首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 437 毫秒
1.
刘龙  刘道奇  孙千涛  钱凯  李秀杰 《农机化研究》2022,44(6):139-144,151
为了降低花生挖掘收获过程中花生荚果掉果和摘果力,以河南省地区主推广种植的3个花生品种为研究对象,利用微机控制电子万能试验机、水分测定仪等相关试验仪器设备,对挖掘晾晒的花生植株各部分含水率随晾晒时间的变化以及果柄与荚果轴线同轴和不同拉伸角度的摘果力进行测定,并研究了3个品种花生从挖掘到含水率降至10%左右时,花生茎秧、果柄和荚果的含水率变化及力学性质。试验结果表明:花生植株刚挖掘时含水率为50%~75%,晾晒6~7天后含水率基本降至10%,含水率变化呈现渐近线规律;在晾晒初期,花生摘果力随晾晒时间延长而迅速降低,后期下降逐渐缓慢,刚挖掘时3个品种的摘果力为18.91~23.04N,晾晒6天后摘果力降至9.83~12.27N;摘果时断裂位置出现在果柄节点处的概率随着含水率的降低从70%上升到80%左右;不同拉伸角度下摘果力出现先降低后升高的趋势,拉伸角度为30°时摘果力最小;初步确定了捡拾收获晾晒时间3~4天,此时摘果力最小。研究结果可为两段式捡拾收获机提供最佳的收获时间,也可为花秧果兼收鲜湿花生摘果滚筒的摘果角度提供了一定参考。  相似文献   

2.
为解决花生捡拾联合收获机摘果喂入过程中荚果易破碎、秧果易拥堵等问题,设计了一种用于花生捡拾联合收获机摘果系统的螺旋喂入装置。通过对花生植株喂入输送过程分析,确定了摘果滚筒螺旋喂入头、锥形套筒的设计参数。以挖掘条铺并经田间自然晾晒3天的花生植株为试验对象,以荚果破碎率为试验指标,以摘果滚筒转速、喂入量、喂入间隙为试验因素进行试验台试验。试验结果表明:当摘果滚筒转速483.962r/min、喂入量3.176kg/s、喂入间隙9.529mm时,破碎率达到最小值为0.228%。经田间试验验证,整机花生荚果破碎率≤1.2%,满足花生低损收获要求。研究可为我国花生捡拾联合收获机喂入及摘果系统的研究提供理论和实践依据。  相似文献   

3.
<正>花生机械化收获作业包括分段收获和联合收获两种方式。收获方式和机具应根据当地土壤条件、经济条件和种植模式进行选择。品种、土壤、地块条件和种植方式适宜联合收获的采用花生联合收获机进行收获,分段收获建议采用花生收获机挖掘、抖土和铺放,捡拾摘果机完成捡拾摘果清选,或人工捡拾、机械摘果清选。  相似文献   

4.
分段收获花生先将成熟花生拔离地面,平铺晾晒于地表一段时间,并采用具有捡拾功能的花生收获机实现花生秧果的捡拾、喂入、摘果、集果等一系列收获工作,而花生捡拾装置是花生分段收获机上的工作入口装置。捡拾装置要实现两个功能:(1)将平铺的花生秧果均匀地捡拾且顺利喂入搅龙结构;(2)搅龙旋转带动花生秧果至输送装置。实现这两项功能的结构主要是捡拾器和搅龙,且捡拾器捡拾花生秧果性能对整机性能影响举足轻重,而捡拾器运动轨迹的设计决定捡拾装置是否设计合理,直接影响花生收获机的收获质量和工作效率。为此,针对晾晒后的花生秧果特性,通过运动仿真分析对比确定了捡拾器回转轨迹,根据该轨迹设计了捡拾装置,并搭载于整车进行田间试验。  相似文献   

5.
全喂入式摘花生鲜果装置研制与试验分析   总被引:1,自引:0,他引:1  
目前,我国花生机械化收获水平较低,人工收获劳动强度大、成本高,实现花生机械化生产是广大农户的迫切愿望。为此,研制了全喂入式摘花生鲜果装置,并测量了试验地花生基本特性,进行了喂入量、滚筒转速、摘果间隙以及摘果齿排数等参数正交试验。试验和分析表明,喂入量1.2kg/s、滚筒转速400r/min、摘果间隙65 mm和摘果齿3排为最佳工作参数,破碎率和未摘净率分别为1.62%和1.03%。该工作参数可以为全喂入式花生联合收获机摘果装置和花生摘果机单机设计提供参考。  相似文献   

6.
正(本刊讯)花生捡拾收获机近两年在市场上发展迅猛,2018年花生捡拾收获机销量增幅超过50%,是农机寒冬中少有的出现快速大幅增长的大型农机产品。花生捡拾收获机采用的是花生分段收获技术路线,是指对出土后经过晾晒的花生进行捡拾收获,一次性完成捡拾、摘果清选、果蔓分离、果实装仓、茎蔓切碎回收装箱的机器。自走式花生捡拾收获机摘果清选后花生果干净无杂余,晾干后可直接装袋贮藏,自具有操作方便、性能可靠、摘果净、效率高、破碎少,等优势特点。  相似文献   

7.
为适应三垄六行花生联合收获机大喂入量情况下摘果作业的要求,对摘果对辊的结果及重要参数进行了设计与试验。通过试验建立了摘果对辊转速、摘果对辊长度、摘果叶片重叠距离与花生破碎率和漏摘率的数学模型,并进行田间试验。试验结果表明:该摘果机构可以有效地对花生进行摘果,当摘果对辊转速为580r/min、摘果对辊长度为1000mm、摘果叶片重叠距离为9mm时,花生破碎率和漏摘率分别为0.67%和0.84%,摘果效果最佳,符合花生摘果机行业标准(NY/T-993-2006),提高了我国花生联合收获的效率,为接下来花生联合收获机的研究提供了参考。  相似文献   

8.
两段收获花生螺杆弯齿式轴流摘果装置设计与试验   总被引:1,自引:0,他引:1  
针对现有花生摘果装置普遍存在的摘果损伤率高且易缠绕、堵塞和排秧困难等问题,以及满足我国两段式花生收获的捡拾联合收获机摘果装置研究需要,在研究两段式花生收获方式下花生植株性状与特点基础上,设计了一种螺杆弯齿式轴流全喂入花生摘果装置,摘果作业时,花生植株受螺杆、弯齿和凹板筛共同作用使花生荚果从花生茎秆上脱离,因螺杆有螺旋角、弯齿有倾角,花生植株沿摘果滚筒圆周运动的同时,受轴向分力作用排出机外,在保证高摘净率和低损伤率的同时避免植株在滚筒中缠绕和堵塞;对关键部件(螺杆、弯齿和凹板筛等)进行了设计与计算。以晾晒3~5 d的辽宁主栽花生品种"花育30"为试验材料,以弯齿与滚筒母线夹角、弯齿弯角和螺杆与滚筒母线夹角为试验因素,以摘净率和破碎率为试验指标,运用回归正交旋转试验方法,对样机进行了两段收获条件下的摘果性能试验;建立试验因素与试验指标之间的数学模型并进行响应面优化试验分析,结果表明:在弯齿与滚筒母线夹角为33°、弯齿弯角为60°和螺杆与滚筒母线夹角为23°时,花生摘果综合指标最优,花生摘净率为98.96%,花生破碎率为0.88%,均优于行业标准,满足实际生产要求。  相似文献   

9.
<正>金大丰牌2019新款自走式花生捡拾收获机震撼上市!4HZJ-2500型自走式花生捡拾收获机是精心为花生种植区量身打造,收获花生的理想机型。该机主要用于花生出土后直接收获或晾晒后收获,一次性完成捡拾、摘果、果蔓分离,分别入箱;作业性能好,结构紧凑,操作方便,安全可靠,适应全国花生种植区域,是农民发家致富的好帮手。  相似文献   

10.
荞麦具有不同于普通谷物的收获特性,而两段式收获被认为是其最佳的机械化收获方式。目前,关于荞麦两段式捡拾收获的脱粒分离装置的试验研究鲜有报道。为此,在自行研制的切流-横轴流双滚筒捡拾收获试验平台上进行了荞麦的脱粒分离试验研究,即采用四因素三水平的正交试验,研究了荞麦籽粒含水率、喂入量、脱粒滚筒线速度和脱粒间隙对破碎率、含杂率、损失率和脱分功率等性能指标的影响规律。结果表明:影响荞麦脱粒分离性能的试验因素重要性次序依次为籽粒含水率、脱粒间隙、滚筒线速度及喂入量;荞麦两段式捡拾收获最优的脱粒分离作业参数为籽粒含水率20%、脱粒间隙35 mm、脱粒滚筒线速度17.27 m/s、喂入量1.2 kg/s;最优脱粒分离作业参数下脱出物中各类杂余占比较小,表明装置适用于荞麦两段式捡拾收获的脱粒分离作业。研究可为两段式荞麦捡拾收获机的脱粒分离装置研发提供理论支撑和试验支持,对荞麦产业的机械化发展具有重要意义。  相似文献   

11.
针对目前国内花生收获工作过程中存在秧蔓浪费严重的问题,设计了一种与花生联合收获机配套使用的秧蔓打捆装置,在收获花生果实的同时,可对秧蔓进行青贮打捆处理。通过理论分析确定了秧蔓打捆装置及保证圆捆质量的秧蔓切根机构主要机构结构参数和分布型式。田间试验结果表明:添加打捆装置的花生联合收获机作业后的平均秧蔓粉碎率为99.1%,秧蔓损失率为0.4%,秧蔓切根率为98.7%,成捆质量57kg,各项性能指标均达到相关设计标准,且花生秧蔓打捆装置能与花生联合收获机的挖拔、清土、摘果、清选装置较好配合。研究可进一步丰富我国花生机械收获体系,弥补国内花生秧蔓青贮处理机械的空缺。  相似文献   

12.
4HBL-2C型半喂入花生联合收获机设计与试验   总被引:1,自引:0,他引:1  
花生是我国四大油料作物之一,常年种植面积466.7万hm^2左右,总产量1 700万t,约占全球40%,居全球首位。然而,我国花生生产机械化发展却相较滞后,目前花生收获作业仍主要靠人工完成。据农业部农机化司统计,目前我国花生收获机械化率约为33%,花生收获机械化水平仍有较大提升空间。为此,依据前期研究成果并参照国内外相关机型,优化设计了4HBL-2C型半喂入花生联合收获机,并对花生收获机主要部件进行了设计参数分析,最后对样机进行了田间试验,结果表明:2HBL-2C型半喂入花生联合收获机收获损失率与果荚含杂率均符合国家标准技术要求,可为花生联合收获提供可供选择的机型。  相似文献   

13.
4HLB-2型半喂入花生联合收获机试验   总被引:8,自引:0,他引:8  
为了提高4HLB-2型半喂入花生联合收获机作业性能,通过单因素试验和两因素全试验,研究了土壤含水率、收获期、夹持高度、清土频率和振幅、摘果辊转速和夹持输送速度对收获损失和含土率的影响.结果表明:收获沙壤土花生的适宜土壤含水率为8%~15%;花生生长后期,清土落果损失率逐渐增加,当根茎拉断力小于5N时,落果损失率大于2%;机器收获的最佳夹持高度为150~200mm,此时清土和摘果效果最佳,其中果实总损失率小于6%,含土率小于4%;清土作业采用低频率、小振幅时落果损失小,但含土率高,采用高频率、大振幅时含土率低,但落果损失大;摘果作业在高摘果辊转速和低夹持速度工况下,摘果段损失率较低,试验中当摘果辊转速为390r/min、夹持速度为0.5m/s时,摘果损失率为2.79%.  相似文献   

14.
花生联合收获机智能测产系统研究   总被引:2,自引:0,他引:2  
为解决花生收获过程中产量监测问题,结合4HBLZ-2型自走式花生联合收获机设计了一种智能测产系统。硬件部分包括北斗导航车载接收系统、单片微处理器及重量传感器、德国麦希欧接触式在线水分传感器,通过CAN总线接口与上位机连接。将定量称重与网格细分技术相结合应用于收获机测产领域,相较于冲量式测产系统,极大地降低了收获机振动引起的产量累积误差。软件采用跨平台应用程序Qt完成了各传感器数据的实时接收、存储,以及对任意划定地块产量数据的查询,并且能够实现查询产量数据的平面及3D立体渐变色显示。在5种不同工况下对该测产系统进行试验,测试花生收获机工作状态下测产系统的稳定性。在发动机大油门、开动夹持输送装置工况下,产量相对误差绝对值小于2%,在田间试验情况下产量相对误差绝对值小于5%。  相似文献   

15.
去土装置是花生联合收获机中非常重要的组成部分,其性能直接影响到后续摘果装置的工作效果.针对挖拔组合式花生联合收获机设计了3种去土装置,即正向上下摆拍式去土装置、反向上下摆拍式去土装置和横向摆拍式去土装置.通过对比试验,根据去土率和机械掉果率等试验,表明了正向上下摆拍式去土装置为最佳的去土机构.  相似文献   

16.
我国的花生秸秆大多采用摘果后就地铺放的形式,待晾晒干燥后再进行运输集垛,这种方法生产率低、运输不方便,且占用较多的贮藏空间。基于4HB-2A型花生联合收获机,加装花生秸秆打捆装置,设计出一种能够在花生收获的同时,对花生秸秆进行收集打捆的打捆机,改变花生机械化收获发展不全面的状态,有效减少劳动力的需求量,提高花生秸秆的收集效率和收集质量,降低花生秸秆运输和贮藏成本,从而方便后续的收集、运输、贮藏和加工作业。田间性能试验表明,秧蔓回收效果良好,达到了设计要求。   相似文献   

17.
针对现有大蒜联合收获机夹持输送机构存在的生产效率低、可靠性差等问题,设计一种柔性夹持输送机构。根据机具性能要求和大蒜的生长环境特征,阐述了夹持输送的结构和工作原理,通过对大蒜在夹持输送过程中的力学特性分析,确定了结构参数和技术参数。所设计的柔性夹持输送机构倾斜角为25°,输送带为B型双联带,夹持高度距离地面162mm可调,生产效率为0.2~0.5hm^2/h。该研究对大蒜可靠输送、降低伤蒜率、减少大蒜输送损失、提高大蒜联合收获机整机性能具有重要意义。  相似文献   

18.
收获期沙棘的力学特性与形态特征测定与分析   总被引:1,自引:0,他引:1  
为了测量分析沙棘收获期所需的基础数据,为沙棘收获机械的研制提供依据,以黑龙江绥棱种植的优胜、HS-12、楚伊、金色4种沙棘果实为实验对象,测定收获期不同品种沙棘果实的横径与纵径、果实质量、果柄-果实分离力、果柄-树枝分离力及果皮颜色特征等各项物料特性参数。结果表明:果柄-果实分离力较果柄-树枝分离力更为集中,且果柄-果实分离力显著小于果柄-树枝分离力,所以机械收获时的采摘位置最好选择在沙棘果柄-果实之间。楚伊的果柄-果实分离力最大,其次是优胜、HS-12,金色的最小。成熟期沙棘果柄-果实分离力的变化范围为0.5~2.0N,HS-12沙棘果实进入成熟期其果皮颜色整体分布呈锈红色,优胜和楚伊整体分布呈橙色,金色整体分布呈黄色。该研究可为成熟期沙棘的收获和加工机器系统的开发提供理论依据。  相似文献   

19.
铲筛组合式花生分段收获机的设计与试验   总被引:2,自引:0,他引:2  
针对我国现有花生分段收获机械化程度低、动力消耗大及工作稳定性差等问题,研究设计了一种铲筛组合式花生分段收获机。该机将花生的挖掘工序和分离工序合二为一,可一次完成挖掘、去土、送秧等工序,采用曲柄摇杆机构驱动分离筛振动,实现了两侧机构等角度、同方向摆动,减小机身侧向力。田间试验测试表明:收获机挖掘深度平均为143mm,落果率平均为0.21%,破损率平均为0.33%,果秧含土率平均为0.31%,耗油量平均为712g/kW·h。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号