首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤多参数复合测试系统研究   总被引:1,自引:0,他引:1  
设计了一种同时采集土壤含水率、电导率及温度的多参数复合测试系统,对基于驻波率原理的土壤含水率测量方法、基于电流电压"四端法"的土壤电导率测量方法和基于"铂电阻"的土壤温度测量方法做了较为深入的研究。以北京地区土壤为测试样本,土壤含水率、温度及电导率传感器的输出与对应的测量值线性拟合相关性分别为0.998 3、0.999 8、0.999 1,动态响应时间依次为土壤含水率460 ms、温度13 s、电导率2.28 s,稳定性测试结果的标准差分别为土壤含水率0.011 5、温度0.001 4、电导率0.010 3,系统稳态及动态性能均满足土壤多参数的测量要求。对土壤多参数复合测试系统的抗干扰性能进行了分析与论证,得出在采用分时供电的前提下,多参数复合测试系统的干扰主要存在于土壤含水率与土壤温度之间,即土壤温度探针作为介质异物会造成土壤含水率测量值的升高,这是一个系统误差,可在数据处理中进行统一补偿。选用得到普遍认可的土壤含水率传感器、土壤温度传感器、土壤电导率传感器与本研究的土壤多参数复合测试系统进行性能对比研究表明:本系统满足土壤含水率、温度和电导率实时在线测量的要求,可以为精细农林业提供一种高精度的便携式土壤多参数检测工具。  相似文献   

2.
土壤吸力测试方法对土壤水分特征曲线的影响   总被引:1,自引:0,他引:1  
为了研究土壤吸力测试方法对土壤水分特征曲线的影响,以砂土为试验材料,利用张力计、滤纸和压力板仪分别测得砂土的水分特征曲线并通过VG模型进行拟合。得出了在相同含水率下压力板仪(退湿)测得的吸力大于张力计连续测量法测得的吸力大于张力计间断测量法测得的吸力,张力计间断测量法和滤纸法测得的吸力几乎相等。从物理化学的角度分析了由于接触角滞后会导致不同测试方法所对应的接触角存在差异,以及接触角变化对砂土吸力的影响。从理论分析和试验结果得出导致造成测量结果不同的原因是在测试时土体中接触角滞后造成的,接触角滞后对压力板仪和张力计影响非常大,而对滤纸法影响非常小。随着接触角的增大,压力板仪和张力计的测量结果将会变小。在自然状况下,滤纸法和张力计的测量结果十分接近。  相似文献   

3.
【目的】分析土壤脱水过程中的收缩特性。【方法】采用离心机法测定了辽宁砂壤土(LN)、云南黏壤土(YN)、陕西黏壤土(SX)和山东壤土(SD)的土壤水分特征曲线,并采用Brooks-Corey模型进行了拟合;同时对脱水过程中土壤收缩特性进行了研究,定量分析了土壤体积质量、含水率、吸力之间的关系。【结果】对于LN、YN、SX和SD土样,(1)在土壤脱水过程中,含水率随吸力增加而减小;当土壤较干和接近饱和含水率时,减小速率较小,而在二者之间时减小速率较大;(2)基于Brooks-Corey土壤水分特征曲线模型和土壤收缩线性模型,土壤体积质量和吸力呈幂函数关系;(3)土壤脱水过程导致含水率降低、体积质量增加,二者呈负相关关系,土壤的收缩过程大致可分为伪饱和段、结构段和超正常段等3个直线型收缩段;Logistic模型具有较高拟合精度且可以使得土壤收缩特征拟合曲线具有连续性。【结论】土壤脱水过程中,其体积质量与吸力呈现幂函数关系,而含水率与体积质量可采用Logistic模型量化表征。  相似文献   

4.
基于离心机法获取定体积质量下的土壤水分特征曲线   总被引:1,自引:0,他引:1  
【目的】克服离心机法测定土壤水分特征曲线时"变体积"的缺陷,实现用离心机法获取扰动土壤准确的土壤水分特征曲线。【方法】选取了山西省16种粒径组成、有机质量差别显著的扰动土壤作为研究对象,采用离心机法测定了初始体积相同的各土壤样品在不同转速下的土壤体积含水率、动态变化的土壤体积;采用多元非线性回归模型,描述了以土壤体积含水率、粒径组成、体积质量和有机质质量分数作为自变量描述土壤水吸力的函数关系,并对模型进行了验证与评价。【结果】土壤水吸力的自然对数函数可以表示为土壤砂粒质量分数、黏粒质量分数、土壤体积质量和含水率乘积以及有机质质量分数等土壤属性的线性函数,模型的决定系数达到0.740;模型建模样本平均相对误差为14.460%,验证样本平均相对误差为13.237%,模型预测精度较高;同时发现土壤属性对于曲线的形状与走势的影响不能忽视,其中砂粒质量分数、土壤体积质量和含水率乘积与土壤水吸力负相关,黏粒质量分数、有机质质量分数与土壤水吸力正相关。【结论】因此,本方法构建的模型更符合实际情况,能够提高土壤水力学参数的精度,同时可以克服离心机测量土壤水分特征曲线体积变化的缺点,得到更合理的土壤水吸力和土壤含水率的关系。  相似文献   

5.
离心机法测定土壤水分特征曲线中的收缩特性   总被引:1,自引:0,他引:1  
为了探明土壤在离心力作用下的收缩规律,开展了离心机法测定土壤水分特征曲线试验.砂壤土和黏壤土分别设定3个初始容重,以离心机法测定的数据为基础,研究了离心力变化下的土壤收缩规律,并通过van Genuchten-Mualem(VG-M)模型对2种情景模式(考虑容重变化和未考虑容重变化)下所测定的土壤水分特征曲线进行拟合,并以此估算所得的土壤水力特性参数对沟灌二维水分运动特性进行了数值模拟,同时结合室内试验对比分析了参数的合理性.结果表明,离心机转速增大,土壤含水率降低,容重随之增大,当吸力为7 000 cm时,砂壤土和黏壤土的容重分别近于1.81和1.79 g/cm3;基于土壤收缩特征曲线,供试土壤收缩过程可采用三直线模型进行表征,但各收缩段的吸力范围存在差异;与未考虑容重变化所得VG-M模型中的参数值相比,考虑土壤容重变化所得的滞留含水率θr和进气吸力值倒数a均增大,但形状系数n均减小;以考虑土壤容重变化所得VG-M参数为基础进行沟灌二维水分运动数值模拟,其入渗水量、湿润锋运移距离(垂直和水平)与实测值的误差绝对值均值分别为5.8%,3.0%和2.6%,较未考虑容重变化时精度分别提高了39.2%,57.2%和52.9%.因此离心机法测定土壤水分特征曲线的过程中需考虑土壤容重的变化,且以此获得的参数能够较为显著地提高数值模拟精度.  相似文献   

6.
针对目前没有成熟的土壤水通量测量设备的问题,通过技术分析,使用Pyboard控制单元、MicroPython编程语言和ADS1256模数转换芯片,设计了一款土壤水通量传感器。使用Python软件,利用Math库中的Matplotlib函数设计了上位机软件,通过传感器功能测试,可实现土壤热扩散系数、容积热容量、热导率以及土壤水通量的测量。选用石英砂、壤质砂土、砂质壤土和砂质黏壤土4种土样进行试验,根据最大无量纲温度差(MDTD)法和比率(Td/Tu)法得出计算值,并与实际水通量进行对比。结果表明,该系统测量精度高、运行稳定。两种方法的计算结果与实际值之间线性度良好,4种土样的MDTD法决定系数分别为0.9677、0.9798、0.9780、0.9647,Td/Tu法的决定系数分别为0.9845、0.9985、0.9989、0.9986,说明系统具有较高的测量精度。通过适应性评价得出,4种土样中Td/Tu法计算值与实际值之间的相关性更好,误差更低,计算效果优于MDTD法。  相似文献   

7.
为提高T-TDR(Thermal-time domain reflectance)土壤水分传感器的测量准确度,优化传感器的结构参数,对比研究了热电偶结点嵌入位置和大小对T-TDR传感器热特性敏感度和测量精度的影响规律。设计热电偶结点分别在探针中点和中点下移2mm处的位置,通过点焊方式减小热电偶结点体积,制作出3种类型的T-TDR传感器及其测定系统。分别在砂土、砂质壤土、粘壤土的5种不同含水率条件下对3种传感器进行热特性试验,测定其热特性曲线并计算含水率,利用干燥法进行精度检验。结果表明,热电偶在中点位置下移2mm及采用点焊方式小结点的传感器对中间探针的辐射热量较其他两类传感器敏感,灵敏度也较高,含水量测定结果与干燥法测量值有较好的相关性(R 2 为0.981,RMSE为0.0152),测量精度比传统结构参数的传感器有所提高。  相似文献   

8.
微咸水膜下滴灌对盐碱化农田土壤斥水特征的影响   总被引:1,自引:0,他引:1  
在内蒙古河套灌区布置了2年大田试验,研究了不同覆膜方式下微咸水滴灌对盐碱化农田土壤水、盐分布及其土壤斥水性的影响。采用滴水穿透时间(Water drop penetration time,WDPT)法测定土壤斥水性,得到了不同土壤斥水性随含水率变化的规律。结果表明,膜下滴灌盐碱化农田土壤的斥水性在表层土壤与电导率呈正相关,与土壤pH值无显著相关性。弱碱性微咸水滴灌条件下,单次滴灌降低了滴头附近土壤的WDPT,但增加了远离滴头土体的WDPT;高频滴灌(灌溉频率为3 d)可显著降低土壤剖面整体的WDPT。膜下滴灌盐碱化农田土壤的斥水特征曲线均可用Gaussian和Lorentzian模型进行描述。滴灌对土壤斥水性最大时对应的土壤含水率(θ_m)影响不大(P 0. 05),而对斥水性消失时对应的土壤含水率(θ_c)影响显著(P 0. 05)。Lorentzian模型对盐碱化农田土壤的斥水特征曲线的拟合效果更优,通过该曲线可准确得到特定土壤的θ_m和θ_c。本研究可为微咸水滴灌及斥水性土壤的合理利用提供理论依据。  相似文献   

9.
容重对黏壤土土壤水分特征曲线的影响   总被引:1,自引:0,他引:1  
土壤的容重影响土壤孔隙比,从而影响土壤的渗透特性,为研究容重对黏壤土土壤水分特征曲线的影响,选用淮河王家坝附近4个不同容重的黏壤土,采用压力膜法测定其土壤水分特征曲线,用变水头法测定饱和导水率,应用RETC软件中的van Genuchten模型进行拟合。结果表明:在相同的吸力时,黏壤土含水率随容重增加而增加;饱和导水率与容重呈负线性相关(R2=0.963 5),黏壤土饱和含水率θs、残余含水率θr和参数a值与容重呈显著负相关;田间持水率和有效含水率也随容重增加而增加;不同容重的黏壤土非饱和导水率随含水率而增加,在含水率小于0.4 cm~3/cm~3以内,非饱和导水率曲线呈平直状,说明非饱和导水率变化不大,此时的非饱和导水率非常小。当含水率大于0.4 cm~3/cm~3时,非饱和导水率曲线呈陡直状,非饱和导水率变化很大,非饱和导水率相同时,含水率随容重的增加而减小。研究成果可为黏壤土入渗及蒸发数值计算提供支持。  相似文献   

10.
一种土壤水分传感器性能测试的方法及应用   总被引:2,自引:0,他引:2  
针对目前土壤水分传感器室内标定时很难得到含水率均匀的土样,设计了一种试验装置和测试方法。通过一系列室内试验,对3种土壤水分传感器进行了测试和标定。结果证明,这种方法对于短探针土壤水分传感器的标定切实可用,同一种传感器在不同质地土壤中标定曲线不同,给出了3种传感器在砂土、壤土、粘土中的标定曲线,并分别从线性度、敏感度、稳定性等方面对3种土壤水分传感器进行了分析比较。  相似文献   

11.
This study evaluated the performance of three soil water content sensors (CS616/625, Campbell Scientific, Inc., Logan, UT; TDT, Acclima, Inc., Meridian, ID; 5TE, Decagon Devices, Inc., Pullman, WA) and a soil water potential sensor (Watermark 200SS, Irrometer Company, Inc., Riverside, CA) in laboratory and field conditions. Soil water content/potential values measured by the sensors were compared with corresponding volumetric water content (θv, m3 m−3) values derived from gravimetric samples, ranging approximately from the permanent wilting point (PWP) to field capacity (FC) volumetric water contents. Under laboratory and field conditions, the factory-based calibrations of θv did not consistently achieve the required accuracy for any sensor in the sandy clay loam, loamy sand, and clay loam soils of eastern Colorado. Salt (calcium chloride dihydrate) added to the soils in the laboratory caused the CS616, TDT, and 5TE sensors to experience errors in their volumetric water content readings with increased bulk soil electrical conductivity (EC; dS m−1). Results from field tests in sandy clay loam and loamy sand soils indicated that a linear calibration (equations provided) for the TDT, CS616 and 5TE sensors (and a logarithmic calibration for the Watermark sensors) could reduce the errors of the factory calibration of θv to less than 0.02 ± 0.035 m3 m−3. Furthermore, the performance evaluation tests confirmed that each individual sensor needed a unique calibration equation for every soil type and location in the field. In addition, the calibrated van Genuchten (1980) equation was as accurate as the calibrated logarithmic equation and can be used to convert soil water potential (kPa) to volumetric soil water content (m3 m−3). Finally, analysis of the θv field data indicated that the CS616, 5TE and Watermark sensor readings were influenced by diurnal fluctuations in soil temperature, while the TDT was not influenced. Therefore, it is recommended that the soil temperature be considered in the calibration process of the CS616, 5TE, and Watermark sensors. Further research will be aimed towards determining the need of sensor calibration for every agricultural season.  相似文献   

12.
Soil texture and evaporative demand have been reported to be the main factors which influence the transpirational response to soil water deficits. However, experimental evidences are not enough. The objective of this study was to investigate the transpirational response to soil water availability in soils of different textures under different evaporative demand levels. The three main soils of the Loess Plateau of China (loamy clay, clay loam and sandy loam) were selected and six constant soil water treatments were applied for winter wheat (Triticum aestivum L.) grown in pots. In order to reduce the influence of environmental conditions and plant factors, a normalized daily transpiration rate was used to develop the relationships with volumetric soil water content and soil water suction. Results showed that, under various levels of evaporative demand, a linear-plateau function with a critical value could be used to describe the dynamic change of the normalized transpiration rate with soil drying. Soil texture significantly influenced both the critical and the slope values of the linear-plateau equations, however, evaporative demand significantly affected the critical values of volumetric soil water content and soil suction for the loamy clay and clay loam only. Therefore, for saving water, different strategies are needed for these three soils.  相似文献   

13.
采用沙箱法与压力膜仪法分段测定坡耕地不同土层深度(0~10、10~20、20~30cm)的土壤水分特征曲线,应用RETC软件拟合求得van Genuchten模型参数。由沙箱结合压力膜仪数据拟合得到的全吸力范围曲线(log10h~θ)类似于"S"形,而仅使用压力膜仪测得的高吸力段(log10h>2)数据所获得的曲线并不表现出明显的"S"形特征。综合沙箱法和压力膜仪法二者的数据拟合得到的滞留含水率大于仅使用压力膜仪数据拟合所得值。  相似文献   

14.
不同采样密度的土壤水分特征参数预测   总被引:1,自引:0,他引:1  
利用不同取样精度的土壤,将土壤质地(砂土、淤泥、粘土含量)和容重作为输入值,探讨了使用基于土壤转换函数的BP神经网络模型来预测0~20 cm表层土壤水分特征曲线参数,用甘肃省称钩河流域小流域的土样进行预测并进行了误差分析。结果表明,使用线性回归能够减小预测误差与实测值差距;使用BP神经网络来预测饱和体积含水量,其准确性比使用BP神经网络预测剩余体积含水量和田间持水量要高。为了进一步提高预测精度,还应尽可能地包括土壤结构、有机质含量等信息。  相似文献   

15.
为了测试分析5种砂土的水分特征曲线,运用张力计法对砾砂、粗砂、中砂、细砂、粉砂5种砂土在不同含水率下的土壤基质吸力进行实验研究,并对数据进行了三次多项式与Van Genuchten模型的拟合与验证。结果表明:细砂的水分特征曲线呈"反S"形曲线,砾砂、粗砂、中砂、粉砂呈"L"形曲线;在相同含水率条件下,5种砂土的基质吸力大小为粉砂细砂中砂粗砂砾砂;三次多项式拟合结果的R2值、PBIAS值分别为0.982 7~0.998 3、-0.119 8~0.342 7,Van Genuchten拟合结果的R2值、PBIAS值分别为0.931 0~0.992 6、-2.083 5~5.256 7,此处3次多项式拟合效果要优于Van Genuchten模型。  相似文献   

16.
为探寻黑土区坡耕地不同水土保持耕作措施对土壤理化性状的影响机理,开展了田间小区试验。设置横坡耕作(TP)、垄向区田(RF)、深松(SF)、横坡耕作+垄向区田(TP-R)、横坡耕作+深松(TP-S)、垄向区田+深松(RF-S)3种水土保持耕作措施及3种组合耕作措施,并以常规顺坡耕作(CK)为对照,分析了土壤孔隙度、土壤机械组成、水稳性土壤团聚体稳定性、土壤养分含量等指标,并采用TOPSIS模型对不同水土保持耕作措施进行了综合评价,筛选了土壤稳定性强且蓄水保肥效果良好的水土保持耕作措施。结果表明:在玉米的全生育期内,深松、垄向区田、横坡耕作均能提高土壤体积含水率。TP-S处理体积含水率最大,0~40cm土层平均体积含水率较CK处理增加29.47%;RF-S处理平均孔隙度最大,TP-S处理次之,平均孔隙度较CK处理分别增大10.68%、9.25%;TP-S处理能够显著提高土壤稳定性,其中平均质量直径(MWD)、几何平均直径(GMD)和大团聚体含量(R0.25)较CK处理分别增加12.30%、19.57%、13.97%;TP-S处理能够改善土壤机械组成,TP-S处理粗砂粒、粉粒、黏粒含量较CK处理增加15.40%、26.89%、1.90%,细砂粒含量较CK处理降低31.56%;TP-S处理IN(无机态氮)、AP(有效磷)、AK(速效钾)含量最高,较CK处理IN、AP、AK含量分别增加42.81%~55.32%、39.69%~40.68%、20.41%~25.45%。由TOPSIS模型综合评价结果可知,TP-S处理贴合度最高,土壤结构更稳定,且蓄水保肥效果更好,为适宜该地区的水土保持耕作措施。  相似文献   

17.
为研究冻融过程对FDR测量土壤体积含水量的影响,采用基于FDR技术的土壤水分传感器TDR-3,通过室内温度实验箱控制环境温度范围为-20~20 ℃,对冻融过程中黏性土样体积含水量进行了测试分析.结果表明:采用FDR测量黏性土样体积含水量,在土样未进行冻融前,温度在0 ℃以上时,FDR的测量值随温度呈线性变化,随着温度的升高而增大,随着温度的降低而减小;黏性土样冻融过程中,在冻结过程中,FDR的测量值随着温度的降低逐渐减小;在融化过程中,随着温度的升高,FDR的测量值逐渐增大;相同温度条件下,黏性土冻结过程中FDR的测量值明显大于黏性土融化过程中FDR的测量值,0℃时两者差值最大,该差值受土壤初始体积含水量和冻融温度的影响.研究成果对于提高FDR测量冻融过程中土壤体积含水量的可靠性具有重要意义.  相似文献   

18.
斥水土壤的水力参数及水平吸渗规律   总被引:1,自引:0,他引:1  
为了对不同斥水程度土壤的水力性质进行分析,对比了van Genuchten和Brooks-Corey模型对于不同斥水程度下的塿土、砂姜黑土、盐碱土和砂土的适用性;进行了一维水平吸渗试验,分别运用Philip模型和Kostiakov公式对入渗规律进行了模拟,并分析了吸渗率和斥水持续时间的关系;采用水平吸渗法推求了土壤非饱和扩散率,并用指数函数拟合了非饱和扩散率和体积含水率的关系.结果表明:van Genuchten和Brooks-Corey模型对亲水和斥水土壤均具有较好的适用性;斥水性土壤的累积入渗量随时间变化曲线在一定时刻发生转折,未转折前Kostiakov公式的模拟结果比Philip模型好;当斥水时间大于40 s时,吸渗率的变化趋于稳定并在0~0.1 cm/min0.5内变化;非饱和扩散率和体积含水率关系的模拟可采用指数关系,且其对亲水性土壤的模拟效果优于斥水性土壤.斥水土壤的水力参数与亲水土壤的有明显差别,且表现出特殊性.  相似文献   

19.
为探求山丘区中小河流滩地土壤物理性质及空间分布特征,以浙江省龙游县灵山港滩地为试验对象,通过野外取样与室内测定分析,分析研究了山丘区中小河流滩地表层土壤的密度、体积质量、孔隙度、饱和含水率、颗粒组成等滩地土壤物理性质变化与空间分布特征。结果表明,河道沿线滩地土壤物理性质空间差异性显著,主要表现为:(1)从上游至下游,滩地土壤密度沿程降低,中游区段土壤体积质量最小,总孔隙度以及饱和含水率最大。(2)土壤颗粒组成以粗颗粒(粗砂,细砂)为主,在河道纵向上,随着河道坡降变缓,水流能态减小,粗颗粒质量分数降低,细颗粒(粉粒,黏粒)质量分数及土壤粒径分维值(D)增加,滩地土壤颗粒沿程细化。(3)由于水流条件及植被类型的影响,在不同滩位上,高滩处林地土壤细颗粒组质量分数及土壤粒径分维值最高,分别为36.38%和2.66,土壤粒径分维值能够反映出不同沉积环境对土壤颗粒分布的影响。  相似文献   

20.
Three trickle irrigation schedules, two of which were scheduled according to soil water potential ( soil) (tensiometer method) and daily stem contraction (DSC) (dendrometer method) respectively and the other one was a schedule of restricted water supply, were applied to a mature peach orchard.The annual water application based on soil was greater than that based on DSC. However, tree growth, fruit size and leaf water potential (leaf) on the trees in the dendrometer scheduling plot did not differ from those in the tensiometer scheduling plot while the premature fruit drop and fruit bud initiation were greatly different. The restricted water supply treatment limited significantly both tree and fruit growth. In addition, the lower leaf was observed on the trees in this plot.Further study shows that use of the dendrometer method for scheduling irrigation satisfies the water needs of the plant and that the tensiometer method is less accurate.Abbreviations leaf leaf water potential - soil soil water potential - DSC daily stem contraction - LVDT linear variable displacement transducer - PET potential evapotranspiration  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号