首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
不同深度土壤中氮素的空间变异研究   总被引:1,自引:0,他引:1  
对供试区分析土壤中的氨态氮和硝态氮含量,用区域化变量理论和半方差函数分析,研究结果表明不同深度土壤中氨态氮和硝态氮含量具有空间变异性,均属于中等程度变异.通过对其半方差函授进行拟合,其变异程度主要由土壤本身的空间结构引起,不同深度土壤中氨态氮和硝态氮含量的空间相关尺度不同.  相似文献   

2.
猪场废水灌溉对土壤氮素时空变化与氮平衡的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
利用地中渗透仪测坑开展了田间灌溉试验,研究了猪场废水和等氮投入清水处理土壤铵态氮、硝态氮含量在时间、剖面上的变化规律,根据氮平衡原理对不同处理氮输入和氮输出项进行对比分析,估算了不同处理的氮矿化量。结果表明:各处理土壤铵态氮和硝态氮含量在时间上的变化规律基本一致,表现为追肥期出现峰值,随后下降的趋势;土壤铵态氮含量随土层深度的增加而迅速下降,土壤硝态氮含量随土层深度的增加变化规律不明显,且易淋移至下层土壤并累积。PWH(猪场废水高氮)处理土壤铵态氮、硝态氮含量在追肥期出现峰值后下降的幅度较慢,而CKH(清水高氮)处理下降的幅度较快。猪场废水高氮处理PWH作物吸氮量及氮矿化量比等氮清水处理CKH分别高6.91%和21.29%,表明该处理有利于土壤有机氮的矿化,但同时硝态氮深层淋溶量也较大,比CKH高出11.82%。  相似文献   

3.
渗灌管埋深对土壤硝态氮含量的影响   总被引:3,自引:0,他引:3  
以番茄为供试作物,通过观测渗灌灌水前和灌水后土壤水分剖面以及硝态氮含量的变化.研究了保护地渗灌及其渗灌管埋深对土壤硝态氮运移及积累过程的影响。试验结果表明,在渗灌管埋深为20~40cm范围内,保护地渗灌灌水后土壤硝态氮均表现出明显的表聚特性;土壤含水量与土层深度乘积与土壤硝态氮含量之间存在着极显著相关关系。在不同渗灌管埋深处理中以30cm埋深且渗灌管下有防渗槽的处理,其硝态氮在表层积累最少。  相似文献   

4.
冬小麦田间根层中氮素迁移转化规律研究   总被引:5,自引:0,他引:5  
在冬小麦生长期田间试验的基础上,建立了土壤--作物系统中水分运动及不同形态氮素迁移转化的数学模型,该模型考虑了有机氮的太化,铵屡的硝化与挥发,硝态氮的反硝化以及土壤吸附,作物吸收等多种影响因素,利用溶质扩散--对流方程模拟了冬小麦生长期田间水分,铵氮,硝态氮含量及其分布的变化。  相似文献   

5.
不同水氮管理模式对玉米地土壤氮素和肥料氮素的影响   总被引:4,自引:0,他引:4  
为了解决东北地区灌溉条件下水氮合理施用问题,以大田试验为基础,采用15N同位素示踪技术,设置3个灌水定额水平(W1:40 mm,W2:60 mm,W3:80 mm)和3个施氮量水平(N1:180 kg/hm~2,N2:240 kg/hm~2,N3:300 kg/hm~2),分析比较了不同水氮管理模式对玉米地土壤氮素的吸收、土壤无机氮残留、土壤-作物氮平衡以及肥料氮去向的影响。结果表明:随着施氮量的增加,0~100 cm土层铵态氮、硝态氮的含量和累积量均呈现增加的趋势;提高灌水量可以提高60~100 cm土层铵态氮累积量、80~100 cm土层硝态氮累积量。对土壤-作物氮平衡的研究表明,增加施氮量可以提高土壤无机氮残留量和氮素盈余,而作物氮素吸收量随着施氮量的增加呈先增后减的趋势,氮素盈余量和表观损失量随灌水量的增加表现为先降低后增加。肥料氮累积量随着施氮量的增加呈先增后减的趋势,施氮量300 kg/hm~2时肥料氮累积量占比21. 27%~31. 23%,肥料氮残留量和损失量所占比例均有所提高。玉米植株氮素中有66. 70%~75. 05%来自于对土壤氮的累积,随着施氮量的增加,玉米植株土壤氮素累积量呈先增后减的趋势。综合不同水氮管理模式对玉米地土壤无机氮残留、土壤-作物氮平衡以及肥料氮去向的影响得出,灌水60 mm、施氮240 kg/hm~2的水氮组合可保证肥料氮的充分利用,减少无机氮的残留和损失。  相似文献   

6.
冬小麦冠层光谱与土壤供氮状况相关性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
通过设置2个冬小麦品种不同氮素水平的完全随机区组试验,获取冬小麦关键生育期(返青期、拔节期、孕穗期、灌浆期)的土壤氮素、植株氮素和冠层光谱数据,通过分析土壤氮素与植株氮素间的相关关系,间接构建土壤氮素状况的光谱诊断模型。结果表明,不同施氮水平冬小麦各生育期冠层光谱与麦田土壤氮素含量差异显著,土壤硝态氮、碱解氮含量与冬小麦植株氮素含量的相关系数达到0.72以上,相关系数分别在0.72~0.84和0.75~0.82之间,均达极显著水平,而土壤全氮含量与冬小麦植株含氮量的相关性相对较差;研究证实土壤调节植被指数SAVI(1040,680)和比值植被指数RVI(1040,680)分别与土壤硝态氮、碱解氮含量具有重要的关系。另外,基于光谱参数SAVI(1040,680)的土壤硝态氮估算模型(R~2≥0.739 6)和基于RVI(1040,680)所构建的碱解氮含量估算模型(R~2≥0.810 0)具有较好的估测能力,可以实现利用冠层光谱对土壤氮素状况的实时、快速估测。  相似文献   

7.
通过大田试验,探讨在不同施氮量条件下烤烟土壤中硝态氮与铵态氮的变化情况以及施氮量对烤烟地上部分干物质累积量的影响。试验根据烤烟生育期设置不同阶段,定期对土样中无机氮素以及烤烟植株干物质进行测定。结果表明,施氮量对烤烟土壤中硝态氮和铵态氮随生育期以及土层深度的变化趋势影响较小,施氮量仅明显影响同时期同深度下硝态氮和铵态氮含量。同时施氮量的增加会增强烤烟后期地上部分干物质累积强度,使得烤烟生长持续旺盛。  相似文献   

8.
灌溉土壤硝态氮运移与土壤湿度的关系   总被引:11,自引:0,他引:11  
郭大应  冯艳等 《灌溉排水》2001,20(2):66-68,72
经室内地中渗透仪实验观测和对自然界一些现象的分析证实,灌溉土壤硝态氮的运移与土壤湿度有良好的相关关系。据此提出了提高灌溉土壤氮素利用率和减轻硝态氮对底土及地下水污染的措施。  相似文献   

9.
规模化牛场废水灌溉对冬小麦土壤速效氮迁移的影响   总被引:1,自引:0,他引:1  
研究了牛场废水灌溉冬小麦土壤速效氮迁移特征。结果表明,冬小麦全生育期灌溉2次或3次牛场废水是较优灌溉模式,小麦收获后不会造成土壤硝态氮过量积累。在小麦生育期内,1m土壤剖面上含硝态氮量整体呈"哑铃"形,含铵态氮量随土壤深度增加逐渐降低;牛场废水灌溉下部土层含硝态氮量比正常施肥处理低,说明牛场废水灌溉土壤硝态氮淋溶下渗强度小;但因牛场废水中铵态氮质量浓度较高,牛场废水灌溉处理土壤含铵态氮量在1m土壤剖面高于正常施肥处理。  相似文献   

10.
为研究一维条件下灌水量与硝酸盐淋溶损失的关系,采集宁夏日光温室条件下两种类型的土壤(灌淤土、灰钙土)做成1 m土柱,设置两个灌水量(T1:2.25×10~3 t/hm~2、T2:4.50×10~3 t/hm~2)和两个施氮量(N1:450 kg/hm~2、N2:675 kg/hm~2),测定不同处理后土壤剖面水分和硝态氮含量、计算表层累积量及深层淋溶量,并测定不同处理淋溶液硝态氮浓度及其他化学性质。结果表明:①不同土壤类型和施氮量对土壤剖面质量含水量有显著影响。②灌淤土硝态氮含量高于灰钙土;T2处理各层土壤硝态氮含量低于T1处理。4个处理相比,硝态氮的峰值均出现在60~80 cm处,土壤硝态氮含量表层、深层T2N1处理均最低而T1N2处理最高。③T1、T2处理硝态氮累积量相比, T2较T1表层累积量减少33.5%,深层减少17.14%; N1、 N2处理相比,N2较N1表层累积增加48.72%,深层增加28.8%。④土壤类型、灌水、施肥对淋溶液中硝态氮及其他化学性质均有显著影响。由此可见,土壤类型、灌水量及施氮量均对土壤中氮素的累积及损失有显著影响,相比之下影响程度为施氮量灌水量土壤类型。  相似文献   

11.
为探究蓄水坑灌灌施条件下灌水量对苹果园土壤氮素分布规律的影响,本文通过田间实验就蓄水坑灌灌施条件下灌水量对苹果园土壤氮素分布规律进行了研究.结果表明:灌水量对土壤碱解氮和硝态氮分布影响范围基本一致,硝态氮和碱解氮浓度峰值集中在蓄水坑坑壁外围水平10 cm范围内,随着与蓄水坑坑壁距离的增加而降低.随着灌水量的增加,蓄留在蓄水坑坑壁外围水平10 cm范围内碱解氮和硝态氮量减少;随着土层深度和径向距离的增加,各处理间碱解氮和硝态氮量随着灌水量的增加而增加.该试验条件下,碱解氮和硝态氮相关系数为0.926,硝态氮量占碱解氮量百分比较大,建立了碱解氮和硝态氮的相关关系式.  相似文献   

12.
控制灌溉下秸秆还田对稻田土壤氮素组成的影响   总被引:1,自引:0,他引:1  
为探明控制灌溉模式下秸秆还田与不同施氮量对稻田表层土壤氮素组成的影响,以黑龙江省寒地黑土为研究对象,于2017—2018年进行了田间连续定位试验,试验秸秆还田量设置为有秸秆还田(还田量为6t/hm2)和无秸秆还田2个水平,全生育期施氮量设置N0(0kg/hm2)、N1(85kg/hm2)、N2(110kg/hm2)和N3(135kg/hm2))4个水平,共8个处理。基于氮稳定性同位素技术,分析了秸秆还田后,稻田土壤表层总可溶性氮组分分配比例,铵态氮(NH+4N)、硝态氮(NO-3N)、可溶性有机氮(SON)、δ15N含量变化以及与土壤表层总可溶性氮含量的相关性。2年结果表明:控制灌溉模式下,秸秆还田提高了土壤表层可溶性有机氮占总可溶性氮的比例、氮矿化量以及δ15N含量。施加秸秆各施氮量处理土壤表层SON含量均低于无秸秆处理,其中N3处理土壤表层NH+4N与NO-3N含量较无秸秆N3处理分别降低40.3%、38.7%。与无秸秆处理相比,秸秆还田不仅提高了土壤供氮能力,而且促进了土壤表层总可溶性氮以较稳定的可溶性有机氮形态存在,当施氮量仅为0kg/hm2时,土壤表层氮矿化量与无秸秆处理最高氮矿化量无显著性差异,且随着施氮量的增加,土壤表层氮矿化量显著高于无秸秆处理(P<0.05)。秸秆中δ15N含量高,促使土壤表层富集δ15N,施加秸秆N1、N2处理土壤表层δ15N含量与无秸秆N2、N3处理无显著性差异,N3处理土壤表层δ15N含量显著高于无秸秆处理(P<0.05),而且连续2年秸秆还田,导致土壤表层总可溶性氮与铵态氮(NH+4N)、硝态氮(NO-3N)、可溶性有机氮(SON)以及δ15N的相关性发生变化。研究结果可为东北地区推行秸秆还田的可行性提供科学依据,对保障东北地区农业水土资源可持续利用具有重要意义。  相似文献   

13.
在冬小麦生长期田间试验的基础上,建立了土壤──作物系统中水分运动及不同形态氮素迁移转化的数学模型,该模型考虑了有机氮的矿化、铵氮的硝化与挥发、硝态氮的反硝化以及土壤吸附、作物吸收等多种影响因素,利用溶质扩散──对流方程模拟了冬小麦生长期田间水分、铵氮、硝态氮含量及其分布的变化。模拟模型计算结果与田间试验结果比较说明,数学模型能较好地模拟田间的实际情况。模型计算结果表明,在不同灌水定额情况下,60mm/次的灌水量就能基本满足作物生长的需要,而且几乎不造成深层渗漏。增大灌水定额,作物吸收水量的增加十分有限,却可能导致大量水的深层渗漏损失,溶解在土壤水中的硝态氮亦随土壤水往深层移动,作物吸收的氮量有所减少,并且随土壤水的下渗,硝态氮的深层渗漏损失显著增加。  相似文献   

14.
杜尚丰  潘奇  曹淑姝 《农业机械学报》2017,48(S1):277-283, 301
电极法检测土壤硝态氮时,共存氯离子是影响检测精度的重要因素。针对当前检测仪为单一离子离线检测的问题,设计了基于嵌入式开发的ISE土壤硝态氮多参数检测仪。仪器嵌入BP神经网络模型,实现土壤硝态氮的在线实时检测。针对BP算法收敛速度慢、易陷入局部极小值的缺点,采用5种方法进行改进;采用两个校正方法校准检测仪检测结果;采用稳定判断程序提高电势采集的稳定性。开展标准溶液检测试验,验证检测仪检测精度;开展土壤硝态氮检测试验,并将检测结果与传统的一元线性模型结果和光学法检测结果进行对比,验证检测仪排除氯离子干扰的效果及检测土壤硝态氮的准确性。结果表明,检测仪对离子的检测结果与离子计检测结果误差不超过1.0mV,满足精度要求;检测仪对土壤硝态氮含量的检测结果与光学法检测结果的平均相对误差为8.83%,低于一元线性模型与光学法检测结果的平均相对误差12.17%,拟合系数R2均大于0.97。基于ISE的土壤硝态氮多参数检测仪可有效减小氯离子干扰,准确性高,可用于土壤硝态氮的在线检测。  相似文献   

15.
降雨与施肥对夏玉米土壤硝态氮分布影响的田间试验研究   总被引:3,自引:0,他引:3  
通过在北京顺义区进行模拟降雨田间试验,研究了不同降雨与施肥水平对夏玉米土壤硝态氮分布与累积的影响。结果表明,当土壤质地相同时,土壤硝态氮含量与降雨强度、施氮量关系密切,土壤中硝态氮浓度变化随降雨强度的增加而增大,当降雨强度达到40~70 mm/h时,硝态氮会淋溶到土壤剖面110 cm以下;随着施氮量增加,各层土壤硝态氮含量也均呈升高的趋势,并向下层土壤快速移动,造成对浅层地下水的污染。  相似文献   

16.
同步滴灌施肥条件下根际土壤水氮分布试验研究   总被引:2,自引:1,他引:2  
通过室内土槽试验,探讨了停灌后不同时间,同步施肥滴灌对土壤水分及土壤硝态氮在土壤剖面分布的影响。结果表明:停灌后,各处理土壤水分以滴头为中心沿径向向四周扩散;由于水分在横向及纵向运动,上下层土壤水势梯度随径向距离增加而逐渐减少。停灌后,氮浓度3、2 g/L处理硝态氮的含量与径向距离及土层深度成反比;氮浓度0 g/L处理硝态氮的含量随径向距离及土层深度增加先增大后减小,氮浓度0 g/L处理硝态氮在深度分布表现为"上低中高下稳定"抛物线分布。  相似文献   

17.
在河北省平原区开展小麦-玉米轮作区农田硝态氮田间试验,采用雷磁计测定土壤剖面硝态氮含量,并分析降雨、土壤性质及微生物等影响因素。试验结果表明:常规施肥条件下,氮肥的当季利用率较低,残留率为27.5%。施肥灌溉后土壤硝态氮的分布呈现双峰形式,分别出现在55~70cm土层和150~170cm土层。小峰值出现在土壤剖面上层,硝态氮平均含量为47.75mg/kg;大峰值出现在土壤剖面下层,平均含量为93.72mg/kg。大峰值约是小峰值的2倍,且含量随时间、土层深度变化较大。不合理的灌溉方式使硝态氮深层淋失现象明显,根层以下土壤剖面硝态氮含量占氮肥总量的85%,对地下水环境构成极大威胁。  相似文献   

18.
水氮供应对温室黄瓜氮素吸收及土壤硝态氮分布的影响   总被引:3,自引:1,他引:2  
采用温室小区试验,研究了不同水氮供应条件对温室黄瓜氮素吸收及土壤硝态氮分布的影响。结果表明,氮素在植株体各器官中的累积量随生育期的推进不断增大,在盛果期累积量达到最大,且总体增长趋势呈"S"型;在不同生育期,黄瓜各器官中氮累积量均表现为叶茎根,而在盛果期,果实中的氮累积量达到最大,且随灌水量和施肥量的增加而增加;灌水量、施氮量及水氮交互作用对黄瓜氮累积量、UPE及PFP均有显著性影响,在同一灌水条件下,NUE、UPE及PFP均随着施氮量的增加而减少,而对于同一施氮水平,UPE、PFP均随着灌水量的增加显著提高,NUE在不同灌水量条件下变化趋势则有所不同。灌水量及施氮量对土壤硝态氮分布有重要影响,且施氮量是影响土壤硝态氮累积的关键因素,随灌水量的增加表层土壤中硝态氮累积量呈逐渐降低的趋势,而随施氮量的增加则逐渐增大,且施氮量越高,淋洗现象越明显。  相似文献   

19.
灌溉土壤硝态氮运移与土壤湿度的关系   总被引:1,自引:0,他引:1  
经室内地中渗透仪实验观测和对自然界一些现象的分析证实 ,灌溉土壤硝态氮的运移与土壤湿度有良好的相关关系。据此提出了提高灌溉土壤氮素利用率和减轻硝态氮对底土及地下水污染的措施。  相似文献   

20.
为了探究风沙土内水分和养分分布,合理的利用风沙土资源。采用田间试验,以不同灌溉水量为试验因素,其中灌溉水量设置需水系数0.4(IR1)、0.6(IR2)、0.8(IR3)、1.0(IR4)、1.2(IR5)5个水平,施肥量采用推荐施肥量(纯氮)225 kg/hm~2,通过测定不同灌溉条件下土壤水分和土壤硝态氮含量,研究风沙土玉米膜下滴灌不同灌溉条件对土壤水分和养分分布的影响。在风沙土上增大灌水量不能增加土壤的蓄水量,反可能增加土壤水分分布的不均匀性。水平方向上, 0~20 cm范围内灌水量越大,水分运动距离越远;在垂直方向上0~30 cm土层是土壤水分主要分布层。风沙土中硝态氮含量分布不均匀,有明显的集聚。水平方向上,灌水量越大,硝态氮含量峰值距离滴头位置越远;垂直方向上,硝态氮有明显的表聚现象,灌水量增加有利于提高各层硝态氮含量。土壤含水率与土壤硝态氮除表现为以正相关为主,在垂向分布上相关性较高外,空间分布的相关性并不大,且改变灌水量并不能提高两者相关性。在风沙土地区利用滴灌灌溉玉米时,为了更好地将土壤水分和养分控制在根系分布层内,推荐灌溉制度计算公式中的需水系数取0.8。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号