首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
基于卷积注意力的无人机多光谱遥感影像地膜农田识别   总被引:1,自引:0,他引:1  
监测地膜覆盖农田的分布对准确评估由其导致的区域气候和生态环境变化有着重要作用,基于DeepLabv3+网络,通过学习面向地膜语义分割的通道注意力和空间注意力特征,提出一种适用于判断农田是否覆膜的改进深度语义分割模型,实现对无人机多光谱遥感影像中地膜农田的有效分割。以内蒙古自治区河套灌区西部解放闸灌区中沙壕渠灌域2018—2019年4块实验田的无人机多光谱遥感影像为研究数据,与可见光遥感影像的识别结果进行对比,同时考虑不同年份地膜农田表观的变化,设计了2组实验方案,分别用于验证模型的泛化性能和增强模型的分类精度。结果表明,改进的DeepLabv3+语义分割模型对多光谱遥感影像的识别效果比可见光高7.1个百分点。同时考虑地膜农田表观变化的深度语义分割模型具有更高的分类精度,其平均像素精度超出未考虑地膜农田表观变化时7.7个百分点,表明训练数据的多样性有助于提高地膜农田的识别精度。其次,改进的DeepLabv3+语义分割模型能够自适应学习地膜注意力,在2组实验中,分类精度均优于原始的DeepLabv3+模型,表明注意力机制能够增加深度语义分割模型的自适应性,从而提升分类精度。本文提出的方法能够从复杂的场景中精准识别地膜农田。  相似文献   

2.
为应用深度学习和遥感影像实现养殖水体信息的快速提取,以成都平原为研究区,以Sentinel 2A和高分6号多光谱影像为数据源,基于国产开源深度学习平台PaddlePaddle训练Deeplabv3+语义分割模型,构建遥感影像的水体语义分割模型,用于提取成都平原养殖水体信息。Deeplabv3+方法的总体精度和Kappa系数分别达到94.14%和0.88,均高于归一化差分水体指数法和最大似然监督分类法;模型对阴影和建筑物等误分为水体的抑制效果较好,而对小面积和细小线状水体信息的提取则受影像分辨率影响,效果无明显改进;成都平原2018年和2020年养殖水体面积分别为22.3 khm2和28.6 khm2,其验证区青白江区、新津县和广汉市养殖水体面积的泛化提取结果验证误差均≤±10%。该研究结果可为应用深度学习平台建立遥感影像的水体语义分割模型及提取水产养殖水体信息提供参考。  相似文献   

3.
基于深度学习的大棚及地膜农田无人机航拍监测方法   总被引:5,自引:0,他引:5  
随着精准农业技术的发展,快速获取大棚和地膜农田面积及地理分布的需求越来越大,但沿用面向卫星遥感影像的解译方法处理无人机航拍影像,存在特征选择复杂、识别精度较低、处理时间长等问题。基于此,本文提出一种基于深度学习的大棚及地膜农田无人机航拍监测方法,即采用六旋翼无人机搭载索尼NEX-5k相机进行航拍作业,对采集到的558幅赤峰市王爷府镇地区的无人机航片进行正射校正与拼接,构建全卷积神经网络(Fully convolutional network,FCN),通过多尺度融合的方法实现了FCN的5个变种模型:FCN-32s、FCN-16s、FCN-8s、FCN-4s、FCN-2s,使用带动量的随机梯度下降算法端到端训练模型,自动提取并分类影像特征。FCN模型与ENVI商用遥感软件的基于像素的分类方法、e Cognition软件的面向对象的分类方法对比后表明:FCN-4s模型为识别大棚和地膜农田的最佳模型,对于测试区域的平均整体正确率为97%,而基于像素的分类方法平均整体正确率为74.1%,面向对象的分类方法平均整体正确率为81.78%。FCN-4s模型平均运行时间为16.85 s,是基于像素的分类方法运行时间的0.06%,是面向对象的分类方法运行时间的5.62%。本方法可快速准确获取大棚和地膜农田的地理分布及面积,满足设施农业对无人机航拍监测的需求。  相似文献   

4.
为提高苹果种植区域的提取精度,提出了一种基于Sentinel-2和MODIS融合影像的CBAM-DeepLab V3+模型。影响苹果种植区域提取精度的主要因素包括遥感影像的质量以及语义分割模型的性能。从影像质量角度来看,采用基于时序的时空融合算法ESTARFM,通过融合Sentinel-2和MODIS的遥感影像数据,实现更高空间分辨率和时间分辨率数据的获取。与此同时,将训练样本从原始的800幅扩充至2 400幅,为后续语义分割模型提供更为充足的样本容量。在语义分割模型优化方面,为了进一步提高苹果种植面积的提取精度,以DeepLab V3+网络结构模型为基础,引入基于通道和空间的CBAM注意力机制,进而发展出CBAM-DeepLab V3+模型。与原始DeepLab V3+模型相比,加入CBAM注意力机制的CBAM-DeepLab V3+模型在拟合速度较慢、边缘目标分割不精确、大尺度目标分割内部不一致和存在孔洞等缺陷方面实现了突破,这些改进提高了模型的训练与预测性能。本研究采用原始Sentinel-2影像及时空融合后的影像数据集,结合烟台市牟平区王格庄镇的数据集和观水镇苹果数据集对U-N...  相似文献   

5.
倒伏是影响小麦产量和质量的重要因素之一,及时准确获取倒伏信息有利于小麦良种选育中的倒伏损失鉴定。本文以小麦灌浆期和成熟期两个生长阶段的可见光无人机遥感影像为依据,构建多生长阶段小麦倒伏数据集,通过在DeepLab v3+模型中添加不同的注意力模块进行比较分析,提出一种基于多头自注意力(MHSA)的DeepLab v3+小麦倒伏检测模型。试验结果表明,提出的MHSA+DeepLab v3+模型的平均像素精度(Mean pixel accuracy, mPA)和均交并比(Mean intersection over union, mIoU),灌浆期分别为93.09%和87.54%,成熟期分别为93.36%和87.49%。与代表性的SegNet、PSPNet和DeepLab v3+模型相比,在灌浆期mPA提高了25.45、7.54、1.82个百分点和mIoU提高了36.15、11.37、2.49个百分点,在成熟期mPA提高了15.05、6.32、0.74个百分点,mIoU提高了23.36、9.82、0.95个百分点。其次,相比于CBAM和SimAM两种注意力模块,在灌浆期及成熟期基于多头自注意力的DeepLab v3+表现均为最优,在灌浆期其mPA和mIoU分别提高了1.6、2.07个百分点和1.7、2.45个百分点,成熟期提高了0.27、0.11个百分点和0.26、0.15个百分点。研究表明提出的改进的DeepLab v3+模型能够有效地捕获灌浆期和成熟期的无人机小麦遥感图像中的倒伏特征,准确识别不同生育期的倒伏区域,具有良好的适用性,为利用无人机遥感技术鉴定小麦倒伏灾害等级和良种选育等提供了参考。  相似文献   

6.
农田监测可以获取作物的生长状态,是农艺管理操作的依据。传统的农田监测由人工完成,效率和准确性较低,无法满足现代化农业的要求。以无人机为平台的遥感技术应用于农田信息监测中,能有效地解决这个问题。高光谱遥感具有连续的光谱,通过光谱分析可以得到农田作物的完整信息。为此,设计了基于无人机光谱分析的农田监测系统,利用无人机搭载的光谱仪拍摄水稻田的高光谱影像,基于多个光谱参数建立估算叶绿素含量(SPAD)的回归模型。结果表明:4个光谱参数与建模样本SPAD值的回归分析都达到显著水平,以DR 526和SD y建立的模型精确度较高。综合考虑决定系数和斜率值,将SD y作为文中SPAD值的最佳估算参数,可为精准农业的发展提供技术支撑。  相似文献   

7.
基于深度学习的无人机土地覆盖图像分割方法   总被引:2,自引:0,他引:2  
编制土地覆盖图需要包含精准类别划分的土地覆盖数据,传统获取方法成本高、工程量大,且效果不佳。提出一种面向无人机航拍图像的语义分割方法,用于分割不同类型的土地区域并分类,从而获取土地覆盖数据。首先,按照最新国家标准,对包含多种土地利用类型的航拍图像进行像素级标注,建立无人机高分辨率复杂土地覆盖图像数据集。然后,在语义分割模型DeepLab V3+的基础上进行改进,主要包括:将原始主干网络Xception+替换为深度残差网络ResNet+;引入联合上采样模块,增强编码器的信息传递能力;调整扩张卷积空间金字塔池化模块的扩张率,并移除该模块的全局池化连接;改进解码器,使其融合更多浅层特征。最后在本文数据集上训练和测试模型。实验结果表明,本文提出的方法在测试集上像素准确率和平均交并比分别为95. 06%和81. 22%,相比原始模型分别提升了14. 55个百分点和25. 49个百分点,并且优于常用的语义分割模型FCN-8S和PSPNet模型。该方法能够得到精度更高的土地覆盖数据,满足编制精细土地覆盖图的需要。  相似文献   

8.
基于纹理特征和SVM的QuickBird影像苹果园提取   总被引:3,自引:0,他引:3       下载免费PDF全文
为提高高空间分辨率遥感影像(高分影像)中苹果园提取精度,基于Quick Bird遥感数据,研究综合光谱特征和纹理特征的苹果园自动提取方法。该方法首先采用最佳指数因子(OIF)获取多光谱波段最佳组合,然后采用不同大小滑动窗口(从3像素×3像素到13像素×13像素)提取全色波段的灰度共生矩阵(GLCM)、分形和空间自相关3种纹理特征并分别与光谱特征组合,最后通过支持向量机(SVM)分类进行苹果园分类识别。研究表明:在分类特征上,与单一光谱或纹理特征相比,光谱特征结合纹理特征能有效提高苹果园提取精度(Fa)和总体分类精度(OA),其中光谱+GLCM纹理(9像素×9像素)分类精度最高,Fa和OA分别为96.99%和96.16%,比光谱+分形纹理分别提高0.63个百分点和1.56个百分点,比光谱+空间自相关纹理显著提高11.92个百分点和9.20个百分点。在分类方法上,通过对比分析SVM、最大似然和神经网络3种方法的分类结果,探明SVM分类识别苹果园精度最高。最后对苹果园提取结果进行面积统计,结果表明GLCM纹理结合SVM分类的苹果园面积估算与目视解译结果的一致性超过98%。  相似文献   

9.
在高光谱影像作物分类中,为了充分利用高光谱遥感影像完整的光谱信息,同时避免高维数据带来的Hughes现象,本文从栈式自编码网络的数据降维与CNN网络的分类优势出发,首先分析了此种网络在训练过程中的共性,以自编码网络优化过程中分类器的选取作为切入点,构建了可用于高光谱影像分类的融合网络架构。相较于传统方法,本文方法仅通过一次监督训练,即可实现高光谱影像直接分类,简化了传统数据处理流程,而且具有更优的分类性能。在实验中,利用Pavia University与雄安地区两组典型的高光谱遥感影像数据集对本文方法进行了验证,实验结果表明,Pavia University数据集中,在仅选用10%的像素点作为训练集的情况下,本文方法总体分类精度达到98.73%,比传统方法提升了8个百分点以上;在雄安数据集中,在仅选用1%的像素点作为训练集的情况下,本文方法总体分类精度达到98.04%,比传统方法提升了7个百分点以上,证明了本文分析的正确性和所提方法有效性,也为小样本情况下的高光谱影像分类提供了一种新的研究思路。  相似文献   

10.
基于卷积神经网络的无人机遥感农作物分类   总被引:3,自引:0,他引:3  
针对采用长时间序列卫星影像、结合物候特征进行农作物精细分类识别精度较低的问题,将深度学习用于无人机遥感农作物识别,提出一种基于卷积神经网络的农作物精细分类方法,利用卷积神经网络提取高分辨率遥感影像中的农作物特征,通过调整网络参数及样本光谱组合,进一步优化网络结构,得到农作物识别模型。研究结果表明:卷积神经网络能够有效地提取影像中的农作物信息,实现农作物精细分类。除地块边缘因农作物种植稀疏、混杂而产生少许错分现象外,其他区域均得到较好的分类效果。经训练优化后的模型对3种农作物总体分类精度可达97.75%,优于SVM、BP神经网络等分类算法。  相似文献   

11.
含水量是表征水稻生理和健康状况的关键参数,精确预测水稻含水量对于水稻育种和大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长的研究主要集中在利用植被指数评估作物在单一或者几个生育期的生长参数,针对作物含水量监测的研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层的RGB图像和多光谱图像,通过提取植被指数和纹理特征,分析水稻的动态生长变化,并构建了基于随机森林回归方法的含水量预测模型。试验结果表明:(1)从无人机图像提取的植被指数、纹理特征以及地面测量的含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;(2)与RGB图像相比,多光谱图像评估水稻含水量具有更高的潜力,其中归一化光谱指数NDSI771,611实现了更好的预测精度(R2=0.68,RMSEP=0.039,rRMSE =5.24%);(3)融合植被指数和纹理特征能够进一步改善含水量的预测结果(R2=0.86,RMSEP=0.026,rRMSE=3.51%),预测误差RMSEP分别减小了16.13%和18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行的,可为农田精准灌溉和田间管理决策提供新思路。  相似文献   

12.
病虫害是作物生产面临的主要胁迫之一.近年来,随着无人机产业的快速发展,无人机农业遥感因其图像空间分辨率高、数据获取时效性强和成本低等特点,在作物病虫害胁迫监测应用中发挥了重要作用.本文首先介绍了利用无人机遥感监测作物病虫害胁迫的相关背景;其次对目前无人机遥感监测作物病虫害胁迫中的常用方法进行了概述,主要探讨无人机遥感监...  相似文献   

13.
饲草作物生长的动态监测与定量估算对于饲草规模化生产具有重要意义。无人机遥感分辨率高、灵活性强、成本低,近年来在饲草作物生长监测领域发展迅速,应用场景不断拓展。为了掌握无人机在饲草监测的国内外应用现状,确定重点发展方向,本文首先从数据获取、数据处理和饲草作物生长监测关键技术三个方面简述了无人机遥感在饲草作物监测中的基本研究方法。其次按照传感器类型从可见光、多光谱、高光谱、热红外和激光雷达遥感五个方面阐述了无人机遥感饲草作物生长监测的应用现状。最后针对研究应用中尚未解决的关键技术问题展望了未来的发展方向,提出融合饲草作物时空尺度数据和多源遥感数据、进一步拓展数据获取手段、研发智能化数据分析综合平台是未来饲草作物监测领域应用创新的关键所在。  相似文献   

14.
基于无人机多光谱遥感的夏玉米冠层叶绿素含量估计   总被引:1,自引:0,他引:1  
为探讨利用无人机多光谱遥感影像监测夏玉米冠层叶绿素含量的可行性,基于2019年不同施氮水平下(0,105,210,315 kg·N/hm2)夏玉米多光谱遥感影像和田间实测冠层叶绿素含量数据,分析了不同施氮水平下夏玉米冠层叶绿素含量的变化规律,同时选取10种常用光谱植被指数与实测冠层叶绿素含量进行相关性分析,采用与实测叶绿素含量极显著相关的9种植被指数,构建了基于遥感光谱指数的夏玉米冠层叶绿素含量遥感监测模型,并通过精度检验确定最优估测模型.结果表明,施用氮肥能够提高夏玉米冠层叶绿素含量,过量氮肥不能持续提高叶绿素含量,同一施氮水平下不同追肥处理之间叶绿素含量没有明显差异.绿色归一化植被指数与叶绿素含量的相关性系数最高,达到了0.892.采用逐步回归分析方法建立的模型表现最优,决定系数为0.87,均方根误差及相对误差分别为0.15和2.68%.因此,无人机多光谱遥感结合逐步回归模型可以实现田间尺度的夏玉米冠层叶绿素含量的实时监测.  相似文献   

15.
无人机遥感技术在精量灌溉中应用的研究进展   总被引:4,自引:0,他引:4  
以提高农业用水效率为目标的精量灌溉是未来农业灌溉的主要模式,精量灌溉的前提条件是对作物缺水的精准诊断和科学的灌溉决策。用于作物缺水诊断和灌溉决策定量指标的信息获取技术主要基于田间定点监测、地面车载移动监测及卫星遥感。无人机从根本上解决了卫星遥感由于时空分辨率低而导致的瞬时拓延、空间尺度转换、遥感参数与模型参数定量对应等技术难题,也克服了地面监测效率低、成本高、影响田间作业等问题。近几年的研究结果表明,无人机遥感系统可以高通量地获取多个地块的高时空分辨率图像,使精准分析农业气象条件、土壤条件、作物表型等参数的空间变异性及其相互关系成为可能,为大面积农田范围内快速感知作物缺水空间变异性提供了新手段,在精量灌溉技术应用中具有明显的优势和广阔的前景。无人机遥感系统已经应用在作物覆盖度、株高、倒伏面积、生物量、叶面积指数、冠层温度等农情信息的监测方面,但在作物缺水诊断和灌溉决策定量指标监测方面的研究才刚刚起步,目前主要集中在作物水分胁迫指数(CWSI)、作物系数、冠层结构相关指数、土壤含水率、叶黄素相关指数(PRI)等参数估算的研究,有些指标已经成功应用于监测多种作物的水分胁迫状况,但对于大多数作物和指标,模型的普适性还有待进一步研究。给出了无人机遥感在精准灌溉技术中应用的技术体系,并指出,为满足不同尺度的高效率监测和实现农业用水精准动态管理的需求,今后无人机遥感需要结合卫星遥感和地面监测系统,其中天空地一体化农业水信息监测网络优化布局方法与智能组网技术、多源信息时空融合与同化技术、作物缺水多指标综合诊断模型、农业灌溉大数据等将是未来重点研究内容。  相似文献   

16.
通过引入多源多时相卫星遥感数据,提出了一种基于多核主动学习的农田塑料覆被分类算法,实现农业塑料大棚和地膜的精准分类。首先基于多时相Sentinel-1雷达和Sentinel-2光学遥感影像,提取其光谱特征、纹理特征等,以构建多维特征空间。然后构建多核学习模型,实现多源、多时相特征的自适应融合。最后构建基于池的主动学习策略,通过引入训练样本的淘汰机制,进一步提升分类模型的泛化能力。试验结果表明,本文所提分类方法的总体精度为95.6%,Kappa系数为0.922,相较经典支持向量机、随机森林、K近邻、决策树、AdaBoost模型,多核学习模型精度提高5.7、12.1、11.4、22.3、10.3个百分点;且在相同分类精度下,主动学习较被动学习可减少一半以上的标签数据;同时相较仅使用单时相及单传感器遥感影像而言,精度分别提高3.7、12.7个百分点。结果表明,多核主动学习能够有效进行多传感器、多时相数据融合,并可以在小样本条件下取得更高的分类精度,从而为农田塑料覆被的遥感监测提供模型参考。  相似文献   

17.
在对亚像元定位空间引力模型改进的基础上,提出了一种基于二次引力计算的亚像元定位模型,并在不同退化尺度下开展基于空间引力模型、像元交换模型和二次引力计算模型的亚像元定位精度比较研究。其中,数据源为人工影像和国产高分一号8 m空间分辨率遥感影像,研究对象为中国北方黄淮海区典型区域夏收作物。结果表明,在不同退化尺度条件下,所提二次引力计算模型(DSGM)可有效进行亚像元定位,且定位精度均优于空间引力模型和像元交换模型。其中,在亚像元分割尺度为6的人工影像实验中,二次引力计算模型亚像元定位总体精度和kappa系数分别为93.90%和0.818,比K-mean硬分类精度分别提高3.76%和0.254,比空间引力模型亚像元定位精度分别提高2.25%和0.160,比像元交换模型亚像元定位精度分别提高2.45%和0.173;在亚像元分割尺度为4的遥感影像实验中,二次引力计算模型亚像元定位总体精度和kappa系数分别为83.13%和0.742,较K-mean硬分类精度分别提高9.50%和0.154,较空间引力模型亚像元定位精度分别提高5.44%和0.088,较像元交换模型亚像元定位精度分别提高6.39%和0.104。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号