首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
对车辆动力学控制中的道路路面附着系数实时估计问题进行研究。首先使用魔术公式建立1/4车辆制动模型,即车轮制动动力学模型;然后将其中的附着系数相关项视为制动系统的扩张状态,建立其扩张状态观测器,通过轮速信号和制动力矩信号实时观测制动过程中地面与轮胎间的纵向力,进而计算出路面附着系数;最后在均匀路面和突变路面条件下进行仿真研究。结果表明,所提出的方法对车辆制动系统参数摄动和传感器噪声具有鲁棒性,可以准确地实现道路路面附着系数的实时估计,观测器与控制器设计具有一定独立性。  相似文献   

2.
基于扩张状态观测器的路面附着系数实时估计   总被引:2,自引:0,他引:2  
对车辆动力学控制中的道路路面附着系数实时估计问题进行研究.首先使用魔术公式建立1/4车辆制动模型,即车轮制动动力学模型;然后将其中的附着系数相关项视为制动系统的扩张状态,建立其扩张状态观测器,通过轮速信号和制动力矩信号实时观测制动过程中地面与轮胎间的纵向力,进而计算出路面附着系数;最后在均匀路面和突变路面条件下进行仿真研究.结果表明,所提出的方法对车辆制动系统参数摄动和传感器噪声具有鲁棒性,可以准确地实现道路路面附着系数的实时估计,观测器与控制器设计具有一定独立性.  相似文献   

3.
本文对制动器制动力分配系数进行了研究.根据不同的制动力分配系数,制动强度以及前、后轴利用附着系数的关系,绘制汽车利用附着系数与制动强度关系图,并选择合适的制动力分配系数.通过对盘式制动器进行计算,设计合理的制动系统.计算表明该制动系统参数满足汽车在良好路面上的制动要求.  相似文献   

4.
《湖南农机》2002,(2):8-9
道路是交通的基础,在农机运输作业环境因素中,道路环境是最为主要的。道路环境是指道路构造、路面质量、人和车在道路横断面上的分离以及路肩情况、路旁有无建筑、中心分离带等道路特性。了解道路环境与安全行车的关系,并采取相应的措施,是每个农机驾驶员都应该掌握的基础知识。本文重点分析路面、坡度、弯道路障与视障、水路面、村庄、不平道路等道路环境的特性。路面路面主要有水泥路面、沥青路面、砂石路面和农村土路等几种。不同的路面有着不同的附着系数,直接影响着行车制动距离。各种路面的附着系数和不同速度的制动距离列表1。…  相似文献   

5.
农用运输车制动管路部分失效时的制动效能分析   总被引:1,自引:0,他引:1  
分析了农用运输车双管路制动系统中一个管路失效时的制动效能 ,并讨论了质心位置、路面附着系数对剩余制动效能的影响  相似文献   

6.
为了提高车辆制动效能,增加制动安全性,提出EBD/ABS协调控制策略。基于商用车动力学仿真标准软件Carsim建立某微型车的非线性动力学模型和路面模型,通过在不同路面附着系数的路面以及对开路面上的动力学仿真,验证协调控制方案。仿真结果表明所提出控制策略方法可行,制动效果良好。  相似文献   

7.
基于道路自动识别ABS模糊控制系统的研究   总被引:25,自引:4,他引:25  
道路状况自动识别是保证车辆防抱制动系统(ABS)正常工作的前提,本文提根据制动压力,滑移率和车轮减速度进行道路自动识别的方法,并依此设计了ABS模糊控制器,结合7自由度车辆模型,考虑悬架和轮胎的非线性影响,对单一附着系数路变附着系数路面进行了ABS制动模拟试验,试验结果表明,基于路面自动识别ABS模糊控制系统能准确判断出路面状况的变化,据此调整控制策略,使车辆获得最大地面制动力和较好的横向稳定性,对比试验证明它优于传统PID控制,且具有较强的鲁棒性。  相似文献   

8.
为了提高智能汽车在突发性交通危险工况下的安全性,设计了主动制动系统拟人智能决策-规划算法。建立了不同路面峰值附着系数条件下的制动电机目标电流Ii-hope函数,依据制动过程中实际滑移率λ和路面峰值附着系数μ,对制动电动机最优目标电流进行实时决策-规划。研究结果表明,在突发性交通危险工况下,所设计的拟人智能决策-规划算法能够把滑移率控制在当前路况最佳滑移率附近,在兼顾了舒适性的同时,整车制动能力提高了4.12%~4.38%,有效降低了智能汽车在突发性交通危险工况下的事故率。  相似文献   

9.
基于主动转向技术的汽车制动稳定性控制   总被引:1,自引:0,他引:1  
以汽车制动稳定性控制原理和相关汽车动力学模型为基础,通过对汽车在两侧路面附着系数相差较大的对开路面的制动状况进行理论分析,提出利用主动转向技术控制汽车紧急制动时的稳定性,并使汽车在制动偏驶后能通过转向控制快速恢复到正确的行驶车道.在理论分析的基础上结合所提出的模糊控制策略和控制方式,设计模糊控制器进行仿真实验,并用实验结果进行了验证,结果表明利用所提出的汽车制动稳定性模糊控制策略,能减少汽车制动时的失稳状况,对于提高汽车的行驶安全性具有一定的作用.  相似文献   

10.
隆冬时节,道路常被冰雪覆盖,车辆的运行条件发生变化,在冰雪道路上,轮胎对路面的附着力显著下降,其附着系数仅为混凝土路面的28%,当车速每小时30公里时,冰雪道路的制动距离为35米,是混凝土路面的7  相似文献   

11.
雨天行驶机动车制动效果下降,制动距离延长。制动效果的好坏,一般取决于车辆的装载质量、车辆的车速、车辆的制动力、轮胎与路面之间的附着系数、制动操作的技巧,其中主要影响因素是附着系数的大小。干燥路面的附着系数比湿润路面的附着系数大得多。如干沥青路面附着系数是0.6,湿沥青路是  相似文献   

12.
对于按照等比例分配前后车轮制动力的汽车,只有当利用附着系数为同步附着系数时,汽车的制动强度最大,但是在实际制动过程中却很容易发生某一车轮先抱死的情况。通过分析制动过程中汽车的受力和制动力分配关系,以道路同步附着系数和汽车结构为参数,表达当前轮或后轮抱死时的汽车制动性能,辅以制动性能曲线图来加以说明,汽车单轴车轮抱死时的制动性能分析对汽车制动系统设计、ABS和TCS控制等具有指导作用。  相似文献   

13.
重载汽车制动系统设计与试验分析   总被引:1,自引:0,他引:1  
为保证汽车制动稳定性,减小或消除前后制动器制动的时间差,在汽车传统制动系统的基础上,通过优化和分析,设计了新的制动系统。将新研制的制动系统安装在国内某重载汽车上,并在交通部实验场进行不同附着系数路面的制动试验,结果表明,所设计的制动系统安全性能提高、性能良好,并满足国家标准要求。  相似文献   

14.
分离路面汽车牵引力控制道路试验参数匹配分析   总被引:2,自引:0,他引:2  
车辆牵引力控制系统的控制方式及控制参数的选择直接影响着控制效果。在附着系数分离路面上进行了冬季原地起步直线加速道路试验,分析了发动机油门调节与驱动轮制动控制的不同目标滑移率匹配分别对整车牵引力控制系统动力性及行驶稳定性的影响。道路试验结果表明,在附着系数分离路面上,采用制动控制为主、油门调节为辐的联合控制,牵引力控制系统能有效抑制驱动轮过度滑转,充分提高车辆动力性能,同时也保证了行驶稳定性。  相似文献   

15.
以热红外成像传感器和自学习轮胎与路面附着系数为基础建立了一种汽车主动防撞系统。该系统不受气候的影响,并可以根据路面附着系数和车速实时变化安全距离,有效提高汽车安全行驶性能,并通过试验进行了验证。  相似文献   

16.
车辆在路面附着系数较低的条件下,制动时出现跑偏、侧滑现象较多,常会引起车辆碰撞、翻车等重大交通事故。基于此因素,着重使用力学的方法,分析汽车鼓式制动器对制动跑偏的影响,并进行了试验研究,阐述了鼓式制动器对制动跑偏的影响因素和汽车制动跑偏的检测方法,提出了防止汽车制动跑偏的有效措施。  相似文献   

17.
在MF轮胎模型的基础上,针对影响路面附着系数的因素,详尽分析了在6种典型路面上滑移率与附着系数之间的关系,提出了利用轮速等汽车动力学参数便捷识别路面状态的方法。该方法在典型路面特性的基础上,将估计的路面附着系数与典型路面的特性进行比较,并给出路面的状态。最后在直线制动工况下模拟了该路面状态识别方法在分离路面和组合路面上的可靠性和有效性。结果表明该方法能够较好地识别路面的状态。  相似文献   

18.
针对滑移率与不同路面附着系数关系对各种路面制动工况进行分析研究,以完善全工况类型路面农用车辆防抱制动系统仿真内容为目的,设计滑移率为控制门限值的复杂路面制动仿真试验。利用MATLAB/Simu-link仿真软件,建立了滑移率模型、复杂路面模型、滑移率控制策略模型和复杂路面仿真模型。通过设定控制滑移率门限值得到单轮农用车辆附着系数交变制动时车速与轮速曲线变化情况。滑移率变化值处在最佳滑移率预定范围内,仿真试验验证了复杂路面车辆防抱制动系统滑移率控制的可靠性。  相似文献   

19.
建立在制动过程的汽车二轮数学模型,同时建立了基于ABS的模糊控制器,进行了直线的制动仿真实验。实验结果表明采用基于滑移率的模糊控制方法,可以有效防止车轮抱死,缩短了制动距离,且该方法对具有不同峰值附着系数的路面具有较高的适应性。  相似文献   

20.
基于汽车防抱死制动系统整车性能检测的需要,提出了一种室内试验台架检测方法.该试验台检测系统主要由路面附着系数模拟装置、车辆运动惯量模拟装置、测控系统、数据采集系统等组成.在相同工况下对同一辆车进行ABS台架与道路对比试验,结果表明,该汽车ABS台架检测方法能够真实地模拟汽车在道路上的运行工况;台架检测结果中的关键技术参数与道路试验相应参数误差小于5%,证明了该ABS台架检测方法的有效性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号