首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
大射电望远镜平台静态结构参数误差分析与标定研究   总被引:1,自引:0,他引:1  
为了提高大射电望远镜精调stewart平台的定位精度,首先利用激光跟踪仪(API)获得stewart平台的位置和姿态,其次基于运动学微分法建立了stewart平台的误差模型,最后针对大射电望远镜精调stewart平台进行了实验验证,实验结果表明stewart平台结构参数修正后,位置精度提高到0.09mm,姿态精度提高到0.014度.  相似文献   

2.
针对大型航天相机长距离转运和快速精确自动调姿需求,提出一种基于全向移动平台和3-RPS并联调姿机构的移动并联式六自由度调姿方法。首先,测得相机当前姿态和目标姿态,推导二者位姿矩阵;通过运动学模型反解全向移动平台和并联调姿机构的各轴运动参数,将多轴耦合的空间六自由度完全解耦;建立全向移动平台和并联机构的运动学模型,实现上述运动参数的驱动;最后,进行了调姿算法试验,结果表明,调姿设备能够快速精准实现大型相机任意姿态向目标姿态的自动化柔性姿态调整,全向移动平台移动精度优于0.3mm,旋转精度优于0.05°,并联机构杆长精度优于0.5mm,验证了自动调姿的准确性。  相似文献   

3.
为了提高微传动平台的定位精度,对几何误差进行了分析。利用微分关系构造微传动平台输出位姿误差与各结构参数几何误差之间的映射关系,引入误差权重系数,分析了各结构参数对微传动平台定位精度的影响,建立了微传动平台的精度补偿模型。利用Matlab对微传动平台的定位精度进行计算仿真,搭建实验平台进行实验测试,仿真和实验结果表明,基于权重系数法建立的误差模型合理,并且通过建立的精度补偿模型,微动平台的定位误差从补偿前的20%~30%下降到了补偿后的10%~15%,使微传动平台的定位精度获得了较大提高。  相似文献   

4.
针对大型精密复杂零部件的集成装配,提出一种将全域全向运动与调姿微运动融合于一体的轮式并联调姿机器人。通过共享部分自由度方式将全向运动特征融合于并联机构,解决大范围任意方向移动与小空间内精密调姿高效连续操作的问题;针对轮式并联调姿装备的定平台开放特性与冗余特征,设计基于力位混合的单分支与整体冗余控制策略,选取并优化轮式并联调姿机构的主动输入方式,基于螺旋理论对位置控制轴的选取合理性进行分析,评估2种控制方式在不同的末端姿态域内的性能,得到设备在不同目标姿态时力位混合控制主动输入选取策略。基于ADAMS与Simulink软件搭建环境一致性良好,可控制较强的机电一体化模型,验证轮式并联调姿装备采用力位混合控制策略可行性与设备调姿精度。工程样机实验结果验证了所提出的冗余控制策略能够实现轮式并联调姿机器人功能,保证了调姿精度,为开发具有高可靠性、大尺度、重载荷、高精度同时兼具高精度全向运动和精密调姿功能的高效连续作业特征的6自由度并联调姿、对位、装配智能机器人奠定了理论与实践基础。  相似文献   

5.
为解决轨道精调中轨距精调自动化程度较低、准确精度不够等问题,从硬软两方面设计了一种自动检测轨距且能对轨距进行精调的自动化小车;小车的控制系统利用西门子全集成自动化软件TIAPORTAL对轨距精调的自动化任务进行编程,并提出利用单神经元PID控制算法,实时整定PID的参数,提高轨距调整精度。该小车的设计与应用可有效提高轨道轨距精调作业的效率,可以在轨道精调作业中推广使用。  相似文献   

6.
直线驱动型并联机器人误差模型与灵敏度分析   总被引:1,自引:0,他引:1       下载免费PDF全文
为提高直线驱动型并联机器人动平台末端执行器位置精度,根据并联机构结构和运动学模型,对影响末端位置精度的各项误差源进行了分析,利用解析法建立动平台末端操作空间与关节空间之间的误差映射模型;在灵敏度误差模型的基础上,依据全域灵敏度评价指标,提出了一种误差源筛选方案,筛选影响位置精度的主要误差源,利用蒙特卡洛法随机模拟并联机器人中各零部件的尺寸误差、驱动误差和装配误差,得知筛选前后动平台位置误差基本一致,验证了评价指标的正确性。以激光跟踪仪为测量工具在任务空间中取点测量,对筛选后的主要误差源进行辨识,修正并联机构的正向运动学模型后,并联机构末端位置精度改善显著,验证了误差源筛选方案的有效性和可行性,减轻了误差参数辨识的复杂程度和计算量,对结构较复杂的机构误差补偿具有一定的指导意义。  相似文献   

7.
基于动力学的Stewart平台振动控制策略研究   总被引:1,自引:0,他引:1  
针对利用基于运动学控制方法的大负载、高质心Stewart平台实现某一姿态下的单自由度正弦振动时将引起其他自由度上的耦合振动问题,提出了一种在位置闭环控制条件下基于动力学的振动控制策略。该控制策略利用动力学模型所计算的各液压缸出力控制平台振动,提高了控制精度。最后利用Stewart平台在15°俯仰姿态下对该方法进行了实验验证,通过比较运动学和动力学两种控制方法的振动响应,表明提出的控制方法能够有效抑制由负载引起的耦合振动,实现了Stewart平台在任意姿态下的精确振动控制。  相似文献   

8.
工业串联机器人有着较大的几何误差,还存在着不可忽视的非几何误差,使其在高精度领域的应用受限。本文建立了一种包含几何与柔性误差的完整刚柔耦合位置误差模型,并采用基于预测残差和加权递推平均滤波算法改进的Levenberg-Marquardt算法(M-LMA)辨识耦合误差参数。为了提高测量过程的效率及可靠性,结合测量设备的检测特性与末端执行器的几何特性两种外部约束,提出了一种基于线性递减权重的粒子群算法(LDW-PSOA)的测量位姿智能选取方法。重点提出了一种局部精补偿方法,其可与标定或者全局补偿同时使用,也可直接单独使用。同时,根据机器人自身特性及加工需求,提出了一种基于预测精度与参数数量的模型择优方法,并且制定了一种多模式精度提高策略。此外,将本文所建立的模型及提出的算法集成于Matlab开发平台,实现GUI交互系统。实验结果表明,本文提出的精度提高策略不仅能以多种方式实现机器人高精度定位的性能,且具有高效可靠的测量过程。  相似文献   

9.
对提出的一种半对称三平移Delta-CU并联机器人机构进行误差建模和实验分析。在规划执行末端运动轨迹的基础上,采用外部直接标定和修正系统输入的方法对机构的运动学误差进行补偿。在外部直接标定的过程中,为降低系数矩阵中的随机测量误差对执行末端坐标精度的影响,利用整体最小二乘法求解坐标变换参数;以误差数据为样本,通过模糊神经网络模型进行训练,并将训练好的模糊神经网络模型用于Delta-CU并联机器人机构的误差值预测。实验表明,模糊神经网络模型能够对Delta-CU并联机器人机构误差进行精准的预测,有利于提高Delta-CU并联机器人机构的补偿精度,可为Delta-CU并联机器人机构误差补偿提供参照。补偿后其绝对位置精度由1.187 mm提高到0.4 mm,重复位置精度由0.037 mm提高到0.018 mm。  相似文献   

10.
为提高电液伺服泵控系统位置控制精度和响应速度,将液压缸位移行程分为快速、中速和慢速三段分别实施分段PID控制,在AMESim中建立位置控制系统仿真模型。通过正交试验方法选取相应仿真参数,液压缸位移目标值160mm的仿真结果为159.99mm,位置精度最高。并通过实验验证分段PID位置控制系统仿真模型的可行性。通过仿真分析发现,液压缸第一段分段PID参数对响应速度影响较大,但系数过大会引起超调;第三段参数对控制精度的影响较大,且该段PID参数不宜过大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号