首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 235 毫秒
1.
降水预报准确率对变量灌溉水分管理的影响   总被引:1,自引:0,他引:1  
为充分利用降水,提高变量灌溉水分管理精度,将降水预报信息与变量灌溉制度结合生成变量灌溉处方图,在评估2016年和2017年不同降水等级预报准确率的基础上,研究了未来3 d降水预报信息对冬小麦和夏玉米变量灌溉制度的影响.结果表明,两年冬小麦和夏玉米生育期内,预见期1,2,3 d的降水预报信息准确率差异不大,无雨预报准确率最高,两年平均为83.3%,大雨和暴雨次之,为51.7%,中雨预报准确率最差,为23.0%.结合降水预报信息制定变量灌溉制度,2016年冬小麦和2017年夏玉米生育期内分别减少灌水量8 mm和16 mm.根据目前预报信息准确率,建议无雨和小雨预报时,直接按设计灌水定额灌溉;中雨预报时,可采用灌水定额的80%实施灌溉;大雨和暴雨预报时,可适当推迟灌溉.  相似文献   

2.
准确、及时地掌握大区域尺度的冬小麦成熟期信息能够为农业机械调度、优化农作物收割顺序提供重要的参考依据。以华北平原中部冬小麦为研究对象,首先使用2013年研究区冬小麦生育期内HJ-1 A/B CCD时间序列影像,通过线性插值构建像元尺度上逐日的时间序列NDVI,随后采用上包络线S-G滤波方法重构时间序列NDVI,通过动态阈值法逐像元提取冬小麦抽穗期;然后以抽穗至成熟期的有效积温模型为判别依据,利用欧洲中期天气预报中心(ECMWF)提供的日平均气温预报数据,实现未来10 d冬小麦成熟期的动态预测;最后采用农业气象站点的成熟期观测值对预测结果进行验证,重点对比分析了从不同成熟期预报起始时间点获得的冬小麦成熟期精度,以确定最优的预报起始时间点。结果表明:当预报时效小于等于10 d时,成熟期预测精度趋于稳定,因此,综合考虑确定提前10天对预测冬小麦成熟期在时效和精度上最优,平均误差为3 d。该方法为地块尺度的区域农作物成熟期预测提供了可参考的技术途径。  相似文献   

3.
基于气温预报和HS公式的参考作物腾发量预报   总被引:4,自引:0,他引:4  
为探索精确预报未来短期参考作物腾发量ET0的方法,提出基于气温预报和HargreavesSamani(HS)公式进行ET0预报.收集了南京站2001—2011年逐日气象观测数据和2011年预见期为4 d的逐日天气预报数据,采用FAO-56Penman-Monteith公式计算逐日ET0,用2001—2010年计算的ET0率定HS公式参数;用率定后的公式和2011年的天气预报气温数据进行未来4 d的ET0预报;比较2011年ET0的计算值与预报值、气温观测值与预报值以评价ET0预报精度及误差原因.结果表明:最低气温预报准确率达81.9%,最高气温预报准确率为80.1%;经过参数校正后,HS公式精度较高.ET0预报准确率为85.7%,平均绝对误差为1.01 mm/d,均方根误差为1.42 mm/d,相关系数为0.74;各项预报误差随着预见期的增大而增大.产生误差的主要原因为气温预报误差和HS公式未考虑平均风速和相对湿度的影响.总体而言,基于气温预报和HS公式的ET0预报方法精度较高,可为灌溉预报及决策提供较为准确的ET0预报数据.  相似文献   

4.
基于气温预报和HS公式的不同生育期参考作物腾发量预报   总被引:2,自引:0,他引:2  
根据南京站2001-2011年实测气象数据,以Penman-Monteith(PM)公式计算得到的参考作物腾发量ET0值作为基准值,对仅需要气温数据计算参考作物腾发量的Hargreaves-Samani(HS)公式进行参数率定,采用率定后的HS公式依据2012年6月-2015年6月气温预报数据对南京水稻、冬小麦不同生育期未来1~7d的ET0进行预报,并与基于实测气象数据的PM法计算的ET0值进行比较,评价HS法的ET0预报精度。结果表明:最低、最高气温实测值与预报值相关系数分别为0.97和0.93,最低气温预报精度略高于最高气温;预见期1~7d内,水稻、冬小麦不同生育期ET0预报值与PM法计算值变化趋势基本一致,整个生育期内冬小麦ET0预报值与PM法计算值吻合程度更好,水稻、冬小麦相关系数分别达0.60、0.80左右;水稻各生育期平均准确率为66.0%~97.5%,平均绝对误差为0.65~1.22mm/d,均方根误差为0.76~1.42mm/d,冬小麦各生育期平均准确率为75.4%~99.5%,平均绝对误差为0.33~1.06mm/d,均方根误差为0.43~1.23mm/d;作物生育期各阶段对气温预报误差越敏感,ET0预报精度越低,随着生育期的推进,水稻对气温预报误差的敏感程度逐渐减小,相应的ET0预报精度逐渐增加,而冬小麦反之;但整体上预见期1~7d的气温预报及ET0预报精度达到可利用程度,可为快速灌溉预报及灌溉决策提供数据支撑。  相似文献   

5.
选取豫东平原安阳、西华、信阳、许昌、郑州、驻马店等地冬小麦为研究对象,采用作物系数法计算了ET0频率25%、50%和75%条件下各地冬小麦需水量并进行分析.结果表明,安阳、许昌、郑州、驻马店冬小麦全生育期需水量呈现出湿润年较低、干旱年较高的趋势,最大值介于396.1~729.0mm.各地冬小麦需水量最大的生育阶段均为抽穗—成熟,平均占全生育期需水量45.9%;西华、郑州该生育阶段需水量占全生育期百分比随ET0频率增大而上升,呈现为相对干旱年份需水更多.豫东平原各地冬小麦逐日需水量10-2月均值随ET0频率增大而下降,3月往后上升,其均值为4.31 mm/d.ET0频率25%~50%范围对10-3月逐日需水量影响较大.  相似文献   

6.
于2013—2017年冬小麦生长季,选用节水高产小麦品种衡4399,开展麦田分期定量(75 mm)灌溉(春灌一水,设置拔节后0 d、拔节后5 d、拔节后10 d、拔节后15 d、拔节后20 d、拔节后30 d灌溉6个处理,记为AJ0、AJ5、AJ10、AJ15、AJ20、AJ30),进行单因素试验。结果表明:不同灌水处理麦田蒸散量范围为361. 1~505. 8 mm;随灌水时间推移,麦田蒸散量呈先增加后减小的趋势,以AJ15或AJ20最高。扬花前营养器官同化物运转量、运转率及对籽粒贡献率均随灌水时间的推移而呈先增加后减小的变化趋势,以拔节后5~15 d灌水处理的较高。扬花后输入籽粒的生物产量,以AJ10和AJ15较高,AJ0最低。各处理小麦扬花后同化物运转量对籽粒的贡献率均高于60%,是籽粒产量的主要构成部分。小麦籽粒产量范围为6 620. 4~8 650. 5 kg/hm~2,以拔节后5~15 d灌水处理较高。籽粒产量水分利用效率为1. 32~2. 54 kg/m~3,除2017年外,以AJ0处理为最优。产量与灌前土壤含水率、土壤供水量及蒸散量正相关。在本研究生产条件下,小麦拔节后10~15 d灌水,既能够充分利用土壤蓄水,也有利于提高产量和水分利用效率。  相似文献   

7.
为探讨南方地区季节性干旱特征,利用湖北漳河灌区1953—2016年钟祥站逐日气象资料,分别计算了月标准化降水指数(SPI)、相对湿润度指数(M)以及帕默尔干旱指数(PDSI),经与漳河灌区实际干旱记录对比并分析季节性干旱特征,结果表明:3种干旱指数在不同方面各有优势,从吻合度来看,SPI与实际干旱吻合率最高;从不同历时的干旱来看,SPI和M对短期干旱反应迅速,而PDSI则对长期干旱较为灵敏;从不同季节来看,M适用于春、夏季,SPI适用于秋季,而PDSI则适用于冬季.漳河灌区季节性干旱特征表现为单一季节干旱比季节连旱频繁,但干旱程度轻于连旱.单一季节干旱中,夏旱出现频率最高,其次是秋旱和春旱,冬旱最少,其中夏旱和秋旱干旱等级高,危害程度更大.季节连旱中,夏秋连旱发生最频繁,干旱等级也最高,秋冬连旱和春夏连旱出现频率较少,春夏秋连旱最少;与北方干旱易受降雨因素影响相比,南方对降雨依赖性小于北方,在降雨较多的夏秋季亦经常遭遇干旱,影响机制更为复杂.  相似文献   

8.
为了研究连续干旱对冬小麦产量的影响,以冬小麦品种“矮抗58”为试验材料,通过桶栽试验,在冬小麦的拔节期、抽穗期和灌浆期分别设置轻度干旱、中度干旱、重度干旱,分别对应土壤含水率控制在田间持水率的60%~70%,50%~60%,40%~50%.试验设置了单阶段受旱9个、两阶段连旱6个,三阶段连旱4个,试验对照1个,共计20个试验处理.研究结果表明,单旱条件下,拔节期减产最明显,抽穗期其次;拔节期轻旱、中旱和重旱分别减产4.08%,21.71%和36.73%.两阶段连旱条件下,拔节期和抽穗期连续中旱对产量影响最大,减产率达28.42%;抽穗期和灌浆期连续中旱对产量影响相对较小.三阶段连旱条件下,连续轻旱减产不明显,连续中旱和重旱分别减产24.96%,53.99%.总体上,拔节期是冬小麦的需水关键期,中旱及以上水平就会引起显著减产;相反,水资源紧缺条件下,抽穗期和灌浆期可以适当中旱,甚至重旱,对产量影响较小.  相似文献   

9.
针对遥感技术只能获取作物的表征信息、对作物内在机理过程变化描述较为困难的问题,引入作物生长模型与遥感数据同化进行作物成熟期预测研究。以叶面积指数(LAI)作为耦合变量,以MODIS LAI(MCD15A3H产品)作为遥感数据源,结合2017—2018年实时气象数据以及气象预报数据,以2018年5月1日为预报时间节点,构建LAI归一化代价函数,采用复合形混合演化算法(Shuffled complex evolution-University of Arizona,SCE-UA)最小化代价函数,优化WOFOST作物模型的输入参数,用优化后的参数重新驱动WOFOST模型逐像元模拟冬小麦生长过程,得到研究区冬小麦成熟期的预测结果,并使用研究区内农业气象站点的观测数据进行验证。结果表明,冬小麦预测开花期、成熟期的均方根误差(RMSE)分别为2. 10、2. 48 d,预测精度较高。该方法能够为农作物的大区域成熟期预测提供重要理论基础。  相似文献   

10.
基于天气预报的参照作物腾发量中短期预报模型研究   总被引:2,自引:0,他引:2  
以新乡市1970—2011年逐日实测气象资料代入FAO 56 Penman-Monteith(PM)方法算得的ET0作为基准值,对HG、P-T、M-K、M-C模型进行参数修正,将新乡市2012—2014年冬小麦生育期间预见期为1、3、5、7、10d的天气预报数据代入修正后的模型进行ET01~10 d的中短期预报,并以2012—2014年冬小麦生育期间逐日实测气象资料由PM公式算得的ET0为基准值,对天气预报的精度及ET0的预报精度进行评价。结果表明:经过参数修正后HG、P-T、M-K、M-C模型的精度均有提高;最高气温、最低气温、风速、日照时数的预报精度均随预见期的增加呈逐渐下降趋势,最低气温预报的精度稍高于最高气温;不同预见期的ET0预报模型中,P-T模型预报的ET0平均准确率在众模型中较高(95.06%),其次为HG-M模型(94.66%)、PMT1模型(94.34%)、M-K模型(93.89%),且P-T、HGM两种模型计算程序较简单,因此优选P-T、HG-M模型进行ET0的中短期预报。  相似文献   

11.
基于遥感DSI指数的干旱与冬小麦产量相关性分析   总被引:5,自引:0,他引:5  
利用2000—2012年MODIS ET/PET和NDVI数据集构建干旱指数(DSI),监测山东省和河南省冬小麦主产区的农业干旱,并在地级市尺度上进一步评估冬小麦关键生育期干旱对冬小麦产量的影响。结果表明:2010年9月—2011年2月山东省特大干旱过程显示的DSI不仅能监测气象干旱,还能较好地反映农业干旱在空间上的差异性以及时间上的演变。不同冬小麦生育期干旱对冬小麦产量影响不同,灌浆期干旱对冬小麦产量的影响最大,干旱致使土壤水分亏缺,影响了作物正常的灌浆强度,进而导致作物减产;其次是拔节期;返青期干旱对产量基本没有影响。  相似文献   

12.
冬小麦产量分阶段预测模型   总被引:1,自引:0,他引:1  
为了解决冬小麦估产的时效性和运行化问题,通过对河北省玉田县2007~2009年冬小麦的连续监测,在不同生育期(抽穗期、灌浆期和收获期)对其产量构成三因子(穗数、粒数和粒质量)进行实地抽样测定,并结合冬小麦各个生长发育期的生理生态特点,建立相应的分阶段单产预测模型。试验发现,单因子模型的应用,可使冬小麦估产的预报时间提前到抽穗期,其拟合精度可达到88%以上。双因子模型的应用可使预报时间提前到抽穗后期至灌浆期,模型拟合精度大于90%;结果表明,冬小麦分阶段预产模型可以作为县级区域农业遥感业务化运行系统的基础,增强农业遥感监测产量的预警能力。  相似文献   

13.
试验证明,适时冬灌比早春灌,具有良好的防旱防冻、促根壮蘖增穗作用;小麦越冬期秸秆覆盖能保墒和提高土壤水分的调节能力,为当季小麦生长和套播玉米创造适宜的土壤水分条件;于小麦孕穗和灌浆期喷翠竹生长剂,其增粒增重作用显著。采取冬灌、越冬秸秆覆盖和孕穗、灌浆期喷生长剂等配套措施,可实现保墒与节水相结合,壮苗促蘖增穗与增粒增重的统一,节水增产效果显著。  相似文献   

14.
冬小麦不同深度灌水条件下土壤水分运动数值模拟   总被引:2,自引:0,他引:2  
冬小麦深度灌水可以促进根系深扎,提高水分利用率。为了定量计算深度灌水条件下土壤水分动态,根据冬小麦不同深度灌水试验,用土壤水分运动方程的源项模拟不同深度灌水,建立了冬小麦不同深度灌水条件下土壤水分运动模型,采用有限差分法求解。利用不同深度灌水冬小麦试验数据对模型进行验证,结果表明模型计算的土壤含水率与实测土壤含水率的动态变化趋势一致,二者显著相关,相关系数在0.90以上,模型平均绝对误差最大值为0.023 cm3/cm3,平均相对误差最大值为8.22%,均方根误差最大值为0.03 cm3/cm3。所建模型具有较高的模拟精度,可用于模拟不同深度灌水条件下冬小麦土壤水分分布与动态变化。  相似文献   

15.
基于PEST的RZWQM2模型参数优化与验证   总被引:3,自引:0,他引:3  
根据糯玉米-冬小麦田间喷灌试验不同处理结果,利用独立的自动参数估计软件PEST对RZWQM2模型进行参数优化,并分析了24个模型参数的综合敏感度。通过控制不同观测变量(土壤含水率、土壤氮素含量、作物叶面积指数、产量)模拟差异函数值在目标函数中的比重,优化目标方程,确定模型参数,并用田间试验数据对模型进行验证。结果表明,在不同观测变量的模拟差异函数值最接近条件下,冬小麦出叶间隔特性参数、冬小麦春化作用敏感特性参数及糯玉米出叶间隔特性参数等3个参数对模型整体模拟效果影响最大。相比试错法而言,基于PEST优化的RZWQM2模型能够更准确地模拟糯玉米-冬小麦轮作系统中水分、氮素及作物生长情况。  相似文献   

16.
基于IBAS-BP算法的冬小麦根系土壤含水率预测模型   总被引:1,自引:0,他引:1       下载免费PDF全文
为在节水灌溉系统中精确测量和预测根系土壤含水率,将传统天牛须算法每次迭代过程中的一只天牛改进为一个天牛种群,建立了基于改进天牛须搜索算法优化的IBAS BP预测模型,并利用实测浅层土壤含水率数据,对深度50 cm冬小麦根系土壤含水率进行预测。结果表明,与PSO BP预测模型、GA BP预测模型以及原始BAS BP模型相比,IBAS BP模型可准确预测冬小麦根系土壤含水率,有效避免了网络陷入局部极小值的可能性,且相对误差均值仅为0.0045。  相似文献   

17.
农田水分在"土壤-作物-大气"连续系统内,通过降水、灌溉、土壤蒸发、作物蒸腾、下渗、地下水补给等形式进行着复杂的交换。本文从农田水量平衡原理出发,以农田表层为原型,根据气候条件和作物种植情况,建立农业干旱两层动态模拟模型,模拟农作物生长期农田水分循环过程及土壤墒情信息,为旱情预警预报提供信息。  相似文献   

18.
【目的】研究干旱胁迫对冬小麦生长指标的影响。【方法】选用周麦22为试验材料,在拔节期和抽穗期分别设置轻度干旱(土壤含水率控制在田间持水率的60%~70%)、中度干旱(土壤含水率控制在田间持水率的50%~60%)和重度干旱(土壤含水率控制在田间持水率的40%~50%),对比分析了冬小麦根系形态、根系分布、株高及叶面积的变化过程。【结果】干旱胁迫处理根长相比CK均降低,T1、T2、T3处理总根长随干旱程度的加深而增长;经过连续处理的各根系特征在轻旱、中旱条件下均大于单阶段处理,重旱条件下各根系特征则明显降低;但复水后拔节期处理的根系补偿恢复能力高于抽穗期。随着干旱胁迫程度及时间增加,根系向下伸展生长,使各根系指标向深层转移,但根系总体绝对量明显减少,T9处理根干质量相比CK降低64.79%,并且株高、叶面积所受的抑制增大。其中拔节期对株高影响更大,T1、T2、T3处理株高相比CK降低3.78%、7.59%、16.09%;抽穗期对叶面积影响更大,T4、T5、T6处理叶面积相比CK降低8.11%、23.45%、29.43%;而经连续干旱处理后的株高和叶面积都明显低于各单阶段处理;抽穗期经干旱胁迫处理的株高、叶面积在干旱胁迫1周后就表现出较强补偿效应,而拔节期表现则相对迟缓;在经历连续干旱胁迫后均无明显补偿。【结论】在冬小麦实际生产中应避免连续干旱,花前若需控水,应尽量满足拔节期供水,控水在抽穗期保持轻旱水平。  相似文献   

19.
已有的农业干旱研究中,土壤墒情的模拟与干旱程度的动态评估常常是独立进行的,二者并没有统一起来。基于此,建立了田间土壤水分平衡模型,通过作物生育期内的土壤水分模拟农业干旱过程。为了将土壤墒情模拟与农业干旱的动态评估统一起来,引入了阶段性的作物水分生产函数,通过干旱缺水对农业产量影响的定量分析,反推得出作物不同生育阶段土壤水分状况对应的干旱程度和缺水权重,从而将土壤墒情模拟与农业干旱评估结合起来,达到农业干旱动态模拟与评估的目的,为从土壤墒情状况实时动态评估农业干旱程度提供了一种便捷可行的方法。最后将提出的模型方法结合某灌区进行了应用,效果较好。  相似文献   

20.
Continuous cropping of winter wheat and summer maize is the main cropping pattern in North China Plain lying in a seasonal frost area. Irrigation scheduling of one crop will influence soil water regime and irrigation scheduling of the subsequent crop. Therefore, irrigation scheduling of winter wheat and maize should be studied as a whole. Considering the meteorological and crop characteristics of the area lying in a seasonal frost area, a cropping year is divided into crop growing period and frost period. Model of simultaneous moisture and heat transfer (SMHT) for the frost period and model of soil water transfer (SWT) for the crop growing period were developed, and used jointly for the simulation of soil water dynamics and irrigation scheduling for a whole cropping year. The model was calibrated and validated with field experiment of winter wheat and maize in Beijing, China. Then the model was applied to the simulation of water dynamics and irrigation scheduling with different precipitation and irrigation treatments. From the simulation results, precipitation can meet the crop water requirement of maize to a great extent, and irrigation at the seeding stage may be necessary. Precipitation and irrigation had no significant influence on evaporation and transpiration of maize. On the other hand, irrigation scheduling of winter wheat mainly depends on irrigation standard. Irrigation at the seeding stage and before soil freezing is usually necessary. For high irrigation standard, four times of irrigation are required after greening. While for medium irrigation, only once (rainy year) or twice (medium and dry years) of irrigation is required after greening. Transpiration of winter wheat is very close for high and medium irrigation, but it decreases significantly for low irrigation and will result in a reduction of crop yield. Irrigation with proper time and amount is necessary for winter wheat. Considering irrigation quota and crop transpiration comprehensively, medium irrigation is recommended for the irrigation of winter wheat in the studying area, which can reduce the irrigation quota of over 150 mm with little water stress for crop growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号