首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
【目的】定量天然植被生态需水,为流域有限水资源的合理分配和使用供科学依据和决策参考。【方法】采用FAO56Penman-Monteith公式,结合干旱强度指数DSI,分析新疆孔雀河流域2000-2016年天然植被生态需水时空变化特征,幵计算了丌同干、湿状况下天然植被的生态需水。【结果】①研究区内天然植被生长季多年平均生态需水量为7.575 7×10^8 m^3,天然草地需水量大于天然林地需水量。②从时间上看,2000-2016年天然植被生长季生态需水总量以2006年为分界点整体上呈现出上升-下降波动趋势;在生长季内变化特征上,天然植被的生态需水主要集中在6-8月,占植被主要生长季全部需水量的69.64%;从空间上看,天然植被生态需水主要集中在绿洲区的农区外围及河流中、上游两侧。③丌同干、湿状况下,天然林、草地单位面积生态需水量均表现为:正常年>湿润年>轻度干旱年>极度干旱年,天然植被生态需水总量呈现:极度干旱年>正常年>轻度干旱年>湿润年。【结论】丌同干湿条件下天然植被生态需水存在差异,气候因子和天然植被面积的变化是导致生态需水差异的主要因素。  相似文献   

2.
黑河流域下游天然植被生态及需水研究   总被引:11,自引:0,他引:11  
依据遥感资料分析了黑河下游天然植被生态变化,提出了依据由生态适宜性理论建立的植物生长与地下水位关系模型,结合遥感技术进行的生态分区和植物生理需水的现场实验数据的天然生态需水量计算方法,计算了黑河流域下游额济纳旗天然植被生态需水量,得出了合理的结论。  相似文献   

3.
黑河流域下游天然植被生态及需水研究   总被引:1,自引:0,他引:1  
依据遥感资料分析了黑河下游天然植被生态变化 ,提出了依据由生态适宜性理论建立的植物生长与地下水位关系模型 ,结合遥感技术进行的生态分区和植物生理需水的现场实验数据的天然生态需水量计算方法 ,计算了黑河流域下游额济纳旗天然植被生态需水量 ,得出了合理的结论。  相似文献   

4.
生态需水研究进展及存在问题   总被引:17,自引:0,他引:17  
回顾了生态需水问题的提出背景,分析了目前有关生态需水的定义,归纳了生态需水的类型,讨论了不同生态系统(河道生态系统、植被生态系统)生态需水的计算方法,提出了存在的问题,原因和今后研究的方向。  相似文献   

5.
文章利用2011年襄阳地区遥感影像数据进行生态因子指数的反演,结合DEM数据和统计资料,通过植被、地形、土壤三个生态因子的计算,建立多因素综合指数评价模型对襄阳地区进行了生态环境评价。  相似文献   

6.
黑河生态输水对流域植被的影响研   总被引:1,自引:0,他引:1  
近几十年来,由于干旱气候和沙质土壤等自然原因与人类在经济利益驱动下对水资源的盲目掠夺开发等社会原因,导致黑河河道断流、尾闾干涸、地下水位下降、绿洲沙漠化、盐碱化及植被退化等生态环境问题。为了恢复和重建受损的生态环境,自2000年开始实施向下游生态输水工程。输水后下游地下水位大幅升高,植被随着生境的改变,长势出现明显好转。根据实地监测和遥感数据,分析了生态输水工程对中、下游地下水及植被的影响。结果表明:生态输水后对中游植被生态没有造成负面影响;在下游,生态输水对地下水及植被的影响十分显著,在狼心山断面地下水涨幅高达1.4m,在东河生态输水对胡杨的影响范围达到距离河道1000m。  相似文献   

7.
大熊猫是中国特有种,甘肃白水江国家级自然保护区是国家林业局直属的三个大熊猫保护区之一。干扰是自然界中普遍存在的现象,地震干扰严重破坏植被生态系统,严重影响生物的生境选择,5.12汶川地震使得大熊猫栖息地遭到重创。生境选择作为动物对异质环境的适应方式之一,是野生动物保护及生境管理的前提和基础。文章研究从大熊猫生境选择的适应性出发,对甘肃白水江自然保护区地震前、后大熊猫对生境中生物因子与非生物因子的生境选择特征的定量分析,研究结果如下:(1)地震对大熊猫的生境选择的影响,只是对竹子生长状况在地震前后没有明显变化;从坡面、生境类型、森林起源生、植被生境等生境特征上看是较明显的,且均有不同的变化。(2)大熊猫偏好生境的变量主成分分析结果表明,与地震前相比,主成分的数量、各主成分的位置级别、各级别内的因子都发生了变化,最明显的是震后大熊猫选择中坡向、郁闭度不作为大熊猫选择的主要因子。  相似文献   

8.
陆地系统生态需水量计算方法初探   总被引:8,自引:0,他引:8  
人类活动的影响等使得生态环境日益恶化严重,也引起了一系列的水问题。生态需水量是反映生态系统安全的一个阈值,因此确定不同生态类型的生态需水量,是生态环境建设的重要内容。为了对陆地生态需水量进行研究,根据Hargreaves算法计算植被蒸腾,进而计算总的陆地蒸散量,对陆地生态需水进行了计算;利用水循环的观点对陆地生态需水进行了研究。通过一个实例,利用Hargreaves算法以及所提出的方法对某一流域的陆地系统进行生态需水的研究,并对二者进行了分析比较。结果表明两种计算方法差别不大,在20%左右。  相似文献   

9.
青岛市生态环境需水量研究   总被引:1,自引:0,他引:1  
根据生态用水的共享性原则提出了青岛市区域生态环境需水量概念模型,利用水文学方法计算了以植被生态需水量、河流环境需水量、地下水回灌需水量之和代表的青岛市区域生态环境需水量,分析了区域生态环境需水量供需平衡,认为区域水资源供给与适宜的生态环境需水量之间处于脆弱的平衡状态.降水、径流等水资源季节分配的不均衡和工业、城市大量用水使生态环境需水在一定的时空条件下得不到满足.应采取加强水资源利用管理、污水资源化、用好入境客水、保护地下水、开展海水综合利用等节水措施充分满足生态环境需水.  相似文献   

10.
干旱区荒漠植被生态需水量计算方法研究   总被引:1,自引:0,他引:1  
潜水蒸发法和面积定额法是计算植被生态需水量的常用方法,而目前研究中,仅运用一种方法进行干旱区生态需水量的计算,为了解决其计算方法单一、研究结果合理性存在争议,并确定干旱区荒漠植被合理生态需水量计算方法的问题,研究以2013年塔里木河干流上游区为参考区域,通过遥感技术解译该地区各荒漠植被的面积,运用潜水蒸发法和面积定额法计算该区荒漠植被生态需水量,并计算其相对差值百分比,且与前人的研究成果进行比较,结果分别为54.33%、41.39%、52.78%,其值皆为50%左右,相差较小,表明了潜水蒸发法及面积定额法计算干旱区荒漠植被生态需水的合理性,并通过均值计算确定干旱区荒漠植被合理的生态需水量,即2.65亿m3,可应用于其他干旱地区荒漠植被合理生态需水量的确定。  相似文献   

11.
为研究关中冬小麦植株蒸腾和土壤蒸发规律,利用2 a冬小麦小区控水试验实测数据,率定和验证了双作物系数SIMDual_Kc模型在关中地区的适用性.用大型称重式蒸渗仪的实测蒸散量值(或水量平衡法计算值)与模型模拟值进行对比.结果表明:SIMDualKc模型可较准确地模拟关中不同水分条件下冬小麦蒸散量,且模拟精度较高.模型估算的平均绝对误差为0.643 3 mm/d.模型估算的冬小麦初期、中期和后期的基础作物系数分别为0.35,1.30,0.20.另外,模型还可以较准确地估算不同水分供应条件下的土壤水分胁迫系数、土壤蒸发量和植株蒸散量.冬小麦整个生育期,土壤蒸发主要发生在作物生育前期,中期较低,后期略微增大;植株蒸腾主要发生在作物快速生长期和生长中期,整个生育期中呈先增大后减小的趋势.  相似文献   

12.
宋扬  周维博  李慧 《节水灌溉》2016,(9):124-128
基于泾惠渠灌区30a的气象资料,采用CROPWAT模型分析了泾惠渠灌区作物蒸发蒸腾量及灌溉需水量的变化,并运用SPSS软件,计算了灌区作物需水量与气象因子的相关系数。分析表明:玉米蒸发蒸腾量平均值为524.33mm,蒸发蒸腾量高峰期出现在7月中旬到8月下旬;棉花蒸发蒸腾量平均值为869.13mm,峰值出现时间与玉米一致;灌区玉米在抽雄-开花期灌溉需水量为130.12mm,籽粒形成-乳熟期灌溉需水量为359.32mm,9月下旬以后,灌溉需水量下降;棉花生育期需水量空间分布比较均匀,平均值为869 mm,整个灌区灌溉需水量平均值为453.6mm,棉花苗床期灌溉需水量开始增加,花铃期达到最大值,吐絮期灌溉需水量减小;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,与日照时数相关性较大。  相似文献   

13.
夏玉米生育期叶面蒸腾与棵间蒸发比例试验研究   总被引:6,自引:2,他引:4  
利用大型称重式蒸渗仪测定夏玉米生育期的总腾发量,用小型蒸发器测定棵间蒸发量,用茎流计测定叶面蒸腾量。通过3种设备实测数据的对比分析,得到夏玉米生育期的总耗水量为436.3 mm,其中叶面蒸腾316.4 mm,棵间蒸发119.9 mm,棵间蒸发占总腾发量的比例达到27.5%。茎流计所测得的蒸腾量与大蒸渗仪和小蒸发器联合测得的蒸腾量相关性良好,从而验证了用茎流计法测定叶面蒸腾方法的可行性。根据茎流计实测数据分析了叶面蒸腾的日变化过程,发现夏玉米叶面蒸腾与净辐射密切相关,呈周期性变化。  相似文献   

14.
Knowledge of the components of the water balance - evaporation, transpiration and deep drainage - would be beneficial for targeting productivity improvements for irrigated forages in northern Victoria. We aimed to estimate these components using a simple water balance and the dual crop coefficients provided in FAO-56. Soil water deficits from a field experiment, comparing the water use of six border-check and one spray irrigated forage system, agreed well with the modelled values, except for alfalfa where irrigation intake was restricted. About 85% of the water applied to perennial forages (perennial ryegrass/white clover, tall fescue/white clover and alfalfa) was used for transpiration, 10% for evaporation and 5% was lost as drainage below the root zone. Evaporation was highest from the double-cropped (oats/millet) system (30%) and was 5-25% of the water used by winter-growing annual pastures (Persian clover/Italian ryegrass and both border-check and spray irrigated subterranean clover/Italian ryegrass). The high proportion of water used as transpiration by the perennial forages was due to their high ground cover maintained throughout the year. When compared over similar seasonal conditions, actively growing forages used similar amounts of water, indicating that any increases in water productivity will be mainly due to higher production and/or to matching the growing season of the forage to periods of lower potential evapotranspiration.  相似文献   

15.
The main goal of this research was to evaluate the potential of the dual approach of FAO-56 for estimating actual crop evapotranspiration (AET) and its components (crop transpiration and soil evaporation) of an olive (Olea europaea L.) orchard in the semi-arid region of Tensift-basin (central of Morocco). Two years (2003 and 2004) of continuous measurements of AET with the eddy-covariance technique were used to test the performance of the model. The results showed that, by using the local values of basal crop coefficients, the approach simulates reasonably well AET over two growing seasons. The Root Mean Square Error (RMSE) between measured and simulated AET values during 2003 and 2004 were respectively about 0.54 and 0.71 mm per day. The basal crop coefficient (Kcb) value obtained for the olive orchard was similar in both seasons with an average of 0.54. This value was lower than that suggested by the FAO-56 (0.62). Similarly, the single approach of FAO-56 has been tested in the previous work (Er-Raki et al., 2008) over the same study site and it has been shown that this approach also simulates correctly AET when using the local crop coefficient and under no stress conditions.Since the dual approach predicts separately soil evaporation and plant transpiration, an attempt was made to compare the simulated components of AET with measurements obtained through a combination of eddy covariance and scaled-up sap flow measurements. The results showed that the model gives an acceptable estimate of plant transpiration and soil evaporation. The associated RMSE of plant transpiration and soil evaporation were 0.59 and 0.73 mm per day, respectively.Additionally, the irrigation efficiency was investigated by comparing the irrigation scheduling design used by the farmer to those recommended by the FAO model. It was found that although the amount of irrigation applied by the farmer (800 mm) during the growing season of olives was twice that recommended one by the FAO model (411 mm), the vegetation suffered from water stress during the summer. Such behaviour can be explained by inadequate distribution of irrigation. Consequently, the FAO model can be considered as a potentially useful tool for planning irrigation schedules on an operational basis.  相似文献   

16.
金丝小枣蒸散和作物系数变化规律研究   总被引:1,自引:1,他引:0  
采用Probe12植物茎液流计和小型蒸发器分别测定了金丝小枣生长期间的日蒸腾和棵间蒸发。蒸腾存在日变化和季节性变化,果实膨大期蒸腾的日变化呈双峰曲线,萌芽展叶期、开花坐果期、果实成熟期和落叶期的日变化呈单峰曲线;萌芽展叶期、开花坐果期、果实膨大期、果实成熟期和落叶期的蒸腾量分别占生长季总耗水量的12.2%、16.5%、48.1%、13.2%、10.1%,金丝小枣生育期总蒸腾量346.8 mm,棵间蒸发231.7 mm,总蒸散578.5mm;棵间蒸发占总蒸散量的40.1%。枣树的作物系数随生育期变化从前期的0.27,到中期0.92,后期0.71,作物系数与冠层覆盖度呈显著正相关关系,决定系数为R2=0.758 6(P<0.01)。  相似文献   

17.
通过CROPWAT模型分析泾惠渠灌区冬小麦和玉米蒸发蒸腾量及灌溉需水量的变化,同时运用SPSS软件,计算灌区作物需水量与气象因子的相关系数,分析结果表明:冬小麦整个生育期蒸发蒸腾量平均值为634.04 mm,蒸发蒸腾量最高峰出现在4月中旬—5月中旬,灌区各分区蒸发蒸腾量趋势基本一致;玉米蒸发蒸腾量平均值为525.22 mm,蒸发蒸腾量高峰期出现在7月中旬—8月下旬,其中三原最大为535.97 mm,富平最小为514.68 mm;灌区冬小麦在播种—越冬期灌溉需水量最低,返青—拔节期需水量增加;灌区玉米在拔节—抽雄期需水量增加,灌溉平均需水量为133.04 mm;7月—8月为籽粒形成乳熟期,需水量为359.15 mm,至9月下旬,玉米灌溉需水量下降;灌区作物需水量与气温呈正相关,与降水呈负相关,与风速和相对湿度相关性较小,气温、日照时数和相对湿度是影响作物需水量的主要因素.  相似文献   

18.
基于浑善达克沙地2005-2006两个不同水文年对羊草、拂子茅、冰草构成的羊草群落生育期生境中气象因子及生理因子野外观测试验数据,用联合国粮农组织FAO-56分册中介绍的方法计算了羊草群落生育期基本作物系数和土壤蒸发系数,并对基本作物系数进行了地区气象因素和牧草单叶气孔阻力校正。用校正后的作物系数模拟计算的蒸腾、蒸发量与实际观测值间进行了拟合相关图、拟合优度参数法的有效性检验。结果表明:计算的蒸发、蒸腾量与实测结果基本接近。考虑水分胁迫时,有条件的地区应该对作物系数进行地区气象因素和单叶气孔阻力校正。  相似文献   

19.
In tropical, monsoon climates of South-East Asia, irrigation facilities supplement rain in the wet season and enable crops to be cultivated during the dry season. In the Dry Zone of Sri Lanka, 70% of the average annual rainfall of 1000 mm falls in a 3 month period. During the dry season, reference evapotranspiration has less rainfall — about 700 mm, indicating that much additional supply is meant to support crops, mainly paddy. In this climatic context, irrigation has dramatically changed the local environment, creating ecosystems quite similar to that of the wet zone to flourish. In these systems, recharge of shallow groundwater by percolation from irrigated fields, canals, and tanks, has provided a continuous supply of water for natural vegetation and homestead gardens. Much of the water used by this non-crop vegetation is beneficial. Growth of fruit and coconut trees can be quite profitable, while other trees enhance the environment.In 1998, IWMI performed a comprehensive water balance in the command area of the Kirindi Oya irrigation scheme, Sri Lanka, based on surface flow measurements, rainfall data, and estimation of crop water requirements. This water balance showed that evaporation consumed 78% of the total amount of water available for use. The amount of evaporation is split into process depletion (crops for 28%), direct evaporation from tanks (7%), inter-seasonal fallow (10%) and from non-crop vegetation for 55%.The main conclusion from this study is that perennial vegetation as the main component of non-crop vegetation, is a significant consideration in tropical humid environments in planning, management and performance assessment. Designers, managers, and researchers need to specifically incorporate the evaluation of evaporation by non-crop vegetation and perennial vegetation in their approach of water requirements. Further investigation is needed to estimate water consumption by land cover type to assess their respective beneficial use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号