首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 849 毫秒
1.
猪粪麦秆不同比例混合厌氧发酵特性试验   总被引:12,自引:0,他引:12  
以猪粪、麦秆为原料,研究了35℃下二者按不同比例混合对厌氧消化产沼气的影响,分析了消化过程中日产气量、累积产气量、甲烷含量、原料去除率、pH值以及氨态氮质量浓度的变化。结果表明,猪粪与麦秆配比(干物质量比)1∶1时产气量最大,为383.0mL/g,是麦秆单独发酵产气量(231.8mL/g)的1.6倍;混合原料(猪粪和麦秆配比分别为1∶1、2∶1、3∶1)的VS去除率均在37%以上,比麦秆提高12.0%~26.9%;添加猪粪可提高发酵液中氨态氮含量,较麦秆提高35.6%~64.8%。因此,合理调控粪秆混合厌氧发酵的比例,能提高秸秆的产气率和利用率。  相似文献   

2.
菌种添加量对生物预处理小麦秸秆厌氧发酵的影响   总被引:2,自引:0,他引:2  
对小麦秸秆进行了氨-生物联合预处理,在实验室自制的小型厌氧发酵装置上,对预处理后的小麦秸秆进行了厌氧发酵制取沼气试验,探讨了氨-生物联合预处理中,菌种的添加量对小麦秸秆厌氧发酵产沼气的影响.结果表明,在氨预处理尿素溶液质量浓度为35 g/L,生物预处理pH值为4,黄孢原毛平革菌和里氏木霉的添加比例为1∶1(数量级为109)的条件下,小麦秸秆厌氧发酵过程中沼气总产气量最大,为7 968 mL,较空白组提高了23.11%.发酵过程终了pH值、VFA和甲烷的变化均在正常的范围内,甲烷最高体积分数为51.33%,较空白组提高了6.01%,整个发酵过程历时23 d.  相似文献   

3.
为研究猪粪厌氧发酵产沼气时投加产氢菌对反应体系发酵产气的影响,进行了产氢菌的投加量试验以及投加时间的比较试验。实验结果显示,投加0.5%,1%,2%,4%的产氢菌均能提高沼气总产量,其累积总产气量从大到小为1%4%0.5%2%,而对甲烷浓度没有明显的影响,其中最适投加量1%的累积产气量比对照增加7.4%。以1%的投加量,在分别在试验初始和第3rd,6th,9th投加产氢菌,不同时间投加均能提高沼气总产量,其累积总产气量从大到小为3rd6th初始9th,其中最适投加时间是3rd天,其累积产气量比对照增加14.4%。通过以上结果可知,添加产氢菌可以提高猪粪厌氧发酵的沼气产量,并具有一定的经济可行性和实际效益。  相似文献   

4.
在试验室条件下,对牛粪高浓度批次厌氧发酵进行试验研究,考察发酵温度、干物质含量和接种率对牛粪高浓度厌氧发酵效果影响。试验结果表明:牛粪高浓度厌氧发酵在工艺上是可行的;高温55℃厌氧发酵较中温35℃厌氧发酵产气快,发酵周期短,但能耗高,二者总累计产气量相近;高温厌氧发酵第15d累积产气量基本都达到了总产气量的95%以上;接种充分和发酵条件适宜条件下,干物质含量TS对累计干物质产气率影响较小,高浓度厌氧发酵可以有效提高反应器效率,且节水节能;随着接种率增大,高温高浓度厌氧发酵启动越迅速,平均日产气量越高,产气速度越快;接种率为30%时,第15d累计产气量为5 113mL,相当总产气量97%。  相似文献   

5.
为解决椰子加工剩余废弃物资源的浪费与环境污染问题,进行了椰子废弃物干法厌氧发酵工艺的研究。试验分为4组,每个试验组加入300g椰子废弃物,发酵温度均为(35±1)°C,前3组接种量分别为20%,30%,40%,第4组发酵前用300 g,6%NaOH溶液对接种量为30%椰子废弃物进行浸泡处理。试验结果表明:30%接种量较合适椰子废弃物干法厌氧发酵,其产生沼气总产气量和沼气中最高甲烷体积分数分别为3 238 mL和56.4%。椰子废弃物经过6%NaOH溶液处理后,发酵启动速度加快了5天,沼气总产量提高了481mL。因此,椰子干法厌氧发酵工艺的研究对解决椰子废弃物资源浪费及对环境污染等问题具有重大意义。  相似文献   

6.
甘蔗叶干法厌氧发酵工艺研究   总被引:3,自引:1,他引:2  
为实现甘蔗叶的能源化利用,采用干法厌氧发酵方法研究发酵原料总固体含量为20%时,不同接种量、草粪比以及发酵温度对甘蔗叶产气量和产甲烷的影响。结果表明:接种量在30%和40%时发酵可以正常启动,接种量为40%时总产气量最高,但发酵后期甲烷含量下降很快;草粪比为1∶1和2∶1时总产气量高,甲烷含量均在60%以上,产气效果明显好于草粪比为1∶0的处理组;发酵温度为35℃时,总产气量和甲烷含量最高,发酵温度为30℃和40℃时总产气量相差不大。甘蔗叶干法厌氧发酵产沼气效果较好的工艺参数为:接种量30%、草粪比1∶1和发酵温度35℃。各处理组在甲烷含量达到最高值之前,甲烷含量与发酵时间之间呈现很强的线性相关性。产气高峰过后,虽然日产气量明显下降,但气体中甲烷含量下降幅度不大。  相似文献   

7.
甘蔗叶干法厌氧发酵正交试验   总被引:1,自引:0,他引:1  
焦静  王金丽  张劲  邓怡国  郑勇  王刚 《农业机械学报》2012,43(10):110-113,142
为确定甘蔗叶干法厌氧发酵的最佳工艺参数,选择堆沤方法、草粪质量比、发酵温度这3个关键因素进行正交试验,优化工艺参数.试验结果表明:甘蔗叶干法厌氧发酵最佳工艺条件为:自然堆沤、草粪质量比1、发酵温度38℃,验证最佳工艺条件下产气量为655.30 L.同时研究分析表明,猪粪对甘蔗叶干法厌氧发酵有较大影响,在猪粪量相对较少的情况下,提高发酵温度也能增加产气量;堆沤时添加绿秸灵和腐秆剂对甘蔗叶发酵没有效果.  相似文献   

8.
添加活性炭的猪粪厌氧干发酵研究   总被引:2,自引:0,他引:2  
为了提高猪粪厌氧干发酵的产气效率和研究活性炭的添加量对猪粪厌氧干发酵的影响,文章在中温(37℃±0.5℃),发酵浓度为20%,接种物和猪粪比例为1∶1的条件下,向发酵瓶内分别添加发酵体系干物质的0%,1%,5%,10%的活性炭(分别为0 g,0.8 g,4.0 g和8.0 g),进行厌氧发酵至产气结束。实验结果表明;实验从开始产气至结束一共85 d,添加8 g活性炭(发酵干物质的10%)的试验组,添加4 g活性炭(发酵干物质的5%)的试验组,添加0.8 g活性炭(发酵干物质的1%)的试验组和不添加活性炭的试验组的TS产气量分别为411 mL·g~(-1),440 mL·g~(-1),392 mL·g~(-1)和391 mL·g~(-1);活性炭添加量为发酵体系干物质的5%时,对猪粪干发酵产气效果的提升最高;添加活性炭可以缩短猪粪干发酵的HRT,且活性炭添加量越多,HRT越短。  相似文献   

9.
柳珊  郭春春  何荣玉  王淳  马艳芳  董仁杰 《农业机械学报》2023,54(S1):338-349,380
酒糟是酿酒生产过程中的副产物,以酒糟为研究对象,分别考察不同底物总固体(Total solid, TS)质量分数(0.5%、1%、1.5%、2%)、接种比(接种污泥与酒糟的挥发性固体质量比)(0.25、0.5、0.75、1、1.5)和温度(25、37、50℃)条件下酒糟的厌氧消化产甲烷特性。结果表明,随着TS浓度的增加,产甲烷量逐渐增加, 2%TS条件下可获得最大的累计产沼气量(532.8mL/g)和产甲烷量(294.7mL/g)。接种比是影响厌氧消化系统的重要因素,随着接种比的增大,系统累计产沼气和产甲烷量呈先增加后减少的趋势,在接种比为0.25和0.5的条件下,系统发生崩溃,并未产甲烷,当接种比为1时,获得最大的累计产沼气和甲烷量。当TS质量分数为2%、接种比为1.5、发酵温度为50℃的条件下,获得最大的累计产沼气量为559.4mL/g,相较37℃条件下提高了10.2%,而获得的累计产甲烷量为284.0mL/g,相较37℃并未显著提升(P>0.05)。利用修正的Gompertz模型进行产气动力学分析后,发现TS质量分数越高、接种比越大、温度越高,产甲烷迟滞期越短。同时对不同温度反应体系中的微生物群落进行了分析,发现Bacteroidetes和 Firmicutes为优势菌门,随着温度的升高,产甲烷菌逐渐由氢营养型代替乙酸营养型。因此, TS浓度、接种比和温度是厌氧发酵重要因素,初步确定2%TS、接种比为1的中温酒糟厌氧发酵产甲烷性能相对较好。  相似文献   

10.
温度对蔬菜废弃物沼气发酵产气特性的影   总被引:6,自引:1,他引:5  
运用实验室自行设计的小型沼气发酵装置,以废弃的甘蓝菜叶作为发酵原料,研究了温度对蔬菜废弃物沼气发酵产气特性的影响.结果表明,中温条件((35±1)℃)试验组的挥发酸质量浓度、氨态氮质量浓度以及pH值都在正常范围内,且优于高温((55±1)℃)和室温发酵试验组,可保证系统的顺利运行.产气特性研究表明:中温条件的总产气量比高温条件总产气量高42.5%,最高甲烷含量比高温条件和室温条件下分别高7.6%和19.1%.因此,中温条件适于蔬菜废弃物厌氧发酵产气.  相似文献   

11.
The effect of moisture tension and doses of phosphate fertilization on yield components of sweet corn A-7573 (Zea mays L.) hybrid, in a Calcium Vertisol were evaluated. Four levels of soil moisture tension, ranging from −5 to −80 kPa, and three levels of phosphate fertilization: 60, 80, and 100 kg ha−1 were studied. In order to evaluate the effect of the experimental treatments, plant growth, development, and yield were monitored. Treatments were distributed using the randomized complete block design (RCB) for divided plots of experimental units. ANOVA analysis indicated that the effects on more humid treatments (−5 and −30 kPa) were statistically equivalent, however were different from the effect of −55 kPa treatment, which in turn was statistically different from the effect of the driest treatment (p ≤ 0.01). On the other hand, 80 and 100 kg ha−1 phosphate doses were statistically equal among them, but different from the lowest dose in almost all cases (p ≤ 0.01), which suggests that 80 kg ha−1 P2O5 application is sufficient to satisfy the nutritional requirements of the A-7573 hybrid. Both stress caused by the lack of water and the one due to deficiency of phosphorus affect all variables under study, however none of them showed interaction between irrigation and fertilization treatments. Irrigation of sweet corn crop is advisable when soil moisture tension grows to −30 kPa at 0-30 cm depth and to apply a phosphate fertilization dose of 80 kg ha−1 is also recommended; using this management, sweet corn expected average length and fresh weight are 30.8 cm and 298 g, respectively, and their average yield is around 16.5 t ha−1. In accordance with regression equations obtained, the maximum values in the evaluated response variables are obtained for a rank from −14.4 to −22.2 kPa in soil moisture tension. The greater efficiency in the use of irrigation water for sweet corn was of 36 kg ha−1 for every millimetre laminate of watering applied, found in the −30 kPa treatment of soil moisture tension.  相似文献   

12.
Excessive amounts of irrigation water and fertilizers are often utilized for early potato cultivation in the Mediterranean basin. Given that water is expensive and limited in the semi-arid areas and that fertilizers above a threshold level often prove inefficacious for production purposes but still risk nitrate and phosphorous pollution of groundwater, it is crucial to provide an adequate irrigation and fertilization management. With the aim of achieving an appropriate combination of irrigation water and nutrient application in cultivation management of a potato crop in a Mediterranean environment, a 2-year experiment was conducted in Sicily (South Italy). The combined effects of 3 levels of irrigation (irrigation only at plant emergence, 50% and 100% of the maximum evapotranspiration - ETM) and 3 levels of mineral fertilization (low: 50, 25 and 75 kg ha−1, medium: 100, 50 and 150 kg ha−1 and high: 300, 100 and 450 kg ha−1 of N, P2O5 and K2O) were studied on the tuber yield and yield components, on both water irrigation and fertilizer productivity and on the plant source/sink (canopy/tubers dry weight) ratio. The results show a marked interaction between level of irrigation and level of fertilization on tuber yield, on Irrigation Water Productivity and on fertilizer productivity of the potato crop. We found that the treatments based on 50% ETM and a medium level of fertilization represent a valid compromise in early potato cultivation management. Compared to the high combination levels of irrigation and fertilization, this treatment entails a negligible reduction in tuber yield to save 90 mm ha−1 year−1 of irrigation water and 200, 50 and 300 kg ha−1 year−1 of N, P2O5 and K2O, respectively, with notable economic savings for farmers compared to the spendings that are usually made.  相似文献   

13.
One-year-old carob (Ceratonia siliqua L.) rootstock was grown in fertilised substrate to evaluate the effects of NaCl salinity stress. The experiment consisted of seven treatments with different concentrations of NaCl in the irrigation water: 0 (control), 15, 30, 40, 80, 120 and 240 (mmol L−1), equivalent to electrical conductivities of 0.0, 1.5, 2.9, 3.9, 7.5, 10.9 and 20.6 dS m−1, respectively. Several growth parameters were measured throughout the experimental period. At the end of the experiment, pH, extractable P and K, and the electrical conductivity of the substrate were assessed in each salinity level. On the same date, the mineral composition of the leaves was compared. The carob rootstock tolerated 13.4 dS m−1 for a period of 30 days but after 60 days the limit of tolerance was only 6.8 dS m−1. Salt tolerance indexes were 12.8 and 4.5 for 30 and 60 days, respectively. This tolerance to salinity resulted from the ability to function with concentrations of Cl and Na+ in leaves up to 24.0 and 8.5 g kg−1, respectively. Biomass allocation to shoots and roots was similar in all treatments, but after 40 days the number of leaves was reduced, particularly at the larger concentrations (120 and 240 mmol NaCl L−1). Leaves of plants irrigated with 240 mmol NaCl L−1 became chlorotic after 30 days exposure. However, concentrations of N, P, Mg and Zn in leaves were not affected significantly (P > 0.05) by salinity. Apparently, K+ and Ca2+ were the key nutrients affected in the response of carob rootstocks to salinity. Plants grown with 80 and 120 mmol L−1 of NaCl contained the greatest K+ concentration. Na+/K+ increased with salinity, due to an elevated Na+ content but K+ uptake was also enhanced, which alleviated some Na+ stress. Ca2+ concentration in leaves was not reduced under salinity. Salinization of irrigation water and subsequent impacts on agricultural soils are now common problems in the Mediterranean region. Under such conditions, carob seems to be a salt as well as a drought tolerant species.  相似文献   

14.
Various crop growth simulation models exist for rice but thorough validation and evaluation reports are scarce. We present the model ORYZA2000, which simulates the growth and development of rice under conditions of potential production and water and nitrogen limitations. The model was evaluated against a data set of five field experiments with irrigated rice performed at IRRI between 1991 and 1993, with nitrogen levels varying from 0 to 400 kg ha−1 in different splits and timings of application. We compared simulated and measured leaf area index (LAI) and biomass of leaves, stems, panicles, and total aboveground biomass by graphics; by the slope, intercept, and adjusted coefficient of correlation; by Student’s t test of means; and by absolute and normalized root mean square errors (RMSE). On average, RMSE was 690–1280 kg ha−1 for total biomass, 350–380 kg ha−1 for leaf biomass, 460–790 kg ha−1 for stem biomass, and 380–580 kg ha−1 for panicle biomass. Yield was simulated with an RMSE of 840–850 kg ha−1 and a normalized RMSE of 11–13%. For these crop variables, normalized RMSE values were 65–84% higher than the typical coefficients of variation associated with their measurements. Simulated LAI generally exceeded measured values, especially at low levels of nitrogen application. We can use ORYZA2000 to support N field experiments and investigate optimum N application regimes with quantified errors of simulation. The developed database and quantitative goodness-of-fit parameters serve as references for future model improvements.  相似文献   

15.
Furrow diking in conservation tillage   总被引:2,自引:0,他引:2  
Crop production in the Southeastern U.S. can be limited by water; thus, supplemental irrigation is needed to sustain profitable crop production. Increased water capture would efficiently improve water use and reduce supplemental irrigation amounts/costs, thus improving producer's profit margin. We quantified infiltration (INF), runoff (R), and sediment (E) losses from furrow diked (+DT) and non-furrow diked (−DT) tilled conventional (CT) and strip tillage (ST) systems. In 2008, a field study (Tifton loamy sand, Typic Kandiudult) was established with DT, ST, and CT systems. In 2009, a field study (Faceville loamy sand, Typic Kandiudult) was established with DT and ST systems. Treatments (6) included: CT − DT, CT + DT, ST1 (1-year old) − DT, ST1 + DT, ST10 (10-year old) − DT, and ST10 + DT. Simulated rainfall (50 mm h−1 for 1 h) was applied to each 2-m × 3-m plots (n = 3). Runoff and E were measured from each 6-m2 plot. ST1 + DT plots had 80-88% less R than ST1 − DT plots. Any disturbance associated with DT in ST1 systems did not negatively impact E values. For both soils, CT − DT plots represented the worst-case scenario in terms of measured R and E; ST + DT plots represented the best-case scenario. Trends for R, E, and estimated plant available water (PAW) values decreased in order of CT − DT, CT + DT, ST1 − DT, ST1 + DT, ST10 − DT, and ST10 + DT treatments. From a hydrology standpoint, ST1 − DT plots behaved more similarly to CT plots than to other ST plots; from a sediment standpoint, ST1 − DT plots behaved more similarly to other ST plots than to CT plots. DT had no effect on ST10 plots. CT − DT and ST10 + DT plots resulted in 5.9 (worst-case) and 8.1 (best-case) days of water for crop use, a difference of 2.2 days of water for crop use or 37%. Compared to the CT − DT treatment, an agricultural field managed to CT + DT, ST1 − DT, ST1 + DT, ST10 − DT, and ST10 + DT would save a producer farming the CT − DT field $5.30, $9.42, $13.55, $14.14, and $14.14 ha−1, respectively, to pump the amount of water lost to R and not saved as INF back onto the field. The most water/cost savings occurred for CT and ST1 plots as a result of DT. Savings for CT + DT, ST1 − DT, and ST1 + DT treatments represent 27%, 47%, and 68% of the cost of DT ($20 ha−1) and 37%, 67%, and 96% of the savings a producer would have if managing the field to ST for 10 years without DT (ST10 − DT) in a single 50-mm rainfall event. For row-crop producers in the Southeastern U.S. with runoff producing rainfall events during the crop growing season, DT is a management practice that is cost-effective from a natural resource and financial standpoint for those producers that continue to use CT systems and especially those that have recently adopted ST systems into their farming operations.  相似文献   

16.
Crops grown in semiarid rainfed conditions are prone to water stress which could be alleviated by improving cultural practices. This study determined the effect of cropping system, cultivar, soil nitrogen status and Rhizobium inoculation (Rz) on water use and water use efficiency (WUE) of chickpea (Cicer arietinum L.) in semiarid environments. The cultivars Amit, CDC Anna, CDC Frontier, and CDC Xena were grown in no-till barley, no-till wheat, and tilled-fallow systems and under various rates of N fertilizer (0, 28, 56, 84, and 112 kg N ha−1) coupled with or without Rz. The study was conducted at Swift Current and Shaunavon, Saskatchewan, from 2004 to 2006. On average, chickpea used about 10 mm of water from the top 0-15 cm soil depth. In the tilled-fallow system, chickpea extracted 20% more water in the 15-30 cm depth, 70% more in the 30-60 cm depth, and 156% more in the 60-120 cm depth than when it was grown in the no-till systems. CDC Xena had WUE of 5.3 kg ha−1 mm−1 or 20% less than the average WUE (6.6 kg ha−1 mm−1) of the three other cultivars, even though these cultivars used the same amounts of water. Water use efficiency increased from 4.7 to 6.8 kg ha−1 mm−1 as N fertilizer rate was increased from 0 to 112 kg N ha−1 when chickpea was grown in the no-till barley or wheat systems, but chickpea grown in the tilled-fallow system did not respond to changes in the fertilizer N rates averaging WUE of 6.5 kg ha−1 mm−1. In the absence of N fertilizer, the application of Rz increased WUE by 33% for chickpea grown in the no-till barley system, 30% in the no-till wheat system, and 9% in the tilled-fallow system. Chickpea inoculated with Rhizobium achieved a WUE value similar to the crop fertilized at 84 kg N ha−1. Without the use of Rz, chickpea increased WUE in a linear fashion with increasing fertilizer N rates from 0 to 84 kg N ha−1. Cropping system, cultivar, and inoculation all had greater impact on WUE than on the amount of water extracted by the crop from the soil. The improvement of cultural practices to promote general plant health along with the development of cultivars with improved crop yields will be keys for improving water use efficiency of chickpea in semiarid environments.  相似文献   

17.
The use of treated sewage effluent in agriculture has been a current practice in several countries. However, in Brazil, there are few studies about this subject. This research work aimed at evaluating the potential utilization of secondary-treated sewage effluent (STSE) as an alternative source of water and nitrogen (N) for Tifton 85 bermudagrass pasture. A field experiment was carried out at Lins, State of São Paulo, Brazil, for 2 years, using a randomized complete block design, with four replications and five treatments, as follows: (i) T1 (control) – irrigation with potable water and addition of mineral-N fertilizer (MNF) – 520 kg N ha−1 year−1; (ii) T2–T5 – irrigation with STSE (31.9 mg total-N L−1) and addition of MNF – 0, 171.6, 343.2 and 520 kg N ha−1 year−1, respectively. Potable water and STSE characteristics were monitored monthly; above ground grass dry matter yield (DM) and crude protein content (CP) were determined bimonthly. Increases in DM and CP were observed for the high MNF rates associated with irrigation with STSE. STSE irrigation can efficiently substitute potable water for irrigation of Tifton 85 bermudagrass pasture and, simultaneously, save 32.2–81.0% of the recommended N rate without loss of grass DM and CP yield.  相似文献   

18.
During 2 years, a melon crop (Cucumis melo L. cv. Sancho) was grown under field conditions to investigate the effects of different nitrogen (N) and irrigation (I) levels on fruit yield, fruit quality, irrigation water use efficiency (IWUE) and nitrogen applied efficiency (NAE). The statistical design was a split-plot with four replications, where irrigation was the main factor of variation and N was the secondary factor. In 2005, irrigation treatments consisted of applying daily a moderate water stress equivalent to 75% of ETc (crop evapotranspiration), a 100% ETc control and an excess irrigation of 125% ETc (designated as I75, I100 and I125), while the N treatments were 30, 85, 112 and 139 kg N ha−1 (designated as N30, N85, N112 and N139). In 2006, both the irrigation and N treatments applied were: 60, 100 and 140% ETc (I60, I100 and I140) and 93, 243 and 393 kg N ha−1 (N93, N243 and N393). Moderate water stress did not reduce melon yield and high IWUE was obtained. Under severe deficit irrigation, the yield was reduced by 22% mainly due to decrease fruit weight. The relative yield (yield/maximum yield) was higher than 95% when the irrigation depth applied was in the range of 87-136% ETc. In 2006, the interaction between irrigation and N was significant for yield, fruit weight and IWUE. The best yield, 41.3 Mg ha−1, was obtained with 100% ETc at N93. The flesh firmness and the placenta and seeds weight increased when the irrigation level was reduced by 60% ETc. The highest NAE was obtained with quantities of water close to 100% ETc and increased as the N level was reduced. The highest IWUE was obtained with applications close to 90 kg N ha−1. The I243 and I393 treatments produced inferior fruits due to higher skin ratios and lower flesh ratios. These results suggest that it is possible to apply moderate deficit irrigation, around 90% ETc, and reduce nitrogen input to 90 kg ha−1 without lessening quality and yields.  相似文献   

19.
The objective of the study was to determine the effects of different emitter spaces and water stress on crop yield, such that the tomatoes would be suitable for processing and paste output (Lycopersicon esculentum Mill cv. Shasta). Such variables were also analyzed with respect to crop quality characteristics (e.g., mean fruit weight - MFW, fruit diameter - FD, penetration value of fruit - PV, pH, total soluble solids - TSS, and ascorbic acid contents - AA). The experiment was conducted under ecological conditions typical of the Konya Plain, a semi-arid climate, in 2004 and 2005. Drip irrigation laterals were arranged in such a way that every row had one lateral. Emitters were spaced at 25, 50, and 75 cm intervals in the main plots, while four levels of water supply, irrigation at 7-day intervals with enough water to fill the soil depth of 0-60 cm until capacity was reached (I1), and 25, 50, and 75% decreased water supply levels were applied as subplots of the experiment. Results of the field experiments showed that yield suitable for processing (68.7-72.7 t ha−1) and paste output (12.2-12.9 t ha−1) were obtainable under conditions of I1 application (p < 0.01). MFW, FD, PV, and TSS were significantly affected from treatments (p < 0.05). High stress resulted in the highest soluble solids. The total irrigation water amount and water consumptive use of the mentioned application (I1) were determined as 426 and 525 mm in 2004. In 2005, the total irrigation water amount and water consumptive use of the same treatment were 587 and 619 mm, respectively.  相似文献   

20.
Early planting of rice crop during the period of peak evaporative demand results in substantial mining of ground water and threats the sustainability of rice production in Punjab, northwest India. In order to increase yield and water productivity, arrest the mining of ground water, and achieve sustainability of rice production, there is need to adopt water-saving management practices. The present investigation in the Indian Punjab was aimed at investigating the effect of date of transplanting in four rice cultivars varying in growth duration (short-duration RH-257 and PR-115, and medium-duration PR-113 and PAU-201) on yield and water productivity. Delaying in transplanting from 15 June to 25 June or 5 July resulted in reduction in mean grain yield of the four cultivars by 7.2% and 15.9%, respectively. PAU-201, a photoperiod-sensitive cultivar, had higher mean grain yield (7.8 t ha−1) by 14.1%, 12.8% and 11.5% over the photoperiod-insensitive cultivars, PR-113, PR-115 and RH-257, respectively. Irrespective of transplanting dates, short-duration cultivars, RH-257 and PR-115, respectively, resulted in 18.9% and 16.6% saving of water, as compared to medium-duration cultivar PR-113. With delayed transplanting after 15 June, both yield and water productivity decreased for all photoperiod insensitive cultivars, but yields remained statistically similar and water productivity greater for a photoperiod sensitive cultivar. Mean irrigation water productivity (WPI) was highest for 15 June transplanting (0.66 kg m−3) and lowest for 5 July transplanting (0.57 kg m−3), and was highest for RH-257 (0.68 kg m−3) and lowest for PR-113 (0.50 kg m−3). Total water productivity (WPI+R; irrigation plus rainfall) decreased by 9.1% for 5 July transplanting compared with 15 June transplanting, and was highest for RH-257 (0.49 kg m−3) and lowest for PR-113 (0.38 kg m−3). Real crop water productivity (WPET) of the photoperiod insensitive cultivars decreased (1.10-1.40 kg m−3), but that of a photoperiod sensitive cultivar increased (1.63 kg m−3), with delayed transplanting. We conclude that substantial amount of water can be saved and yield increased by transplanting short-duration cultivars during the period of peak evaporative demand, or water saved and yield maintained by transplanting a photoperiod-sensitive cultivar late in the season when the evaporative demand is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号