响。作物全生育期耗水量与作物经济产量具有二次抛物线关系,相关性显著(相关系数为0.886 1)。研究结果表明在西北旱区灌水定额为900m3/hm2条件下,在制种玉米苗期~拔节期、拔节期~抽雄期、抽雄期~灌浆期进行3次灌水为最优灌溉制度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号