首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 406 毫秒
1.
针对工作压力及喷射角度对微喷带单孔喷水特性的影响进行了试验,通过对微喷带单孔喷洒射程、湿润区宽度、干燥区宽度、水滴直径以及工作状态下微喷带直径的研究分析,发现:喷射角度为30°时,微喷带单孔喷洒射程达到最大值;湿润区宽度随着喷射角度和工作压力的增大而增大;工作压力为20 k Pa时,微喷带喷洒性能参数曲线波动明显,不宜在实际生产实践中应用;工作压力和喷射角度变化对水滴直径并没有明显影响;工作状态下微喷带直径的稳定程度反映了微喷带喷洒性能的稳定程度。  相似文献   

2.
Φ40压片式微喷带单孔水量分布特性试验研究   总被引:1,自引:0,他引:1  
单孔水量分布特性是微喷带设计的基础,为了获得最优的微喷带水力性能,试验研究了不同工作压力(0.08、0.10和0.16MPa)、不同喷射角度(35°~85°)和不同喷孔直径(0.9、0.8、0.7、0.65mm)对Φ40压片式微喷带单孔水量分布的影响。试验结果表明:单孔流量和湿润区面积随着工作压力的增加而增大,同时湿润区到微喷带距离随着工作压力的增大而增大,工作压力0.16 MPa时,流量达到6.53L/h;孔径的减小,雾化效果越好,微喷带射程和干燥区宽度也就越小,即湿润区距离微喷带越近,当孔径为0.65mm时,相同条件下微喷带射程和湿润面积仅为0.9mm孔径下的55%和89%;射程和湿润区面积随单孔喷射角度增大先增大后减小,45°时射程和湿润区面积达到最大,射程4.8m,湿润区达到0.48m2。  相似文献   

3.
压片式微喷带单孔水量分布特性试验研究   总被引:1,自引:0,他引:1  
试验研究了不同工作压力(0.1MPa和0.15 MPa)、不同喷射角度(43°、65°和79°)和不同喷孔直径(0.5、0.6和0.7mm)对压片式微喷带水量分布的影响。试验结果表明,干燥区宽度、湿润区长度和湿润区面积主要受喷射角度影响,均随喷射角度的增大而减小;湿润区宽度相对稳定,但在0.15MPa下,随着喷孔直径的增大有明显的增加趋势;平均灌水强度随着喷射角度、喷孔直径和工作压力的增大均有增加趋势,其中喷射角度影响最为明显。  相似文献   

4.
微喷带水量分布均匀性直接影响微喷带灌溉质量,激光雨滴谱仪能够测量降雨强度、雨滴粒径大小和雨滴降落速度,以国内常见的机械打孔、内径为32 mm的微喷带为研究对象,通过调节工作压力和喷射角度,运用激光雨滴谱仪测取降雨强度,分析压力和喷射角度对微喷带单孔降雨强度的影响,并运用水量分布均匀系数通用公式计算Cu。结果表明,随着喷射角度的增大,灌水强度先减小后增大;压力越大,微喷带单孔喷洒降雨强度越小;垂直微喷带距离0.3、0.6、1.5、1.8、2.1 m处,压力越大,降雨强度越小,降雨强度峰值位置在1.2 m处的水量分布均匀系数Cu值较大。  相似文献   

5.
小麦不同生育期微喷带水量分布均匀性   总被引:1,自引:0,他引:1  
试验以常用的机械打孔的Ф32微喷带为研究对象,通过调节微喷带的工作压力,研究2种长度微喷带(20,40 m)下春小麦不同生育期水量分布均匀系数的变化规律,通过对不同高度春小麦遮挡下水量分布均匀系数的分析,探究大田试验中微喷带的水量分布均匀性.试验结果表明:作物遮挡会降低微喷带的水量分布均匀性,改变水量空间分布特征,不同作物高度截留的喷射水量不同,通过改变工作压力能改变喷射角度,进而减少作物遮挡对微喷带水量分布的影响,在文中的试验设置条件下,2种铺设长度下的最佳工作压力范围为40~45 kPa;为保证较好的灌溉均匀度,作用压力与微喷带极限铺设长度应合理设置.  相似文献   

6.
试验探究不同压力下微喷带水量分布均匀系数的变化规律,通过公式计算了垂直于微喷带、沿微喷带方向和总面积的水量分布均匀系数,分析不同水头工作压力对不同类型微喷带在水量分布均匀性上的影响。试验对常见的机械打孔的Ф28,Ф32和Ф40微喷带,通过改变微喷带的工作压力值,设置6种不同的微喷带首部工作压力,探究不同结构类型的微喷带在不同的首部工作压力下的水量分布均匀系数。微喷带的水量分布均匀系数与首部工作水头及管径均匀性密切相关,在一定的工作压力范围内,微喷带的灌溉效果能达到最好;随着工作压力的变化,Ф28与Ф40微喷带的水量分布均匀系数变化较平缓,而Ф32微喷带的水量分布均匀系数变化波动大,3种结构类型微喷带的水量分布均匀系数均在工作压力值为32~36 kPa的范围内出现最大值。为保证较好的灌溉均匀度,一定作用压力条件下微喷带存在极限铺设长度;实际使用中,应根据微喷带的具体结构形式设定铺设长度与首部工作压力。  相似文献   

7.
薄壁微喷带组合均匀度及铺设间距试验研究   总被引:1,自引:0,他引:1  
【目的】研究薄壁微喷带组合均匀度及最佳铺设间距。【方法】选取市场常用的N44 mm微喷带,开展不同压力下微喷带喷洒强度、均匀度和喷洒宽度试验,利用Surfer软件克里金插值法按照水量组合原理对数据进行网格化处理,在1.0~2.0 R(喷洒宽度)范围内,分析微喷带组合喷洒强度、组合均匀度,确定微喷带合理组合间距。【结果】发现单管微喷带喷洒强度随喷洒距离增大呈双峰或单峰分布,喷洒宽度也随压力的增大而增大。组合喷洒强度随铺设间距的增大而减小;组合均匀度随铺设间距增大呈"大-小-大-小"的趋势,当微喷带铺设间距为1.6 R时,组合均匀度达到峰值。【结论】针对市场上常用的折径44 mm微喷带,发现当铺设间距为1.8 R与1.9 R时,组合喷洒强度较小,组合均匀度较大,满足规范要求。  相似文献   

8.
作物遮挡下不同微喷带灌溉关键参数研究   总被引:2,自引:1,他引:2  
以国内外6种常见类型的微喷带(带宽35、45、60、80mm和带有侧翼带宽55mm和65mm)为研究对象,研究了冬小麦遮挡条件下各种类型微喷带压力流量关系、有效喷洒宽度、水量分布均匀系数Cu等的变化规律。结果表明,60mm和80mm带宽的微喷带流量对压力敏感程度大、流量变动大,且水力性能较差,而其他4种微喷带的水力性能优良;不同类型微喷带有效喷洒宽度和水量分布均匀系数都随叶面积增大明显降低,喷洒的水量大部分都被紧挨微喷带的作物遮挡。相对而言,微喷带双翼N65水量分布均匀性较高且有效喷洒宽度大。  相似文献   

9.
针对小麦宽苗带种植模式下满足灌水均匀度目标的最大轮灌面积和微喷灌管网优化投入问题,研究该种植模式下的微喷带铺设及优化布置方法。首先,针对小麦宽苗带种植模式讨论微喷带田间铺设方案;其次通过对微喷带沿程压力损失和出流量进行水力解析,并考虑密植作物遮挡作用,对微喷带出水孔射流轨迹进行数值仿真,建立微喷带铺设约束条件;在此基础上,建立3种常用微喷带单、双向铺设的最大轮灌面积和单位面积管网投资费用目标函数;最后,以山东农业科学院小麦试验示范基地田间管网布置为例,在MATLAB环境下运用遗传算法进行优化求解。优化结果表明:选用喷射角度80°微喷带并且采用微喷带与作物种植方向相垂直,支管与作物种植方向平行的改良铺设方法,可以提高微喷带喷射幅度,有效改善小麦遮挡产生喷水不均匀现象,综合考虑经济性和最大轮灌面积,N63是微喷带首选型号,田间微喷带铺设以双向铺设为优。  相似文献   

10.
压片式微喷带水力特性试验研究   总被引:2,自引:0,他引:2  
水力特性是衡量灌溉设备灌溉质量的重要技术指标。在参照微喷带水力特性检测方法的基础上,从流量变异系数,流量压力关系,水量分布均匀系数等角度对新型压片式微喷带水力特性进行试验研究,从而为压片式微喷带的推广利用提供理论基础。试验结果表明:压边热合和打孔工艺可以保证压片式微喷带产品质量均一;压片式微喷带流量变异系数较小,低于5%,流量变异系数随着压力的增大先减小后增大;压力和流量之间具有良好的幂函数关系;水量分布均匀系数为50%~62%,与市场上普通微喷带相比,处于中等以上水平,工作压力的增加可以提高水量分布均匀度。  相似文献   

11.
为了探究影响负压反馈射流喷头水力性能的重要参数对水力性能的影响程度,并选出综合水力性能最优下的重要参数组合,首先设计了4因素3水平正交试验,并根据试验要求分别加工出3种长度(4.2,5.6,7.0 cm)的喷管、3种直径(3,4,5 mm)的喷嘴,以及射流进口宽×深为4 mm×8 mm、位差1.80 mm、侧壁夹角20°、劈距28.0 mm、3种喷射仰角(20°,30°,40°)的射流机构,用于水力性能测试.采用综合评分法和极差分析法对正交试验结果进行处理,并引入了射程和喷灌均匀系数对试验结果进行评价.结果表明:影响喷头综合水力性能的重要参数,影响程度由大到小依次为喷射仰角、主副喷嘴直径、工作压力、主副喷管长度.得到了在此射流机构下的最优重要参数组合为工作压力0.35 MPa、主×副喷嘴直径5 mm×4 mm、喷射仰角30°、主×副喷管长度4.2 cm×4.2 cm.试验结果可为该型国产喷头的产品化和未来工程应用提供理论数据支撑.  相似文献   

12.
为了研究不同压力下喷头水力性能,明确工作压力对其他参数的影响,文中对一种喷嘴出口直径为5 mm型号为SD-03的地埋式喷头进行了研究.测量出喷头在200,250,300和350 kPa工作压力下的流量、转速及径向水量分布,并计算出不同压力下的射程.结果表明:流量、射程、转速以及喷灌强度都随着喷头工作压力的增大而增大.此外,在射程计算的经验公式基础上进行了修正,得到了不同压力下,射程公式的修正系数为0.5~0.6;转速随着压力增大而增大,得到了喷头压力和喷头转速的关系多项式;分析喷灌强度的分布曲线,相比于200 kPa下的最高喷灌强度,当压力增大时最高喷灌强度同比增长15.93%~18.67%,为地埋式喷头的后续研究提供了科学的理论依据以及在工程应用中提供了理论基础.  相似文献   

13.
为了降低油烟对环境的污染,研究了运水烟罩内固定喷头的喷射雾化特性对运水烟罩油烟净化效果的影响.对弧面扇形折射式喷头和折射锥角分别为115°,120°,135°,140°和150°的直面扇形折射式喷头进行试验研究,测量了这6个不同型号的折射式喷头在5种不同工作压力下的流速、射程、喷洒面积、粒径大小以及水量分布等参数的变化情况,分析了雾化性能,探寻各参数之间的关系及变化规律.结果表明:流速、射程、喷洒面积均与工作压力成正比;雨滴粒径大小与工作压力成反比;喷头的最佳工作压力为0.30 MPa;直面折射式喷头比弧面折射式喷头油烟净化效果好;120°折射直面扇形喷头水量分布最均匀,雾化效果最好,喷洒面积最大.  相似文献   

14.
为了研究导流板安放角对喷水推进器倒车水斗性能的影响,基于ANSYS-CFX软件对不同导流板安放角(5°,10°,15°,20°,25°和30°)下倒车水斗进行数值计算,对比分析了导流板安放角对倒车水斗推力性能以及流道内流场分布情况的影响,得出了倒车水斗导流板安放角对喷水推进器倒车水斗性能的影响规律.结果表明:相较于无导流板,安装导流板后倒车水斗壁面压力分布得到很大程度改善,出口流速最大值增加.随着导流板安放角的增加,倒车水斗出口流速最大值呈现先增加后减小的趋势,而其流道各截面的压差呈现先增加后减小、然后再增加的变化趋势;导流板安放角为15°左右时,倒车水斗流道内流场分布较好,同时其推力相对较大,此时喷水推进器倒车水斗性能最佳.因此合适的导流板安放角可以有效避免倒车水斗流道内过高压区与过低压区的出现,并致流动分离现象的发生.  相似文献   

15.
基于弹道轨迹方程的折射式喷头水量分布计算模型   总被引:2,自引:0,他引:2  
针对折射式喷头水量分布模拟研究较少的问题,通过高速摄像技术测得了不同工作压力和喷嘴型号下水滴射流速度和射流弧度,构建了折射式喷头水束射流速度及弧度的指数模型,在此基础上基于弹道轨迹方程和水滴蒸发模型,采用Eclipse作为开发工具编写出折射式喷头水量分布的计算程序。该软件能够在已知喷头工作参数及环境条件下,模拟出水滴粒径分布、水量分布、能量分布等指标。采用软件计算出不同工况下Nelson D3000型喷头喷洒水力特性,并依据模拟出的单喷头水量分布数据,以24 m平移式喷灌机为例进行多喷头组合叠加,与实测值进行对比,结果表明:基于3种模型下开发出的单喷头水量分布计算软件模拟出的水滴粒径分布及单喷头水量分布与实测值变化的规律相符,模拟准确度较高。不同间距下多喷头组合叠加时,喷灌均匀度相对误差在0.04%~14.77%,变化规律的差异性较小。该软件能够为移动式喷灌机优化设计提供技术支持。  相似文献   

16.
航空专用离心喷头雾化性能试验与影响因子研究   总被引:1,自引:0,他引:1  
针对航空施药模式下喷头喷雾参数与雾化参数关系不明确的问题,本文结合喷雾性能测试与建立代理数学模型,讨论了CN1215型航空专用离心喷头主要工作参数对雾滴体积中径(Dv50)、喷幅的影响规律。标定了离心喷头喷雾参数对应的供液系统工作参数,在室内无风环境下测试了不同喷头流量(100~350 m L/min)、喷头转速(8 000~10 000 r/min)下的雾滴中径及喷幅。以喷头喷雾参数(喷头流量、喷头转速)作为试验因素,以航空离心喷头雾化后雾滴体积中径Dv50、对应喷幅为响应因数,分别采用四阶响应面法(Response surface method,RSM)、克里金法(Kriging)、椭球基神经网络(Ellipsoidal basis function neural network,EBFNN) 3种数学方法逼近试验因素与响应因数之间的关系,建立了喷头雾化参数(Dv50、对应喷幅)与喷头喷雾参数(喷头流量、喷头转速)之间的代理数学模型,3种代理模型对Dv50的决定系数R~2分别为:0. 705、0. 718、0. 925,3种代理模型关于Dv50对应喷幅的决定系数R~2分别为:0. 819、0. 890、0. 930。基于EBFNN隐式代理数学模型建立了两个雾化参数的响应面,实现了喷雾参数影响下的雾滴Dv50、喷幅的快速预测。  相似文献   

17.
不同水头压力的微润灌对土壤水盐运移的影响   总被引:2,自引:1,他引:1  
为探明微润灌对土壤水盐运移的影响,以南疆盐碱土微润灌为研究对象,采用室内模拟试验,分析了不同水头压力(1、1.5、2、2.5 m)条件下微润灌土壤水盐分布特征。结果表明,水头压力较低,水分水平扩散距离较小,土壤湿润区形状明显为椭圆形,随着水头压力的增大,水分水平扩散距离与垂直入渗距离逐渐接近,湿润区形状呈现由椭圆形向圆形转化的趋势;不同水头压力下湿润区位置均表现为在水平方向上以微润带埋设位置为中心,呈左右对称关系;垂直方向上土壤湿润区主要集中在微润带以下位置;提高水头压力,可以有效增大土壤湿润区面积及湿润体内土壤含水率;不同水头压力下均表现为以微润带为中心,形成土壤脱盐区,土壤盐分聚集在湿润锋附近;低水头处理,湿润区内土壤得不到有效淋洗,土壤脱盐区面积较小及脱盐率相对较低;高水头处理,盐分随水分运移至表层和深层土壤,扩大了土壤脱盐区面积,并且提高了土壤脱盐率,水头压力越高,该现象越明显。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号