首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
利用排水式蒸渗仪,借助自制的Mariotte瓶装置,通过设置6种地下水埋深控制处理(地下水位埋深分别为0.2、0.4、0.6、0.8、1.01、.2m),探讨了不同地下水埋深对夏玉米的地上部分、根系生物量及耗水量的影响。结果表明,夏玉米株高和冠层叶面积随地下水埋深减小有增加的趋势,但是当地下水埋深减小到一定程度时就会抑制株高、叶面积,地下水埋深0.6m处理株高和叶面积系数(LAI)最大。各土层根系及其总生物量随地下水埋深增大而增大;地上部总生物量与地下部根生物量的比值随地下水埋深的增大呈明显减少的趋势。夏玉米全生育期和各阶段耗水量分别与地下水埋深呈较好的负相关关系,达到极显著水平(P<0.01);地下水补给量占耗水量的比例随地下水埋深的增大而逐步降低。研究结果可为江淮丘陵区夏玉米灌溉制度的制定及农田排水工程的设计提供参考依据。  相似文献   

2.
地下水埋深对冬麦田土壤水分及产量的影响   总被引:14,自引:1,他引:14  
通过6种地下水位控制处理和对照(自然地下水位)冬小麦试验,探讨了不同地下水埋深对冬麦田土壤水分季节变化规律和垂直变化规律、地下水-土壤水界面水分转化量变化过程以及对冬麦田田间土壤水分平衡的影响。结果表明,地下水埋深对冬麦田0~60cm土壤水分动态有着明显的影响。地下水埋深越浅,麦田表层和主要根层土壤储水量季节变化越强烈,地下水对土壤水分的补给量越大,冬小麦全生育期耗水量也随着增加;土壤排水量大小与灌溉量和降雨量大小有关。地下水位埋深越深,灌溉和降水后的土壤开始排水日期越滞后;无论地下水埋深深浅,冬麦田累计地下水补给量变化规律可分为4个阶段,即稳定增长期、缓慢增长期、快速增长期和趋于稳定期;地下水埋深1.5m时冬小麦产量最高,地下水位太深或太浅产量均下降。水分利用率最高值出现在地下水埋深1.0m的处理。地下水位在1.0m以下时,水分利用效率随地下水深度加深和灌水量增加而减少。  相似文献   

3.
依据天长市二峰灌溉试验站2010年夏玉米地下水位埋深试验资料,通过6种地下水位控制处理和3种对照夏玉米试验,探讨了不同地下水位埋深对夏玉米的耗水量及耗水量与产量关系的影响。结果表明:夏玉米的耗水量呈抛物线型,前后期小,中期大,到抽雄吐丝期达到最大,并随水位埋深加大而降低;过高或过低的耗水量均影响夏玉米的产量。  相似文献   

4.
通过生育期不同地下水位对夏玉米的生长性状及产量构成的影响,为农田排水工程设计,防治涝灾,提高夏玉米单产提供科学依据.利用天长二峰试验站坑测为试验装置,在地下水位埋深0.2~1.2 m之间每隔0.2 m安排1个处理,并设一组最优为对照,研究不同处理对夏玉米的生长发育及产量构成的影响.不同地下水位对玉米株高、果穗粗和穗粒数影响不大,而对叶面积指数、百粒重的影响较大,水位较浅或较深将导致百粒重降低而减产.  相似文献   

5.
地下水埋深对再生水灌溉的夏玉米生长影响   总被引:1,自引:0,他引:1  
为探讨地下水埋藏较浅地区再生水灌溉对夏玉米生长的影响,利用地中蒸渗仪控制不同地下水埋深(2、3和4 m),对夏玉米进行再生水灌溉试验,灌水量设900 m3/hm2和1200 m3/hm2二个处理,并与清水灌溉进行对比。试验表明,与对照相比,再生水灌溉叶面积指数和株高最大值出现时间要提前近10 d左右;不同地下水埋深的低水和高水处理叶面积指数变化趋势相同,都为埋深2 m>埋深3 m>埋深4 m;地下水埋深2 m3、m处理,低水和高水的株高非常接近,且都大于相应灌水量4 m地下水埋深处理;地下水埋深2 m、3 m处理再生水灌溉理论产量明显大于对照。  相似文献   

6.
浅地下水对作物生长规律的影响研究   总被引:8,自引:1,他引:8  
通过开展不同地下水埋深条件下冬小麦和玉米全生育期潜水蒸发试验,探讨浅埋深地下水对作物生长规律的影响,为地下水浅埋区制定灌溉制度提供参考。试验结果分析表明,不同埋深的地下水对作物的生长发育过程有着很大影响,根系生长在分蘖期和拔节期受地下水位影响较大;而冠的生长则是在孕穗期到灌浆期影响较明显;作物的腾发量也不同。  相似文献   

7.
为解决渍水胁迫这一困扰南方避雨栽培区农业生产的障碍性问题,定量评估施加生物炭对缓解作物渍害的影响,以避雨栽培番茄为对象,借助土柱试验,系统分析不同地下水位及生物炭施加量对作物耗水规律、土壤氧化还原电位及产量的影响。结果表明,地下水位越浅,作物渍害胁迫越严重,导致耗水量越少;施用生物炭后,作物耗水量显著降低,生物炭保水作用随地下水位降低而有所削弱。地下水补给量随地下水埋深变大而减小,相同地下水位条件下,施用生物炭可显著增加地下水利用量。施用生物炭可使土壤氧化还原电位变大,改善土壤通气性能。地下水位在-80cm时,5%生物炭施加量可显著提高番茄产量和水分利用效率,其增幅分别达到38.7%、56.6%,地下水位对番茄产量影响显著,而地下水位和生物炭交互作用对产量及水分利用效率影响均不显著。  相似文献   

8.
淮北平原浅埋区地下水埋深对土壤水变化的影响研究   总被引:1,自引:0,他引:1  
为研究淮北平原浅埋区夏玉米生长期地下水埋深对土壤水变化的影响,利用五道沟水文实验站1992-2014年大田玉米生长期0~1.0 m各垂直土层大田土壤水实测资料,结合同期地下水埋深(变幅1~3 m)及气象资料进行分析研究,采用回归分析法,分别建立了0.3~0.4、0.4~0.5、0.5~0.6、0.6~0.8、0.8~1.0和0~1.0 m土层平均含水率与地下水位埋深的回归模型。结果表明:0.3~0.4、0.4~0.5、0.5~0.6、0.6~0.8、0.8~1.0和0~1.0 m土层平均含水率与地下水埋深呈线性负相关关系,拟合优度分别为0.632、0.739、0.788、0.861、0.834和0.780。该研究为及时了解土壤水动态变化、合理调控地下水位、提高田间水利用率具有重要意义。该研究成果为及时了解土壤水动态、合理调控地下水位和提高田间水的利用率具有重要意义。  相似文献   

9.
地下水埋深对春玉米需水量及需水系数的影响   总被引:2,自引:2,他引:0  
采用排水式蒸渗仪试验,研究了不同地下水埋深时,春玉米需水量和地下水利用量的变化规律,对春玉米需水系数进行了计算。结果表明,在全生育期内,春玉米需水量最大值出现在地下水埋深为0.5 m时,1.0 m时最小;地下水埋深对春玉米需水量的阶段分配没有太大影响,不同地下水埋深处理的规律基本一致,即拔节到抽穗期最小,灌浆到收获期最大;不同地下水埋深的春玉米日需水量变化规律也基本一致,即前期较小,生长盛期达到最大;春玉米需水系数在播种-拔节期最小,在抽穗-灌浆期最大。研究结果可为春玉米节水灌溉制度的制定和高效灌溉管理提供参考。  相似文献   

10.
浅层地下水对玉米根区水分及根系吸水影响的数值模拟   总被引:1,自引:0,他引:1  
运用实测数据校准并验证模型,采用Hydrus-1D模型模拟了无灌溉、无浅层地下水以及浅层地下水波动对玉米根区水分动态及根系吸水的影响。结果表明,校准后的Hydrus-1D模型能够较为准确地模拟土壤非饱和区水分动态;浅层地下水可以将土壤剖面水分维持在较稳定的范围内。当无浅层地下水时,观测节点水分波动较大,尤其是40~100cm的砂土层水分在灌溉后迅速降低。浅层地下水在影响根区水分的同时影响着根系吸水,CK、无地下水、无灌溉下玉米生长季累积根系吸水量分别为58.2、53.9、57.4cm。累积根系吸水量随地下水埋深的降低而呈先增加后降低趋势,且均高于CK。累积根系吸水量随着地下水埋深的升高而总体呈逐渐降低趋势,当地下水埋深增加40cm时,累积根系吸水量仅为50.7cm,相对于2013年降低了13%。适宜的地下水位对于维持根区水分和促进根系吸水具有重要作用。  相似文献   

11.
【目的】探讨华北地区夏玉米-冬小麦轮作体系下氮肥减施与地下水埋深的交互作用。【方法】借助大型地中渗透仪和Logistic作物生长模型,采用二因素完全随机区组设计:地下水埋深(G1:2.0 m、G2:3.0 m、G3:4.0 m),施氮量(N1:减氮20%、N2:常规施氮),以及不施氮不控水作为对照(WN),研究了华北地区地下水埋深和施氮水平组合对夏玉米生长、干物质量积累和硝态氮量的影响。【结果】所有处理夏玉米叶面积指数(LAI)在灌浆期最大,成熟期相同施氮水平,G1处理LAI显著高于G2、G3处理;N2水平下,G1处理玉米株高快速生长时间较G2、G3处理分别增加了3.99%、12.91%,但最大增长速率相对降低了9.69%、14.65%;N1水平下,G1处理籽粒干物质量显著高于G2和G3处理,N2水平下,G3处理籽粒干物质量显著高于G1和G2处理;N2水平下,G1处理硝态氮增量显著高于G2、G3处理,0~20 cm分别高出75.92%、90.03%,20~40 cm分别高出30.56%、130.95%。同一地下水埋深下,成熟期LAI表现为N2处理显著高于N1处理;0~20 cm与20~40 cm土层N2处理下硝态氮增量是N1处理的1.4~5.3倍和2.4~11.2倍;在G1水平下,N2处理株高快速生长期较N1处理增加了7.52%,而N1处理单株籽粒干物质量显著高于N2处理,高出9.13%;Person相关性分析表明,N2水平下,随着地下水埋深变化,0~40 cm土层硝态氮增量与产量显著负相关,R2为0.827~0.883。【结论】高氮与较浅地下水埋深组合促进了玉米营养生长,不利于玉米生殖生长和产量形成;低氮与浅地下水埋深组合有利于产量形成和减氮增效。  相似文献   

12.
冬小麦生长条件下土壤水与地下水转化试验研究   总被引:1,自引:1,他引:0  
基于不同地下水埋深土壤水与地下水转化田间试验,探讨冬小麦生长条件下不同地下水埋深对土壤水与地下水转化的影响机理。试验结果表明,地下水埋深为1.5 m,在冬小麦需水高峰期,地下水为冬小麦生长提供的水资源量占耗水量的30%以上;随着地下水埋深增大,地下水对冬小麦需水的动态调节作用减弱;当地下水埋深为3.5 m,地下水已基本失去对冬小麦需水的动态调节能力。  相似文献   

13.
【目的】揭示不同降水年型下东北寒区水稻需水对地下水埋深变动与灌溉的响应规律,进一步优化寒区水稻灌溉制度。【方法】以黑龙江庆安和平灌区灌溉试验站多年水稻灌溉试验及2017年地下水动态观测数据为依据,分析不同灌水模式下水稻耗水及地下水变化动态,验证AquaCrop模型在东北寒区水稻生长模拟中的适用性,并用于模拟分析25%、50%、75%降水年型下水稻需水与不同地下水埋深的相互关系及灌水量的响应规律,提出适宜该地区水稻高产的地下水埋深范围及其生育期净灌水量。【结果】①水稻生育期内,地下水埋深先浅后深,其中,分蘖期、拔节孕穗期和抽穗开花期耗水量大,灌溉和降雨较多,地下水埋深较浅;②构建了3种降水年型下ET与GD、I的多元回归方程,综合考虑了水稻需水量与地下水埋深、生育期灌水量之间的相关关系,可用于稻田高效耗用水管理和地下水资源持续利用;③为实现东北寒区水稻高产和地下水埋深基本稳定的双重目标,地下水埋深应控制在2.0~2.5 m之间,水稻生育期净灌水量为:枯水年不宜低于现状灌水量,即300 mm;丰水年和平水年净灌水量可适当减少至现状灌水量的0.8倍,即240 mm。【结论】提出了适宜该地区水稻高产的地下水埋深范围及生育期净灌水量,为促进我国东北地区节水增粮,保护湿地生态环境,提高农业用水效率提供了理论依据。  相似文献   

14.
【目的】提高夏玉米用水效率。【方法】2018—2019年设置4个微喷补灌处理,分别以0~10(W10)、0~20(W20)、0~30(W30)和0~40(W40)cm为目标湿润土层,补灌的目标土壤含水率为相应土层的田间持水率,补灌时期均为夏玉米播种时、拔节期开始时和抽雄期开始时;以传统畦灌模式(CK)为对照,研究了不同微喷补灌方案对夏玉米形态发育指标、产量构成、耗水量和水分利用效率(WUE)的影响。【结果】随着补灌目标湿润土层深度的增加,夏玉米株高、叶面积指数(LAI)、地上部干物质量和籽粒产量等指标呈逐渐增大或先增大后减小的趋势,当目标湿润土层达到20cm后,继续增加灌水量对夏玉米生长的促进效应减小,W20处理的各项指标均能获得较高值。耗水量和WUE受补灌目标湿润土层深度影响显著,其中,耗水量随目标湿润土层深度的增加而增大,WUE则与之相反。W20处理与CK和高水分(W40)处理相比,籽粒产量无显著差异,但灌溉用水量减少47.33%~54.73%,耗水量显著降低9.86%~13.85%,WUE显著提高11.48%~19.26%。【结论】建议试验区夏玉米微喷补灌的目标湿润土层为0~20 cm,目标含水率为田间持水率。  相似文献   

15.
This paper presents the findings of the effect of some selected deficit irrigation scheduling practices on irrigated maize crop in a sub-catchment in south western part of Tanzania. Field experiments, in which maize (TMV1-ST) variety was planted under total irrigation, were conducted during the dry seasons of 2004 and 2005. Surface irrigation method was used and the crop was planted in basins. The seasonal water applied ranged from 400 to 750 mm. Soil moisture content from both cropped and bare soils, leaf area index, dry matter, and grain yields were measured. The dry matter yield ranged between 6,966 and 12,672 kg/ha, and grain yields obtained were between 1,625 and 4,349 kg/ha. The results showed that deficit irrigation at any crop growth stage of the maize crop led to decrease in dry matter and grain yields, seasonal evapotranspiration and deep percolation. Deficit irrigation in any one growth stage of the maize crop only seems to affect grain production and no significant effect on biomass production, but deficit irrigation that spanned across two or more growth stages affect both biomass and grain production drastically. Crop water use efficiency (WUE) and Irrigation water use efficiency (IWUE) were strongly influenced by the number of growth stages in which deficit irrigations were applied and how critical the growth stages were to moisture stress rather than the amount of irrigation water applied. While maximum WUE was obtained under full irrigation, maximum IWUE was obtained in the deficit irrigation treatment at vegetative growth stage, which suggest that IWUE may be improved upon by practicing deficit irrigation at the vegetative growth stage of the maize crop.  相似文献   

16.
黑龙江西部玉米调亏灌溉的节水增产效应   总被引:1,自引:0,他引:1  
采取测筒试验,对玉米单生育阶段、连续生育阶段和全生育期进行不同程度的水分亏缺处理,研究了调亏灌溉对玉米耗水量、产量和水分利用效率(WUE)的影响。结果表明:就单生育阶段调亏而言,产量和耗水量之间呈开口向下的二次抛物线关系,苗期中度水分亏缺(水分控制上限为60%)为最佳的灌水处理模式,玉米产量和水分利用效率分别提高了1.23%和11.95%;连续生育阶段和全生育期调亏均对作物的产量有不利影响;全生育期充分灌溉时的产量最高,但水分利用效率较低。  相似文献   

17.
【目的】研究拔节期淹水与不同施氮量对春玉米生长和产量的影响。【方法】通过田间试验,选用春玉米宜单9号为试验材料,两因素裂区试验设计,主处理为土壤水分状况,包括正常供水和拔节期淹水6 d(保持水层3~5cm),副处理为5个氮肥水平,施氮量(以纯N计)分别为0、90、180、270和360 kg/hm~2。测定春玉米株高、叶面积和成熟期籽粒产量及其构成。【结果】施纯氮在0~270 kg/hm~2,拔节期淹水条件下施氮量增加时春玉米大喇叭口至乳熟期叶面积指数(LAI)、株高、穗长、穗行数、行粒数、千粒质量和籽粒产量均增加,施氮量进一步增加时上述指标增加不明显。而秃尖长随施氮量的增加而减小。与不施氮相比,拔节期淹水下施氮量90、180、270和360 kg/hm~2的春玉米产量分别增加20.21%、31.86%、52.55%和57.03%;增幅高于正常供水的相应值。【结论】施氮量为0~270kg/hm~2,拔节期淹水胁迫下施氮有利于促进春玉米生长并提高产量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号