首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
根据内蒙古自治区河套灌区解放闸灌域多年遥感蒸散发数据(2000-2014年),分析了农田实际蒸散发年际变化、空间分布特征以及其与地下水埋深的相关性。结合水量平衡模型对灌域灌溉用水效率进行了评价,同时对大型灌区续建配套及节水改造以来灌域水循环要素年际变化进行了统计分析。结果表明:解放闸灌域农田蒸散发量年际变化呈增加趋势,多年平均蒸散发量为8.56亿m~3(597.30mm);2000、2003、2006、2009、2012和2014年农田蒸散在空间上表现为西部和东北部区域高于其他区域,其空间差异性并未随时间发生明显变化,与地下水埋深空间分布特征相似,蒸散发高值区域发生在地下水埋深较浅区域,潜水蒸发对农田蒸散发量影响不可忽视。节水改造实施以来,灌域净灌溉引水量有所减少,灌溉水利用系数得到提高,地下水位由1.76m降到2.16m,由此表明了节水改造对该地区生态环境改变的积极影响。  相似文献   

2.
土地利用方式变化对水循环过程响应机制研究   总被引:2,自引:0,他引:2  
以挠力河流域为研究区,利用1990年和2013年土地利用类型,结合基于格子玻尔兹曼方法(LBM)的TOPMODEL模型定量评价了土地利用方式变化对水循环时空变化过程的影响。结果表明:基于LBM法的TOPMODEL模型可以很好模拟挠力河流域降雨径流水循环过程,对研究区具有较高的适用性;研究区林地、草地和建设用地面积变化不大,对于土地结构变化贡献比较小,而未利用地和旱田部分转为水田对土地结构变化贡献大;由于种植水田,导致5月到10月间的流域总蒸散发量增加、根系区缺水量减少、非饱和带缺水量减少、地表水量减少、地下水量增加;蒸散发增幅达8.9%,根系区缺水量降幅达10.5%,地表水量减少达43%;水田对水文情势影响的差异主要体现在水稻生育期的差异上,分蘖期对蒸散发量、根系区缺水量和非饱和带缺水量影响较大;水田灌溉对水循环过程的影响按变化幅度从大到小的顺序为非饱和带缺水量、根系缺水量、蒸散发量、入根系区水量、出根系区水量和地下径流量,其中入根系区水量差值和出根系区水量差值接近。  相似文献   

3.
基于GIS的河套灌区井渠结合分布区的确定方法   总被引:2,自引:0,他引:2  
实施井渠结合,合理开发利用地下水是河套灌区节水和控制土壤盐碱化的重要途径。运用ArcGIS分析了地下水矿化度和土壤岩性特征,采用空间分层的处理方法构建了地下水矿化度分区图,并结合灌区土地利用状况和农业灌溉用水要求确定了井渠结合区分布以及面积。结果表明,将矿化度数据分3个空间层处理是可行的,建立的矿化度分区图呈一定的空间变化特征。井渠结合区主要分布在乌兰布和灌域非沙漠带、解放闸灌域和永济灌域南部、义长灌域北部及其与乌拉特灌域、乌梁素海交界附近区域、乌拉特灌域尾部、灌区北部沿狼山山脉部分区域。井渠结合区约占整个灌区控制面积的45%。  相似文献   

4.
根据沙湾县地下水系统与外部环境的关系,结合灌区1998-2017年的地下水位平均埋深资料,采用Pearson、Kendall和Spearman秩次相关检验3种方法,分析了近20 a灌区变化环境的变化趋势及对地下水动态的影响;运用主成分回归分析法确定影响灌区地下水埋深变化的主要驱动因素。结果表明:近20 a来,灌区年均气温呈不显著增加趋势,降水呈不显著减少趋势,近10 a(2008-2017年)在a=0.01水平上地表水灌溉量呈显著减少趋势,灌溉面积、节水灌溉面积及地下水开采量均呈显著增加趋势;地下水动态变化的驱动因子为地下水开采、地表水灌溉、节水灌溉、灌溉面积、气温、降水,影响程度依次降低;人为活动对地下水动态起主导作用,其中以地下水为主要水源的节水灌溉面积的增加是造成地下水位下降的主要原因。研究区在实施退耕还林、机井封填的同时还需要通过调整农业结构,提高农灌效率,节水灌溉结合地表、地下水来实现地下水资源的可持续利用。  相似文献   

5.
基于数据融合算法的灌区蒸散发空间降尺度研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用Landsat和MODIS数据,通过增强自适应融合算法(Enhanced spatial and temporal adaptive reflectance fusion model,ESTARFM)对蒸散发进行空间降尺度,构建田块尺度蒸散发数据集;利用2015年田间水量平衡方法计算的蒸散发数据对融合结果进行评价。在融合蒸散发基础上,结合解放闸灌域2000—2015年间种植结构信息,提取不同作物各自生育期和非生育期内年际蒸散发量,并分析了大型灌区节水改造以来,作物蒸散发占比的年际变化。研究结果表明:融合蒸散发与水量平衡蒸散发变化过程较吻合,小麦耗水峰值出现在6月中下旬—7月初,玉米和向日葵峰值出现在7月份。在相关性分析中,玉米、小麦和向日葵的决定系数R2分别达到了0.85、0.79和0.82;生育期内玉米(5—10月份)、小麦(4—7月份)和向日葵(6—10月份)的均方根误差均不高于0.70 mm/d;平均绝对误差均不高于0.75 mm/d;相对误差均不高于16%。在农田蒸散发总量验证中,融合蒸散发与水量平衡蒸散发相关性较好,两者决定系数达到了0.64。基于ESTARFM融合算法生成的高分辨率蒸散发(ET)结果可靠,具有较好的融合精度。融合结果与Landsat蒸散发的空间分布和差异性一致,7月23日、8月24日和9月1日相关系数分别达到0.85、0.81和0.77;差值均值分别为0.24 mm、0.19 mm和0.22 mm;标准偏差分别为0.81 mm、0.72 mm和0.61 mm。ESTARFM融合算法在农田蒸散发空间降尺度得到较好的应用,可有效区分不同作物蒸散发之间的差异。不同作物在生育期和非生育期内耗水量差别较大;生育期内套种(4—10月份)耗水量最大,达到637 mm,玉米(5—10月份)和向日葵(6—10月份)次之,分别为598 mm和502 mm,小麦(4—7月份)最低为412 mm;非生育期内,小麦(8—10月份)耗水量最大,年均达到214 mm,玉米(4月份)和向日葵(4—5月份)分别为42 mm和128 mm。不同作物多年平均耗水量(4—10月份)差异较小,其年际耗水总量主要随作物种植面积的变化而变化。  相似文献   

6.
实际蒸散发是水文循环的关键环节,分析灌区实际蒸散发及其影响因素对灌区水资源的高效利用和农业高质量发展具有重要意义。然而,目前蒸散发的影响因素研究在确定主要因素时往往采用解释力较差的传统统计学方法,在相关性分析时忽略了蒸散发与其影响因素在空间上的相关性。因此利用改进的随机森林模型确定实际蒸散发的主要影响因素,并通过岭回归模型和地理加权回归模型探究实际蒸散发与其影响因素的时空相关关系。结果表明:(1)在灌溉期,地表净辐射、平均气温、叶面积指数和实际水汽压是实际蒸散发的主要影响因素;在非灌溉期,地表净辐射、平均气温、风速和日照时间是实际蒸散发的主要影响因素。实际蒸散发在一定程度上代表了灌区的作物耗水量。因此,灌区作物耗水在灌溉期和非灌溉期的影响作用有一定的差异。(2)在时间上,风速与实际蒸散发为负相关关系且呈显著负相关(P<0.05),其余影响因素与实际蒸散发均为正相关关系且呈显著正相关(P<0.05);在空间上,除风速与实际蒸散发在大部分区域呈负相关关系,其余影响因素都与实际蒸散发在大部分区域呈正相关关系。因此,除风速外,其余影响因素对灌区作物耗水在大部分区域都为正向促进作用。  相似文献   

7.
随着黄河水资源逐年紧缺,河套灌区迫切需要提高区内的水资源利用效率。井渠结合采用抽取地下水和引黄水共同灌溉,在不减少灌溉用水的情况下减少了引黄水量,是一种切实有效的节水措施。应用Visual MODFLOW建立了河套灌区的地下水模型,通过对模型的率定与验证,较好地反映了河套灌区实际水文地质条件,可用来预测该地区地下水运动及水资源状况,分析该地区采取井渠结合节水措施后对地下水的影响。模型预测结果表明:河套灌区实施井渠结合节水措施后,可减少黄河引水约4.09亿m3,井渠结合区内生育期平均地下水埋深由2.17 m增至2.68 m,秋浇期由1.91 m增至2.82 m,冻融期由2.28 m增至2.50 m。  相似文献   

8.
为确定限制引水背景下河套灌区土壤水-地下水动态及其转化关系,为优化农田水管理策略提供理论依据,选取河套灌区典型斗渠区域,基于2年土壤水、地下水的监测数据,分析在不同作物种植区、不同灌溉期的农田土壤水、地下水的动态变化规律。运用水量平衡法对地下水浅埋区农田土壤水与地下水的转化关系进行定量研究,结果表明:生育期内农田土壤水分变化属于“灌溉降水入渗补充-腾发消耗型”;受灌溉影响,不同时期地下水埋深动态具有显著的灌溉型特征,土壤水渗漏补给地下水明显抬升地下水位,地下水排水和潜水蒸发又降低地下水位;在作物生育期内,土壤水与地下水进行双向补给,且不同时期具有不同的转化特征;研究区2年生育期内灌溉降水补给土壤水分别为544.56mm和541.85mm,平均腾发量为465.5mm和434.8mm,土壤储水量减少61.96mm和63.1mm,土壤水补给地下水为207.73mm和236.94mm。研究可为当地及相近地区农业节水灌溉提供科学依据。  相似文献   

9.
【目的】揭示不同降水年型下东北寒区水稻需水对地下水埋深变动与灌溉的响应规律,进一步优化寒区水稻灌溉制度。【方法】以黑龙江庆安和平灌区灌溉试验站多年水稻灌溉试验及2017年地下水动态观测数据为依据,分析不同灌水模式下水稻耗水及地下水变化动态,验证AquaCrop模型在东北寒区水稻生长模拟中的适用性,并用于模拟分析25%、50%、75%降水年型下水稻需水与不同地下水埋深的相互关系及灌水量的响应规律,提出适宜该地区水稻高产的地下水埋深范围及其生育期净灌水量。【结果】①水稻生育期内,地下水埋深先浅后深,其中,分蘖期、拔节孕穗期和抽穗开花期耗水量大,灌溉和降雨较多,地下水埋深较浅;②构建了3种降水年型下ET与GD、I的多元回归方程,综合考虑了水稻需水量与地下水埋深、生育期灌水量之间的相关关系,可用于稻田高效耗用水管理和地下水资源持续利用;③为实现东北寒区水稻高产和地下水埋深基本稳定的双重目标,地下水埋深应控制在2.0~2.5 m之间,水稻生育期净灌水量为:枯水年不宜低于现状灌水量,即300 mm;丰水年和平水年净灌水量可适当减少至现状灌水量的0.8倍,即240 mm。【结论】提出了适宜该地区水稻高产的地下水埋深范围及生育期净灌水量,为促进我国东北地区节水增粮,保护湿地生态环境,提高农业用水效率提供了理论依据。  相似文献   

10.
通过对河套灌区七排域明沟排水效益监测研究和对明沟运行现状,排水、排盐、侧渗情况的监测分析,表明在引黄水量逐年减少,地下水位逐年下降的新形势下,排水量逐年减少,排水任务相对减轻。节水灌溉实施后,节水灌溉必将成为灌区水利工作的中心;排水的方式、作用及规划设计标准、灌排关系有所改变。  相似文献   

11.
针对干旱田间灌溉时水盐运移的动态特殊性,从甘肃景电灌区中选取典型试验点,构建基于HYDRUS-2D模型模拟田间土壤的水盐运移,研究了定额间歇性灌水-蒸散发条件下饱和-非饱和土壤盐分的运移过程。结果表明,经过两次灌水-蒸散发循环试验,各试验点耕作层土壤平均含盐量均大幅下降,土壤盐分峰值缓慢下移,耕作层土壤脱盐趋势明显。各试验点耕作层土壤在灌水压盐及蒸散发返盐双重作用下,交替发生了脱盐和积盐现象。土壤在轮灌期为盐分流失的过程,在停灌期为积盐的过程。灌溉和蒸散发作用是影响干旱灌区田间土壤水盐变迁的重要原因。  相似文献   

12.
为了客观评价泾惠渠灌区节水改造环境效应及制定适宜的农业节水方案,寻求灌区地下水合理开发利用模式,综合应用GMS和ArcGIS软件建立了灌区地下水分布式模型,结合灌区渠系衬砌、田间节水及农业种植结构的实际情况设置8种真实情景和假定情景分析了灌区节水改造对地下水空间分布的影响.结果表明:灌区田间节水工程可减少18.5%~33.4%的井灌水量,对缓解地下水位下降效果尤为明显;灌区渠系节水工程使渠系水利用系数增加16.9%,减少地下水开采的作用次之;灌区泾阳、杨府、楼底、张卜等地区农业种植结构与水土资源空间布局匹配不合理抵消了节水改造对地下水位下降的部分抑制作用,地下水降落漏斗呈扩大趋势.建议进行地下水人工调蓄、完善地下水取水许可制度、加大田间节水力度、合理调整农业种植结构,实现灌区水资源高效持续利用及节水农业可持续发展.  相似文献   

13.
泾惠渠灌区冬小麦合理灌溉制度研究   总被引:2,自引:0,他引:2  
确定合理的冬小麦灌溉制度,可以达到增产节水的效果。在泾惠渠灌区进行了3 a的大田冬小麦灌溉制度试验,试验设置8个灌水处理,每个处理重复2次。基于试验数据分析不同生育期灌水处理,对冬小麦的产量及水分利用效率的影响,确定了不同降雨年型冬小麦的适宜灌溉制度。研究结果表明:在一定灌溉定额内,灌水期及灌水量对冬小麦的产量影响显著,生育前期出现旱象的情况下,冬灌是冬小麦丰产的基本保证;拔节期和抽穗期间,土壤水分对冬小麦生长影响较大,是其生长发育需水关键期。2013-2014年降雨年型(75%枯水年),最优灌溉制度为压茬灌+冬灌+返青灌全生育期灌水3次组合,灌溉定额2 700 m~3/hm~2;2014-2015年与2015-2016年降雨年型相似,属50%中水年,最优灌溉制度为冬灌+拔节灌+抽穗灌浆灌全生育期灌水3次组合,灌溉定额3 412.5 m~3/hm~2。研究成果为泾惠渠灌区农田合理灌溉,农业节水增产提供一定指导依据。  相似文献   

14.
灌区耗水量变化对地下水均衡影响研究   总被引:1,自引:0,他引:1  
从宝鸡峡灌区水资源形成及转化的角度出发界定了灌区耗水量的概念。通过对灌区水量平衡关系分析,建立了灌区地下水量平衡模型,通过模型计算与分析,结果表明渠系及田间入渗补给量、地下水开采量是主要的地下水平衡要素;宝鸡峡灌区1991~2003年渠系蒸发及浸润损失量和渠系渗漏补给量总体呈递减的趋势,当渠首引水量和渠系利用系数一定时,渠系蒸发及浸润损失量和渠系渗漏补给量呈反比关系。灌区田间灌溉耗水量与田间灌溉入渗补给量也呈递减趋势;灌区地下水耗水量和地下水开采量总体呈上升趋势。  相似文献   

15.
探究区域作物生育期实际蒸散发及其空间分布特征,为区域节水潜力评价提供依据.研究结合多源数据(种植结构、遥感数据和气象数据等)和遥感陆面蒸散反演方法,得到作物实际蒸散发(ET),并根据作物不同生长阶段的变化特点结合气象资料估算遥感数据缺失时期的ET.①基于遥感数据和SEBAL模型能够准确反演流域空间尺度的日蒸散发量,其生育初期和中期平均误差分别为11.49%和6.22%.5-7月,日蒸散发逐渐增大,且在7月达到峰值,8-10月日蒸散发逐渐降低,9-10月降低趋势较大;②不同作物之间,生育期ET差异明显,甜菜>土豆>玉米>小麦,分别为619.72 mm、558.67 mm、492.51 mm、456.58 mm.作物生育期ET变化范围分别在476.02~795.73 mm、405.41~684.84 mm、345.11~683.35 mm和313.34~604.62 mm之间;③同种作物因灌溉制度不同,其作物生育期ET在空间上表现出差异性.受流域南北降雨不均影响,4种主要作物生育期ET呈现明显的由南向北递减趋势.北部湖泊附近的小麦,因土壤含水量较高,其生育期ET高于周边其他区域.针对内蒙古察汗淖尔流域内作物生育期ET空间分布差异明显,部分区域地下水超采严重等特点,调整流域内种植结构及灌溉制度尤为重要.  相似文献   

16.
灌区实施节水灌溉,减少了灌溉取水量,同时也减少了回归水量。根据节水量的组成将节水分为灌溉取水节水量和资源型节水量,并分析了两种节水量的计算方法。在此基础上,分别计算了黑河流域近期治理中中游灌区各项节水措施的相应取水节水量和资源型节水量。通过对比分析得出,黑河流域近期治理中提出的中游灌区的节水目标为流域尺度上的节水量,灌区的节水量应采用资源型节水量的计算方法进行计算。  相似文献   

17.
【目的】探究节水灌溉模式条件下稻田地下水补给特征。【方法】采用定地下水埋深的蒸渗仪开展试验,分析节水灌溉干湿循环下稻田地下水补给量变化过程,研究地下水补给对节水灌溉稻田作物需水的贡献及对土壤水分的调节作用。【结果】控制灌溉稻田地下水补给过程频繁,当稻田干湿循环过程中土壤水分降至一定限度时,稻田地下水补给量在复水后(灌水或降雨)1 d内出现峰值,稻季共出现16次峰值。控制灌溉稻田稻季地下水补给量达253.98mm,约占水稻需水量的51.1%。稻田干湿循环中,在稻田地下水补给与土壤水入渗的综合作用下,30 cm深度以下土壤含水率保持稳定,0~30 cm深度土壤含水率总体呈下降趋势。【结论】节水灌溉干湿循环下稻田地下水补给量显著增加,有效补给了水稻需水。浅地下水埋深条件下,稻田地下水补给过程直接影响水稻根区土壤水分变化。  相似文献   

18.
河套灌区井渠结合地下水数值模拟及均衡分析   总被引:2,自引:0,他引:2  
建立了河套灌区三维地下水数值模型,用2006-2013年灌区实测地下水埋深资料对模型进行率定和验证,并在规划的井渠结合区内,设置3种不同井灌区灌溉定额和3种秋浇频率,组合共9种井渠结合节水情景,分别分析了9种节水情景下的地下水动态变化.结果表明:井渠结合后全灌区地下水埋深范围为1.863~2.029 m,较现状条件增加0.084~0.250 m;不同灌域结合区井渠结合后地下水埋深差别很大,解放闸结合区地下水埋深最大,为2.308~2.803 m,永济结合区地下水埋深最小,为2.079~2.455 m;井渠结合后,入渗补给量减少2.01×108 ~3.63×108 m3/a,潜水蒸发量减少1.69×108 ~3.03×108 m3/a.  相似文献   

19.
以人工神经网络理论中的BP、RBF模型为主要建模工具,以内蒙古河套灌区的试一个试验区(沙壕渠试区)为研究实例,对河套灌区节水工程实施后作物生长季(非冻季)的土壤水盐变化状况进行了模拟与预测研究。从预测结果看,2015年,当引水量减少30%时,地下水位有较大幅度下降,夏灌前、夏灌后、秋浇前与封冻前的土壤水分随着灌水量的减少呈下降趋势,而土壤盐分在浅层与中层呈现出不同的结果:0-40 cm土壤盐分呈脱盐趋势,而40-70 cm土壤呈轻度积盐趋势,总体上节水改造工程对灌区浅层土壤盐碱化改善与防治有积极效果,但土壤水分的下降可能会造成土壤某些阶段一定程度的水分亏缺和作物种植结构及灌溉制度的改变。本文对中国北方大型灌区的节水工程改造与规划管理有一定的参考价值。  相似文献   

20.
河套灌区蒸散发分析及耗水机制研究   总被引:1,自引:1,他引:1  
以河套灌区义长灌域永联试验区为研究对象,建立水均衡方程。首先,分析了水均衡法估算出的蒸散发量的合理性、蒸散发量与水均衡要素的关系以及根系层不同取土观测深度对水均衡法估算蒸散发量的影响。然后,分析了永联全区的水均衡要素构成以及土壤水和地下水的水分消耗过程。最后,分析水均衡法估算蒸散发量需注意的问题。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号