首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
提出一种基于层次聚类法的EMD-ELM风电功率预测方法,用来解决目前风电站功率预测精度不够的问题.该方法利用层次聚类的聚合算法将天气情况相似的数据经行聚类,使用EMD方法来分解各组功率序列,可以得到相对平稳的数据分量,最后采用ELM模型对各分量经行预测并且重组.由于相似天气情况的数据特征更加的明显,所以经行聚类会使预测...  相似文献   

2.
针对果园管理数字化程度低、构建方法较为单一等问题,本研究提出了一种基于激光点云的三维虚拟果园构建方法。首先采用手持式三维点云采集设备(3D-BOX)结合即时定位与地图构建-激光测距与测绘(Simultaneous Localization and Mapping-Lidar Odometry and Mapping,SLAM-LOAM)算法获取果园点云数据集;然后通过统计滤波算法完成点云数据离群点与噪声点的去除,并结合布料模拟算法(Cloth Simulation Filtering,CSF)与DBSCAN(Density-Based Spatial Clustering of Applications with Noise)聚类算法,实现地面去除与果树聚类分割,进而使用VoxelGrid滤波器降采样;最后利用Unity3D引擎,构建虚拟果园漫游场景,将作业机械的实时GPS(Global Positioning System)数据从WGS-84坐标系转换为高斯投影平面坐标系,并通过LineRenderer显示实时轨迹,实现作业机械运动轨迹控制与作业轨迹的可视化展示。为验证虚拟果园构建方法的有效性,在海棠果园与芒果园开展果园构建方法测试。结果表明,所提出的点云数据处理方法对海棠果树与芒果树聚类分割的准确率分别达到了95.3%与98.2%;通过与实际芒果园的果树行距、株距对比,虚拟芒果园的平均行间误差约为3.5%,平均株间误差约为6.6%。并且将Unity3D构建出的虚拟果园与实际果园相比,该方法能够有效复现果园三维实际情况,得到了较好的可视化效果,为果园的数字化建模与管理提供了一种技术方案。  相似文献   

3.
为实现工厂化育苗生产线上黄瓜苗群体株高的快速无损测量,提出一种基于RGB-D(RGB-Depth)相机的温室育苗盘中蔬菜苗株高参数原位测量方法。以黄瓜苗为观测对象,在苗的正上方0. 75 m处架设RGB-D相机,以获取黄瓜苗盘的俯视彩色图像、深度图像以及彩色三维点云数据。在采集的俯视彩色三维点云中分割出单株幼苗点云集、并实现单株幼苗的定位是蔬菜苗群体株高原位测量的关键。根据RGB-D相机的成像原理,将滤波与聚类分割算法相结合,实现一种基于俯视的彩色三维点云数据处理方法,用于从穴盘幼苗群体点云集中分割出单株幼苗点云集。对黄瓜苗彩色三维点云数据的实验处理结果表明,条件滤波、颜色聚类以及统计滤波相结合的滤波算法能够更好地滤除土壤背景的点云集,欧氏距离聚类分割算法可以从滤除土壤背景后的点云中有效地分割出单株蔬菜苗点云集。最后,根据基于俯视的彩色三维点云数据的幼苗株高计算方法得出单株幼苗的株高。实验结果表明,黄瓜苗株高的平均测量误差为2. 30 mm,平均测量相对误差为7. 69%,该结果可为苗期作物群体关键生长参数的提取提供有效的解决方案。  相似文献   

4.
为开发一套适应于丘陵山区甘蔗全生长周期的自主导航系统,将二维激光雷达用作导航传感器,并设计矫正算法来修正地形对雷达横向数据的影响.由于不同生长时期的甘蔗形态差异较大,传统聚类算法聚类参数固定导致实际聚类效果较差,提出一种基于点云数目阈值分辨的自适应聚类算法,利用滤波和甘蔗直线种植特点引入置信区间.定位甘蔗后,采用基于斜...  相似文献   

5.
基于双目视觉三维测量原理,提出了一种摆动式单相机三维测量方法。通过分析系统结构参数对测量精度影响,确定了测量误差处于最小范围时的结构参数。设计了系统的硬件结构并开发了图像处理软件模块,搭建了相应的测量系统。利用平面靶标标定法对该系统进行了立体标定,确立了该系统各坐标系之间的映射关系。  相似文献   

6.
基于改进型FCM算法的牛肉大理石花纹提取方法   总被引:2,自引:0,他引:2  
提出了一种基于改进型模糊C均值聚类算法的牛肉大理石花纹提取方法。该方法结合了快速模糊C均值(FCM)聚类算法,对传统FCM算法中的隶属函数、聚类数C和初始聚类中心点选取方法进行了优化。试验表明,该方法使牛肉大理石花纹提取的准确度由  相似文献   

7.
针对稻麦收获无人作业的需求,提出了一种使用激光雷达检测稻麦收获边界的算法,并连接无人控制系统实现收获边界的自动对齐。该算法首先对采集的收获轮廓点云划定感兴趣角度范围,根据雷达的安装高度和位置将测量数据由极坐标转换为三维直角坐标,融合陀螺仪测量的激光雷达安装姿态数据对测量点云进行校正;通过中值滤波和Z向阈值滤波将点云中的噪点和非稻麦轮廓点滤除;对比了K-means聚类和Z向中心差分法检测稻麦收获边界的精度,并进行了误差分析;开发了感知系统并制定了感知与控制的CAN通信协议,采用预瞄点追踪方法对实时检测的边界点进行对齐控制;分析研究了稻麦收获边界自动对齐精度检测方法。2022年6月在北京小汤山国家精准农业示范基地进行了收获边界检测与自动对齐控制系统试验,分别采用数据标注和GPS打点的方式进行了数据采集与分析,试验结果表明,基于K-means聚类的收获边界检测横向偏差平均值为22.24 cm,基于Z向中心差分法的收获边界检测横向偏差平均值为1.48 cm,Z向中心差分法的收获边界检测优于基于K-means聚类的检测方法,故采用Z向中心差分法进行自动对齐控制试验,整体控制系统自动对齐横向偏差平...  相似文献   

8.
基于双目视觉三维测量原理,提出了一种摆动式单相机三维测量方法。通过精度分析,确定了测量误差处于最小范围时的参数。对系统的硬件结构进行了设计,开发了图像采集及处理软件模块,搭建了相应的测量系统。利用2D平面靶标定法,对系统进行了标定,建立了图像坐标与世界坐标系的关系。  相似文献   

9.
基于深度图像的猪体尺检测系统   总被引:9,自引:0,他引:9  
为实现生猪饲养过程中体尺无接触检测,设计了一套基于双目视觉原理的猪体尺检测系统。针对色彩图像提取猪体轮廓易受污物和光照干扰的问题,提出基于深度图像的猪体轮廓提取算法。使用双目视觉系统获得猪体深度图像,利用帧差法提取猪只高度信息,并基于高度信息二值化图像,获得猪体轮廓;结合优化的基于凹陷结构的拐点提取算法,筛选体尺检测关键点,计算体长、体宽、体高、臀宽、臀高5个体尺,编写了基于以上算法的猪体尺检测程序。双目视觉系统三维检测的实验室验证表明:在2 m物距范围内,系统三维检测相对误差均小于1%;系统在实际猪场对32组猪体尺检测结果表明:与手工测量猪体尺相比,本系统检测的体尺平均相对误差在2%左右,平均误差小于2 cm。试验证明基于深度图像的猪体尺检测系统不容易受到脏污和光照干扰,能够实现生猪饲养过程中猪体尺的无接触检测。  相似文献   

10.
针对水电机组状态监测数据量逐步增大,数据质量差的问题,提出了一种基于改进K维树(K-Dimensional Tree,KD-Tree)与基于密度的空间聚类算法(Density-Based Spatial Clustering of Applications with Noise,DBSCAN)的水电机组状态监测数据清洗方法,首先对输入数据建立KD-Tree,再使用DBSCAN在最近邻样本上扫描完成聚类,聚类结束以后会分离出噪声点,将噪声点去除即可完成对水电机组状态监测数据清洗。选取某水电站状态监测系统上导摆度数据1 088条,再以相同时间间隔插入随机数据100条,通过算例与常规DBScan、K-means、OCSVM算法对比聚类性能与时间性能,所提出的方法识别正确率最高,为97.78%,消耗时间最少,为0.007 732 s,数据清洗效果最优,并可以大幅减少计算时间。  相似文献   

11.
为提高联合收获机无人驾驶导航路径的精度,本文提出一种基于激光雷达的作物收获导航线实时提取方法。搭建点云数据采集系统,利用平面拟合法确定激光雷达安装高度和安装角度。利用三维激光雷达扫描收获机前方作物的点云数据,结合IMU惯性传感器反馈的姿态信息,实现作物点云数据从激光雷达坐标系到车体坐标系的变换。基于激光雷达扫描视场角、安装高度和安装角度获取感兴趣区域(ROI)的坐标,并对感兴趣区域进行直通滤波和统计滤波,去除灰尘、秸秆粉末等噪声的影响,以实现点云数据无效点和离群点的剔除。提出一种基于栅格八邻域高程差的作物收获导航线快速识别算法,以点云栅格化后在Z轴方向上的坐标值作为检测依据,定义某一栅格与其8个相邻栅格在Z轴坐标上的差值为高程差,遍历栅格并根据设定阈值进行比较判断,实现收获边界点的有效提取。采用最小二乘算法进行收获边界点的拟合,实现田间作业过程中作物收获导航线动态提取。田间试验表明,该方法具有较好的鲁棒性,能在作物稀缺、杂草较多等情况下保持较高的准确性,其中前进方向偏差角平均值为0.872°,割台横向偏差为0.104m,收获导航线准确率为93.5%,可为联合收获机工作提供辅助导航,提高无人驾驶的准确率。  相似文献   

12.
为了提高无人插秧机地头转向时的曲线路径跟踪精度,针对传统的误差权重矩阵固定的线性二次调节器(Linear quadratic regulator,LQR)路径跟踪控制器对插秧机的纵向速度、横向偏差以及航向角偏差的变化适应性较差的问题,基于车辆二自由度动力学模型,提出了一种通过模糊控制实时调整LQR控制器误差权重矩阵的路径跟踪控制器优化方法。该方法以纵向速度、横向偏差、航向角偏差为输入,以横向偏差和航向角偏差对应的误差权重为输出,建立模糊控制模型实时调整LQR控制器的误差权重矩阵。为了验证所提出算法的曲线路径跟踪控制精度和可行性,以改装后的洋马VP6E型无人插秧机为对象,进行Carsim和Simulink联合仿真试验以及实车试验。仿真试验结果表明,控制插秧机跟踪半径为2m的1/4圆弧路径时,所提出算法控制下的横向偏差绝对值均值为0.014m,最大值为0.032m,小于0.04m的占100%,航向角偏差绝对值均值为1.67°,最大值为4.94°,相较于传统引入前馈控制的LQR控制器,横向偏差绝对值均值降低50%,航向角偏差绝对值均值降低23%。实车试验结果表明,在插秧机跟踪半径为2m的1/4圆弧路径时,所提出算法控制下横向偏差绝对值均值为0.027m,最大值为0.048m,小于0.04m的占62%,航向角偏差绝对值均值为1.86°,最大值为4.94°,相较于传统引入前馈控制的LQR控制器,横向偏差绝对值均值降低40%,航向角偏差绝对值均值降低4.1%。该方法提升了无人插秧机曲线路径跟踪控制精度,为无人插秧机曲线路径跟踪控制提供了参考。  相似文献   

13.
为实现农业机械全田块高效自主作业,提出一种增益系数自适应的Stanley模型路径跟踪算法。以横向偏差和航向偏差为输入变量构建隶属度函数,设计模糊推理和解模糊化过程实时确定控制模型增益系数,提高Stanley模型对不同曲率路径的自适应能力。为验证所提算法有效性,以移动小车为平台开展联合收获机回字形全田块自主作业路径跟踪试验,结果表明所提算法显著改善Stanley模型路径跟踪精度,直线作业速度2.5m/s、转弯速度1m/s时,直线段和曲线段最大跟踪误差均小于3cm。大初始横向偏差路径跟踪试验表明,模糊Stanley模型较Stanley模型大幅度减小路径跟踪上线距离,满足农业机械全田块高效自动导航作业要求。  相似文献   

14.
为解决农机自动导航系统在田间作业过程中因防风树林等对卫星信号产生遮挡与干扰,导致其难以准确获取航向信息等问题,采用惯性导航系统(INS)和全球导航卫星系统(GNSS)航向信息融合方法进行了试验与研究,结合自适应卡尔曼滤波算法构建了综合滤波模型,提出了一种以GNSS信号品质与航向角变化幅度信息为指导的INS/GNSS航向信息融合策略,通过仿真试验以及实际应用测试对航向信息融合效果进行了验证。试验结果表明:以双天线GNSS航向角测量值作为参考基准,在直线行驶过程中,融合航向数据的平均绝对误差为-0.02°,标准差为0.50°;在转向行驶过程中,融合航向数据的平均绝对误差为0.62°,标准差为2.42°;融合后的航向输出结果明显提升了单独使用INS或GNSS时航向数据的精度,且在滤除GNSS航向角测量噪声的同时提高了GNSS航向角解算值的更新速率。该航向角融合算法能够增强农业机械自动导航系统航向角测定的准确性,可为导航系统实际田间作业情况下的抗环境扰动能力提供服务。  相似文献   

15.
为降低履带式联合收获机导航路径跟踪转向控制频率和提高控制系统的稳定性,提出了一种预瞄-切线局部跟踪路径动态规划算法。规划的局部跟踪路径由平滑连接的两段弧线组成,第1段圆弧由收获机当前位姿与1/2横向偏差线上的预瞄点确定,第2段圆弧由收获机在1/2横向偏差线的实际位姿与期望路径的几何关系确定;基于收获机实际转向运动特性建立了相适应的转向控制模型,左转、右转控制模型拟合的决定系数R2分别为0.978、0.980。田间直线导航跟踪对比试验表明:当前进速度为0.4、0.8m/s时,横向偏差的标准差分别为0.0489、0.0507m,航向偏差的标准差分别为3.94°、4.66°,转向控制次数分别为19、12次;与传统纯追踪算法相比,横向偏差的标准差分别减小19.04%、31.30%,航向偏差的标准差分别减小25.94%、9.16%,转向控制次数分别减少47.22%、42.86%。本研究可为履带式农机车辆导航控制器设计提供参考。  相似文献   

16.
针对大田作物行特征复杂多样,传统作物行识别方法鲁棒性不足、参数调节困难等问题,该研究提出一种基于特征工程的大田作物行识别方法。以苗期棉花作物行冠层为识别对象,分析作物行冠层特点,以RGB图像和深度图像为数据来源,建立作物行冠层特征表达模型。运用特征降维方法提取作物行冠层的关键特征参数,降低运算量。基于支持向量机技术建立作物行冠层特征分割模型,提取作物行特征点。结合随机抽样一致算法和主成分分析技术建立作物行中心线检测方法。以包含不同光照、杂草、相机位姿的棉花作物行图像为测试数据,运用线性核、径向基核和多项式核的支持向量机分类器开展作物行冠层分割试验;对比分析典型Hough变换、最小二乘法和所建作物行中心线检测方法的性能。结果表明,径向基核分类器的分割精度和鲁棒性最优;所建作物行中心线检测方法的精度和速度最优,航向角偏差平均值为0.80°、标准差为0.73°;横向位置偏差平均值为0.90像素,标准差为0.76像素;中心线拟合时间平均值为55.74ms/f,标准差为4.31ms/f。研究成果可提高作物行识别模型的适应性,减少参数调节工作量,为导航系统提供准确的导航参数。  相似文献   

17.
农业智能装备在实际农田环境中行进或作业的过程中需要感知多变环境下的各种障碍物。为此,基于双目视觉,开展了作物苗期农田障碍物三维信息检测方法研究,提出了一种基于特征的障碍物检测算法。首先,利用边缘检测算法去除天空背景,提取出障碍物潜在区域的上边界线,利用超绿特征颜色变换去除绿色作物苗期农田背景,提取下边界线;然后,通过阈值分割算法提取障碍物目标区域;最后,通过重心特征点立体匹配来获取视差值,结合MatLab标定获取的相机内外参数进行三维重建,计算障碍物的距离、宽度和高度三维信息。田间试验结果表明:该算法可以正确提取出障碍物目标区域,障碍物距离、宽度和高度检测的平均相对误差分别为4.7%、5.79%和1.78%,能够满足农业智能装备田间障碍物检测的需求,具有较好的可靠性。  相似文献   

18.
基于激光导航设施的收割机自动控制系统研究   总被引:1,自引:0,他引:1  
针对无人驾驶农机的应用需求,提出了一种应用于无人驾驶农机自主行走的激光扫描路径规划与导航算法。此方法利用激光测距仪获取当前视场内路径、作物及障碍物信息,根据田垄和作物区域的特征检测路径边缘,并生成行驶路径。为了保证导航精度,在控制器上采用了PID反馈调节方式,利用增量式PID控制器对行走方向进行调节,从而使农机可以按照预定的路径行走。以无人驾驶收割机为研究对象,对导航方案进行了测试,结果表明:采用激光导航设置可以成功地规划出行驶路径,使收割机自主的沿着行驶路径行走,实现了无人驾驶收割机的自主导航。  相似文献   

19.
含水量是表征水稻生理和健康状况的关键参数,精确预测水稻含水量对于水稻育种和大田精准管理具有重要意义。目前,利用无人机搭载光谱图像传感器监测作物生长的研究主要集中在利用植被指数评估作物在单一或者几个生育期的生长参数,针对作物含水量监测的研究非常有限。本研究主要利用多旋翼无人机低空遥感平台获取不同生育期水稻冠层的RGB图像和多光谱图像,通过提取植被指数和纹理特征,分析水稻的动态生长变化,并构建了基于随机森林回归方法的含水量预测模型。试验结果表明:(1)从无人机图像提取的植被指数、纹理特征以及地面测量的含水量都能用于监测水稻生长,并且这些参数随水稻生长呈现出了相似的动态变化趋势;(2)与RGB图像相比,多光谱图像评估水稻含水量具有更高的潜力,其中归一化光谱指数NDSI771,611实现了更好的预测精度(R2=0.68,RMSEP=0.039,rRMSE =5.24%);(3)融合植被指数和纹理特征能够进一步改善含水量的预测结果(R2=0.86,RMSEP=0.026,rRMSE=3.51%),预测误差RMSEP分别减小了16.13%和18.75%。上述结果表明,基于无人机遥感技术监测水稻含水量是可行的,可为农田精准灌溉和田间管理决策提供新思路。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号