首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 135 毫秒
1.
针对高比转数蜗壳式混流泵水力设计研究偏少的现状,在准三元设计理论的基础上,采用不考虑黏性的三元反问题设计与考虑黏性的三元正问题数值计算相结合的方法,设计得到了比转数为603的蜗壳式混流泵,以深入探索三元水力设计方法在开发高比转数蜗壳式混流泵的适用性.在三元反问题设计过程中,首先采用二元水力设计方法得到初始的混流泵模型,然后给定"S"型速度矩沿轴面流线的分布规律,完成新的蜗壳式混流泵的水力设计.应用计算流体力学软件CFX,采用标准k-ε湍流模型,SIMPLE算法求解三维稳态不可压缩雷诺时均N-S方程,分别在设计工况、小流量和大流量工况下对新型泵进行了数值模拟,并且分析对比了泵的水力性能.数值模拟计算结果表明,新型泵叶轮和蜗壳内部流线整齐有规律,叶片工作面和背面静压力分布均匀合理,叶轮叶片轮缘和轮毂附近速度矩沿轴面流线自进口边到出口边的分布规律基本符合"S"型,并且在设计工况下的效率比采用速度系数方法设计的原型泵有了提高,满足了对高比转数蜗壳式混流泵水力性能的要求.  相似文献   

2.
离心泵叶轮轴面流线分点的数学方法   总被引:2,自引:1,他引:2  
在离心泵的水力设计中,传统的叶轮轴面流线的分点方法,由于重复取值,反复对比,累积误差大,并造成轴面流线分点的速度低、精度差。为了提高叶轮水力设计过程中轴面流线分点的效率及准确性,文章通过几何分析的数学方法,对常见的轴面流线分点过程进行数学描述,并最终形成可供微机编程的计算公式。  相似文献   

3.
CAD在消防泵水力设计中的应用   总被引:1,自引:0,他引:1  
CAD技术在机械设计中的应用越来越广泛。文章结合该厂生产实际,对CAD技术在消防泵叶轮水力设计中的应用进行了尝试,建立了叶轮轴面投影图的数学模型,把轴面投影图设计参数化、流道检查公式化,在计算机上实现了轴面投影图设计、流道检查的自动化,且在应用中给出低比转数叶轮ρ-L曲线分别随各变量变化的规律。此程序大大提高了叶轮水务设计的精度和速度。  相似文献   

4.
高比转数混流泵导叶设计计算   总被引:2,自引:0,他引:2  
借鉴泵叶轮的反问题设计理论,用Fortran语言编程实现了高比转数混流泵空间导叶的水力设计.提出了采用流线迭代法求解轴面流动,应用逐点积分法进行导叶叶片绘型,在保角变换平面上加厚叶片和修圆叶片头部、尾部的基本理论和方法;讨论了导叶叶片安放角分布规律、叶片出口边位置对设计计算结果的影响.该方法设计计算精度高,能得到光滑的叶片表面、齐全的叶片表面数据,便于数控机床加工制造.  相似文献   

5.
单流道叶轮水力设计方法的改进   总被引:1,自引:0,他引:1  
在对现有单流道叶轮水力模型进行归纳总结的基础上,给出了用速度系数法设计轴面图时的各系数值。借鉴双流道叶轮平面图水力设计的方法,提出了改进的单流道叶轮平面图水力设计方法,改进方法较原方法简单,尤其便于编制CAD软件。文中还介绍了新的流道断面面积变化规律和平面图流道中线方程,同时还给出了编程方法和设计实例。  相似文献   

6.
离心泵前置导叶设计与试验   总被引:1,自引:0,他引:1  
借鉴传统风机前置导叶调节的经验,并针对其采用的二维翼型在叶片轮毂处由于翼型弦长较短对流体控制能力较差的缺陷,提出一种全新的适用于离心泵前置导叶预旋调节的空间导叶水力设计方法,该方法假定前置导叶出口的流体满足等速度矩条件,通过四次分布函数给定叶片安放角沿轴面流线的分布规律来控制叶片的空间形状,采用逐点积分法进行叶片骨线绘型,在圆柱展开面上对叶片骨线双面加厚完成三维空间导叶的水力设计。在此基础上,将该导叶应用于某离心泵,并对其在不同轴向位置和不同预旋角下进行了性能试验。结果表明:三维导叶能够有效拓宽离心泵的高效运行范围,改善其在非设计工况下的水力性能,且与无前置导叶工况相比,最高效率可提高2.0%,从而达到为离心泵增效节能的目的。  相似文献   

7.
离心泵轴面流线分点的解析计算   总被引:1,自引:0,他引:1  
严敬  王桃  李维承  阚能琪 《排灌机械》2009,27(3):137-139
为提高使用保角变换法绘型离心泵叶轮叶片的绘型精度和缩短计算周期,研究了在轴面投影图上前盖板流线含有两段相切圆弧的复杂条件下,沿下圆弧流线分点的计算原则与方法.以数学分析为基础,讨论了构成前盖板流线的下圆弧上第一个分点3种可能出现的位置特点,分别导出了每种可能条件下确定分点位置的超越方程.这些方程的解精确确定下圆弧第一个分点的位置,有效提高轴面流线上分点的位置精度,改善了叶片绘型的精确性和可靠性.所给方法能改变在保角变换法绘型叶片过程中,以手工在轴面上反复试运算取点及由此产生的叶片型线光滑性和连续性不够理想的状况.  相似文献   

8.
为了进一步提高离心泵的水力性能,提出了一种扭曲叶片设计绘形新方法.这一方法在吸取传统扭曲三角形绘形法某些特点的同时,在保证叶片上相对流线的安放角合理变化的条件下,设计人员能根据需要给定各流线的包角,从而优化了这一几何参数.给出了这一方法的基本原则,即在一个与叶轮轴心线垂直的平面上,根据给定的叶片包角和安放角均匀变化的要求,直接绘形叶片表面相对流线的投影曲线,然后在局部全等的条件下获得曲线的展开图,以检查和修正投影曲线.给出了这一方法的详尽绘形过程.  相似文献   

9.
阐述了超低比转数高速复合叶轮离心泵的加大流量设计方法,并给出了两个设计实例,水力试验表明,这两台采用加大流量设计的超低比转数高速复合叶轮离心泵具有很好的性能指标。  相似文献   

10.
马皓晨  ;丁荣  ;杨东升 《排灌机械》2013,(12):1056-1060
低比转数离心泵性能曲线驼峰问题严重影响泵的运行稳定性,但至今尚未得到很好的解决.为了揭示低比转数离心泵驼峰现象的内流机理,首先根据一比转数为73的离心泵水力设计要求设计了2种水力模型,其中方案1有驼峰,方案2无驼峰,并对2种方案进行了能量性能试验从而验证水力设计的正确性;接着采用粒子图像测量技术对2个方案的内部流动进行了多工况测试与分析.结果表明:当性能曲线出现驼峰时,叶片压力面处的低速区迅速增大,且在多个流道的叶片压力面出现了较大的旋涡,引起叶轮内流态恶化;叶轮出口与蜗壳基圆间隙之间的回流进一步增大;叶轮出口绝对速度与蜗壳基圆处流速差值也明显增加,导致了泵内冲击损失增大从而引起性能曲线的驼峰现象.研究成果能够为控制低比转数离心泵驼峰现象提供理论参考.  相似文献   

11.
离心泵叶轮的参数化设计   总被引:5,自引:0,他引:5  
针对传统离心泵叶轮设计步骤繁琐的不足,提出了采用4次Bezier曲线来设计叶轮的轴面流线及叶片型线的方法.详细介绍了轴面流线和叶片型线的控制方法,使其和传统的离心泵设计理论结合起来.将椭圆型偏微分方程应用于叶轮轴面的离散以及叶片空间曲面的生成,并将叶片的空间曲面造型问题转换成偏微分方程的边值问题,控制边界条件即达到对叶片的控制.数值求解边值问题的解,即可得到泵叶片的数值模型,然后再将叶片的数据导入造型软件并生成叶轮的实体造型,实现了离心叶轮的参数化设计.实例计算结果表明,提出的理论和方法是有效的,能够实现叶轮的快速高效设计.  相似文献   

12.
根据Ωu=0二元设计理论,提出了采用四次多项式表示叶片速度矩沿轴面流线的分布规律,进而通过理论分析,确定用其中一个参数控制叶片速度矩的分布规律,以减小设计结果对经验的依赖程度.由此确定的速度矩分布规律包括"S"型、反"S"型和"L"型3类.采用不同的叶片速度矩分布规律,比较分析了对应的叶片出口边位置、包角等设计结果,并基于正问题分析,对不同叶片速度矩分布规律下的叶轮效率预测值和叶片表面载荷分布进行了比较.结果表明:对于Ωu=0的设计方法,采用四次多项式描述叶轮轮缘边速度矩分布规律是合理的;对于给定的混流泵轴面流道,部分"S"型速度矩分布规律能合理地满足叶片表面扭曲和混流泵结构设计的要求;采用合理的"S"型速度矩分布规律设计的叶轮效率最高,叶片表面载荷分布更加光滑.结果可为混流泵叶轮设计提供参考.  相似文献   

13.
速度矩分布规律对混流泵叶轮设计的影响   总被引:1,自引:0,他引:1  
根据Ωu=0二元设计理论,提出了采用四次多项式表示叶片速度矩沿轴面流线的分布规律,进而通过理论分析,确定用其中一个参数控制叶片速度矩的分布规律,以减小设计结果对经验的依赖程度.由此确定的速度矩分布规律包括"S"型、反"S"型和"L"型3类.采用不同的叶片速度矩分布规律,比较分析了对应的叶片出口边位置、包角等设计结果,并基于正问题分析,对不同叶片速度矩分布规律下的叶轮效率预测值和叶片表面载荷分布进行了比较.结果表明:对于Ωu=0的设计方法,采用四次多项式描述叶轮轮缘边速度矩分布规律是合理的;对于给定的混流泵轴面流道,部分"S"型速度矩分布规律能合理地满足叶片表面扭曲和混流泵结构设计的要求;采用合理的"S"型速度矩分布规律设计的叶轮效率最高,叶片表面载荷分布更加光滑.结果可为混流泵叶轮设计提供参考.  相似文献   

14.
基于三维反问题设计方法和CFD技术,结合试验设计方法和模拟退火优化算法,以轴面流道形状参数和叶片形状参数为设计变量,以叶轮效率为优化目标,建立了离心风机叶轮三维反问题气动优化设计方法。叶片形状通过三维反问题设计方法由叶轮的环量分布参数表达。运用该方法进行了离心风机叶轮的优化设计,叶轮效率提高了3.3%。根据建立的优化设计变量和叶轮效率之间的响应面函数关系式,分析了不同轴面流道形状参数和环量分布参数及参数间交互效应对叶轮效率的影响。结果表明:相对于轮盘处轴面流道轮盖处型线和环量分布形式,轴面流道叶片进口边倾斜角对叶轮效率影响更为显著。  相似文献   

15.
研究了双流道污水泵叶轮常用的图纸表达方法,发现平面图上的断面投影结果与轴面图中确定的断面形状尺寸不一致的问题.断面形状为沿对称轴对折的椭圆,此对称轴始终垂直于轴截面,其方向与平面图上的流道中线无关.传统设计中认为以垂直于平面图上的流道中线确定的截面尺寸并不符合实际的投影关系.这是设计中经常出现的双流道叶轮平面图、断面面积图与叶轮木模图三者不一致的主要原因.提出在双流道污水泵叶轮设计时,平面绘型作为初步设计,然后在三维造型中确定其余参数,再由三维造型来生成平面绘型,以保证设计与木模一致.设计结果表明,这种设计步骤是合理的.  相似文献   

16.
中比转速离心泵叶轮的优化设计及数值模拟   总被引:3,自引:0,他引:3  
谭磊  曹树良 《排灌机械》2010,28(4):282-285,290
基于流体流动的连续方程和运动方程,通过两类相对流面的迭代计算,实现中比转速离心泵叶轮内准三维正问题的数值计算,得到了轴面速度分布.应用逐点积分法进行叶片骨线绘型,在轴面上加厚叶片,在保角变换平面上修圆叶片头部,实现了离心泵叶轮的反问题设计.正反问题进行迭代计算求解直至收敛,得到最终设计的叶轮.采用RNGk-ε湍流模型和SIMPLEC算法,对离心泵叶轮内三维流场进行数值模拟,得到了叶轮内压力和速度分布.模拟结果表明设计得到的叶轮内部压力分布非常均匀,流动稳定无分离,叶轮出口能量分布合理,所设计的叶轮具有优越的水力性能.  相似文献   

17.
出口环量分布对混流泵性能的影响   总被引:4,自引:0,他引:4  
为了提高设计过程中对混流泵性能的可控制程度,开展了出口环量分布规律对混流泵性能的影响研究。基于三元反设计理论,将环量V u r在轴面流线方向上的偏导数作为载荷分布的控制参数,根据出口环量分布规律的不同设计了平均型、递增型和递减型3个混流泵叶轮。基于雷诺时均Navier-Stokes方程、SST湍流模型和多重参考坐标系模型对泵内流场进行数值模拟,对泵的效率、空化、叶轮出口的总压及轴面速度沿叶高的分布规律进行比较与分析。结果表明:递增型泵效率最高但空化最差,递减型泵性能正好相反;基于变出口环量分布的三元反设计方法能有效控制叶片不同叶高处的做功能力,递增型叶轮出口的总压和轴面速度随半径增加而增加的速度最快。  相似文献   

18.
低比转速混流泵叶轮优化设计   总被引:2,自引:0,他引:2  
贾瑞宣  徐鸿 《排灌机械》2010,28(2):98-102
针对传统的低比转速混流泵设计中对叶型径向参数变化规律研究不足的情况,提出了借鉴汽轮机轴流式叶片设计经验的方法.首先依据内流损失理论,分析了叶轮流道过流断面二次流形成的原因,再应用先进控制流理论,找到了削弱二次流的方法,然后在对叶片参数化建模的基础上,利用商用CFD软件NUMECA实现了叶型径向参数的优化设计,使泵效率有较大提高.实例计算表明,先进控制流理论是将内流分析与优化设计结合起来的有效方法,能够实现叶轮的快速高效设计.  相似文献   

19.
为解决离心式叶轮传统设计方法主要依赖于设计者经验以及设计周期较长等问题,采用三维反问题设计方法,根据给定的流场进行叶轮形状的设计,从而提高设计过程对叶轮性能的控制能力.三维反问题设计方法基于无黏有势流假设,将三维速度场分解为周向平均速度和周期速度进行求解,实现了在二维轴面流道上叶片形状和流场的三维计算.三维叶片形状根据速度在叶片表面满足滑移条件计算得到,同时获得该叶轮形状下其内部三维流场的计算结果.采用自编三维反问题设计程序进行了离心式叶轮的设计计算,并利用三维定常湍流数值计算技术对设计结果进行了流场模拟和性能评价,流场的模拟结果与设计方法计算结果定性吻合,验证了设计方法的有效性.研究结果表明:将三维反问题设计方法和三维湍流数值计算技术结合可有效缩短设计周期,提高设计质量,并可用于各种叶轮机械的设计.  相似文献   

20.
叶轮进口挡板改善轴流泵非稳定工况性能研究   总被引:5,自引:0,他引:5  
杨华  孙丹丹  汤方平  刘超 《农业机械学报》2012,43(11):138-141,151
轴流泵在不稳定区(马鞍区)运行时,叶轮进口存在回流区,水泵效率低、机组振动加剧,严重时将造成机组结构破坏.在轴流泵叶轮进口设置5种挡板方案,采用商用软件ANSYS CFX,分别对不同的挡板方案进行了三维不可压湍流数值模拟.计算结果表明,挡板与叶轮进口的距离是影响小流量工况水泵性能的主要因素,其中方案3为最佳方案.叶轮进口的轴面流场表明,挡板能抑制小流量工况水泵进口处的回流,降低叶片吸力面的压力,增加叶片的升力,从而有效地提高小流量工况的水泵运行效率.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号