首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
基于无人机-卫星遥感升尺度的土壤盐渍化监测方法   总被引:3,自引:0,他引:3  
为提高卫星遥感对裸土期土壤盐渍化的监测精度,以河套灌区沙壕渠灌域为研究区域,利用无人机多光谱遥感和GF-1卫星遥感分别获取图像数据,并同步采集土壤表层含盐量;将实测含盐量与无人机和GF-1卫星两种数据的光谱因子进行相关性分析,引入多元线性回归模型(Multivariable linear regression,MLR)、逐步回归模型(Stepwise regression,SR)和岭回归模型(Ridge regression,RR),分别构建盐渍化监测模型;采用改进的TsHARP尺度转换方法,将无人机数据建立的趋势面应用到GF-1卫星尺度上,经过转换残差校正,对升尺度结果进行定性和定量分析。结果表明:在两种遥感数据的光谱波段和盐分指数中,蓝波段B1、近红外波段B5、盐分指数SI、盐分指数S5和改进的光谱指数NDVI-S1与表层土壤盐分的相关性较好,相关系数均在0.3以上;在3种回归模型中,利用无人机多光谱影像数据和GF-1多光谱影像数据反演表层土壤含盐量的最优模型分别是SRU模型和MLRS模型;升尺度后土壤含盐量的反演精度高于直接采用卫星遥感数据反演的精度。本研究可为裸土期土壤盐渍化的大范围快速精准监测提供参考。  相似文献   

2.
低空无人机多光谱遥感数据的土壤含水率反演   总被引:1,自引:0,他引:1  
以杨凌地区黏壤土为研究对象,用无人机搭载多光谱相机采集土壤6个波段的光谱信息,探索一种快速监测土壤含水率的方法。试验通过相关系数法筛选光谱对于不同深度土壤水分的敏感波段,然后使用单一敏感波段处的光谱数据建立不同的一元回归模型并分析其定量关系。试验结果表明,一元二次回归模型的拟合效果最好,一元对数回归模型次之。其中,对于表层(约1 cm)土壤含水率的反演,模型拟合度均在0.81以上,预测相关系数均在0.92以上,预测均方根误差均在0.10以内,因此通过采集黏壤土反射率来推算表层土壤含水率是可行的。但随着深度增加,模型拟合效果急剧变差。该研究为利用无人机多光谱遥感对表层土壤含水率的快速、准确监测提供了一条新途径。  相似文献   

3.
基于无人机多光谱遥感的土壤含水率反演研究   总被引:6,自引:0,他引:6  
为研究无人机多光谱遥感技术对裸土土壤含水率的大范围快速测定和最佳监测深度的确定,以杨凌地区粘壤土为试验材料,分别配制成2种不同深度(5 cm和10 cm)、含水率为3%~30%的土壤样本。用无人机搭载多光谱相机对土样连续监测3 d,监测时刻均为15:00。采集6个波段(490、550、680、720、800、900 nm)处的土壤光谱反射率,同时对2种不同深度的土壤样本表层(约1 cm)含水率和整体含水率进行测定。分别采用偏最小二乘回归法、逐步回归法和岭回归法,建立不同波段光谱反射率因素反演土壤含水率的回归模型,并分析其定量关系。试验结果表明,逐步回归预测精度最佳,决定系数(R2)分别为0.775、0.764、0.798、0.694,而预测均方根误差(RMSE)分别为0.028、0.042、0.037、0.038;其次为岭回归法;偏最小二乘法的预测精度最低。综合比较得最佳回归方法为逐步回归法,最佳监测深度为土壤表层(约1 cm),其次为5 cm深度,最后为10 cm深度。  相似文献   

4.
基于高光谱数据的土壤有机质含量反演模型比较   总被引:8,自引:0,他引:8       下载免费PDF全文
以土壤多样化的陕西省横山县为研究区域,比较了3种基于高光谱数据的土壤有机质含量反演模型,在实验室利用ASD Field Spec FR地物光谱仪对横山县野外采集的土壤样品进行光谱测定,并通过重铬酸钾氧化容量法测定土壤有机质含量。然后对原始光谱反射率的倒数进行微分运算获得其一阶导数光谱,将原始光谱反射率、一阶导数光谱分别与土壤有机质含量进行相关性分析,得到相关性系数r较高的特征波段的一阶导数光谱,直接建立基于一阶导数光谱的多元线性逐步回归分析(MLSR)模型。同时针对这些相关性系数较高的特征波段的一阶导数光谱进行主成分分析(Principal component analysis,PCA),利用主成分分析得到的结果分别建立BP神经网络反演模型(PCA-BP)和多元线性逐步回归分析模型(PCA-MLSR)。用上述3种方法进行土壤有机质含量反演,并对3种反演结果进行精度验证与比较。实验分析结果表明:在3种模型中,基于主成分分析结果构建的PCA-BP模型在土壤有机质含量反演中决定系数(R2)最高,为0.893 0,均方根误差(RMSE)为0.118 5%;其次为运用全部主成分PCA分析结果构建的多元线性逐步回归模型,R2为0.740 7,RMSE为0.161 3%;而采用一阶导数光谱反射率构建的多元线性逐步回归模型中,最佳反演模型R2仅为0.689 9,RMSE为0.171 0%。由此说明,PCA-BP模型有机质含量反演精度明显高于多元线性逐步回归模型,利用全部主成分进行多元逐步回归,其有机质含量反演精度优于仅用累计方差贡献率大于90%的主成分进行多元逐步回归的精度,可以更好地反演土壤有机质的含量。  相似文献   

5.
无人机多光谱遥感监测冬小麦拔节期根域土壤含水率   总被引:1,自引:0,他引:1  
快速精确地获取冬小麦根域土壤含水率对实现精准灌溉具有重要意义。以拔节期不同水分处理的冬小麦为对象,利用低空无人机搭载六波段多光谱相机获取其冠层光谱反射率,并同时采集5个不同深度(10、20、30、40、60 cm)土壤含水率数据,通过逐步回归法、偏最小二乘法、岭回归法建立光谱数据与5个深度的多元回归模型。结果表明,三种回归模型对10、20 cm深度土壤含水率都有较高的监测精度,可以较好地对作物根域土壤含水率进行定量预测,其中逐步回归模型效果最好,其模型的决定系数R~2达到0.815、0.747,预测模型的R~2为0.774、0.717,相对分析误差R_(PD)为2.007、1.862,但三种回归模型对深度为30、40、60 cm根域土壤含水率的监测精度都较低。该研究结果对指导精准灌溉具有一定的参考价值。  相似文献   

6.
基于多源遥感协同反演的区域性土壤盐渍化监测   总被引:4,自引:0,他引:4  
为进一步推动多源遥感技术在农业生产与管理中的应用,以内蒙古河套灌区解放闸灌域为试验区,利用地面实测光谱和地表组合粗糙度数据,联合C波段微波雷达SAR四极化后向散射系数数据,分别利用主成分回归(PCR)、多元逐步回归(MSR)和偏最小二乘回归(PLSR)选取盐分特征波段,并建模评价土壤盐渍化分布。首先,对光谱反射率及其对数、一阶与二阶导数4种光谱数据进行相关性分析,发现相较于原始光谱和对数变换,光谱的一、二阶导数具有更好的相关性,二阶导数变换的618~622 nm、1 802~1 806 nm、2 169~2 173 nm、2 344~2 348 nm这4个特征波段的相关系数分别为0.37、0.28、0.39和0.27;PLSR筛选的波段相较MSR选取的波段延后,但其二阶导数变换模型拟合度小于MSR。其次,在对比二阶导数变换的PCR、MSR和PLSR土壤盐分模型基础上,最终确定了协同光谱特征波段中心反射率二阶导数和雷达后向散射特性、地表组合粗糙度的BP人工神经网络(BPANN)模型为最佳预测模型,其预测模型的R~2为0.890 8,稳定性和预测精度均优于前述经验回归模型。融合多源遥感数据的神经网络模型可快速精准监测土壤盐渍化分布,为灌区土壤退化防治提供基础信息指导。  相似文献   

7.
基于GF-1遥感图像土壤含盐量反演研究   总被引:1,自引:0,他引:1  
快速获取土壤含盐量是监测、治理土地盐碱化问题的前提条件。以我国重要苏打盐碱土区—白城市为研究对象,以我国的高分一号遥感影像(GF-1)为数据源,结合研究区实地采样的化验数据,定量反演白城市土壤含盐量。首先对遥感影像进行辐射校正、大气校正、图像裁剪及图像镶嵌等预处理;再将影像的反射率及其变换形式与土样含盐量的化验值进行相关性分析,获得盐碱的敏感波段;最后以多元逐步回归分析的方法建立土壤含盐量反演模型,反演研究区土壤含盐量。研究结果表明:GF-1遥感影像具有较高的分辨率,其反射率与土壤含盐量呈显著正相关,将反射率进行适当的数学变换可以提高与含盐量的相关性,以第2波段指数、第4波段倒数、第4波段倒数的对数变换形式建立的反演模型具有较高的精度与稳定性,模型判定系数R~2=0.846,均方根误差RMSE_(cal)=0.522。利用GF-1遥感影像反演土壤含盐量是一种快速、稳定、可靠的方法。  相似文献   

8.
利用无人机-卫星遥感升尺度转换方法可以有效提高土壤含盐量监测精度。以内蒙古河套灌区沙壕渠灌域为研究区,4月裸土期表层土壤为研究对象,分别采用主导变异权重法、局部平均法和最邻近法将试验区无人机4波段影像(0.1m)升尺度至与GF-1卫星(16m)同一尺度,引入3种变量组合作为模型输入变量并利用多元线性回归模型(Multivariable linear regression,MLR)和BP神经网络模型(Back propagation neural networks,BPNN)构建不同数据源关于土壤含盐量的定量监测模型。在此基础上,采用波段比值均值法对GF-1卫星数据进行修正,实现基于卫星因子的研究区土壤盐分升尺度反演。结果表明,经统计指标评价后得出主导变异权重法在4块试验区针对4波段影像的尺度转换效果总体上优于其他2种转换方法;3种无人机-卫星遥感升尺度转换方法中,主导变异权重法监测效果最佳,局部平均法次之,最邻近法效果最差;对筛选得到的2个模型进行升尺度修正,得到验证效果最佳的监测模型为基于混合变量组的多元线性回归模型,其R2v为0.420,RMSEv为0.219%,比直接采用GF-1卫星数据得到的混合变量组多元线性回归模型R2v高0.217,RMSEv低0.013个百分点。本文研究结果可为卫星、无人机多光谱遥感一体化监测裸土期农田土壤含盐量提供参考。  相似文献   

9.
为研究剔除土壤背景对无人机多光谱监测土壤含水率的影响,通过无人机飞行拍摄得到多光谱影像数据,运用监督分类剔除土壤背景,并分别提取剔除背景前后各6个波段的光谱反射率.将反射率与深度10 cm、20 cm和30 cm的实测含水率分别构建一元线性回归模型、逐步回归模型、偏最小二乘回归模型和岭回归模型,以R2、RMSE、RE为指标进行模型精度评价.结果表明:剔除灌浆期玉米的土壤背景后,数据的相关性和回归模型的精度始终比未剔除土壤背景数据的相关性和模型精度差.剔除土壤背景的反射率与各个深度含水率的相关系数绝对值在0.01~0.33之间,未剔除土壤背景的反射率与各个深度含水率的相关系数绝对值在0.08~0.54之间.未剔除土壤背景模型的效果在任何深度均高于剔除土壤背景的模型,其中在各深度处偏最小二乘回归模型的精度均为最优.  相似文献   

10.
植被指数与作物叶面积指数的相关关系研究   总被引:1,自引:0,他引:1  
作物长势参数是精细农业遥感监测的重要对象,叶面积指数(LAI)是作物长势最重要的参数之一,利用遥感手段快速获取作物的LAI具有重要的意义。为此,考虑到波段组合方式对LAI的反演效果的不可忽略性,采用4种不同的波段组合,结合PROSPECT和SAIL的模拟数据、地面实测数据和高光谱影像数据,从植被指数的饱和性和模型拟合精度两个角度对6个植被指数展开了评价。结果表明:TVI、MSAVI和MCARI23个植被指数在以上3个方面均表现较优,750~680 nm波段组合更加适合于LAI的反演。  相似文献   

11.
张静 《农机化研究》2022,44(4):213-217
为进一步改善果蔬大棚的种植效率,以ZigBee通信传输技术为切入点,针对大棚土壤墒情管理系统展开研究。在果蔬大棚运行管理机理的基础上,以准确获取并有效辨识出果蔬大棚不同区块的土壤墒情状况为目标,建立ZigBee数据通信模型,进行数据采集处理与精准传输过程分析以及土壤墒情管理系统体系化设计,搭建平台进行土壤墒情管理系统作业状况监测。试验结果表明:基于ZigBee技术的土壤监测试验平台,土壤含水率监测值与实际仪器测得值之间的相对误差控制在5%以内,一致性较好;ZigBee技术应用后,系统的监测数据准确度可提高8.50%,土壤墒情的监测效率整体提高8.10%,满足土壤墒情监测要求,有利于农业大棚种植培养向精准化、智能化方向深度推进。  相似文献   

12.
FY-3C作为我国风云三号首颗业务卫星,其上搭载的微波成像仪(MWRI)可提供全天候土壤水分数据。【目的】获取高质量土壤水分数据可以对合理利用土壤水资源提供参考,为农田干旱监控和预报提供基础参数。【方法】选取山东省农业气象站土壤水分数据对FY-3C土壤水分产品进行检验,为获取更高质量FY-3C土壤水分产品,选用变分订正方法对FY-3C土壤水分产品进行偏差订正。【结果】FY-3C升降轨土壤水分产品与地面站土壤水分相关系数R分别为0.481 6和0.408 2,RMSE分别为0.099 6和0.091 0 cm~3/cm~3。订正后FY-3C升降轨土壤水分产品与地面站土壤水分R分别为0.701 4和0.892 4,RMSE分别为0.021 7和0.011 cm~3/cm~3。对2016年3—4月山东省干旱过程订正前、后FY-3C土壤水分变化情况进行对比,订正后FY-3C土壤水分更准确地反映出此次干旱过程。【结论】FY-3C土壤水分产品可以准确反映土壤水分随时间的变化趋势,订正后FY-3C土壤水分产品与地面站土壤水分间误差减小、相关性提高。  相似文献   

13.
基于冠层温度和土壤墒情的实时监测与灌溉决策系统   总被引:4,自引:0,他引:4  
蔡甲冰  许迪  司南  魏征 《农业机械学报》2015,46(12):133-139
设计了一个可以在线连续监测田间作物冠层温度、环境信息和土壤墒情的实时灌溉决策系统,并将其安装于农田进行了1 a实际运行和观测。系统采用太阳能供电和微处理器进行数据采集和管理,为野外的实际应用提供了保障。系统配置了红外温度、空气温/湿度、土壤水分/水势等传感器,能够及时采集田间全面的同步数据,排除了异地观测所形成的数据误差。采用悬臂式多点采集下垫面红外温度检测方法,可以快速采集更多和更高精度的数据,避免单点测量的人为误差。系统配备的快速锁紧装置,能够根据下垫面作物的生长情况进行传感器位置高度调节,使检测数据更符合田间实际情况。通过运行管理和监测数据分析可见,所监测数据能够很精细的刻画田间作物实际生长状况,可以用于灌区综合灌溉决策,实现田间精量灌溉管理和控制,为灌溉管理的精量化和智能化提供数据支持。  相似文献   

14.
Plants will be an important part of future long-term space missions. Automated plant growth systems require accurate and reliable methods of monitoring soil moisture levels. There are a number of different methods to accomplish this task. This study evaluated sensors using the capacitance method (ECH2O), the heat-pulse method (TMAS), and tensiometers, compared to soil water loss measured gravimetrically in a side-by-side test. The experiment monitored evaporative losses from substrate compartments filled with 1- to 2-mm baked calcinated clay media. The ECH2O data correlated well with the gravimetric measurements, but over a limited range of soil moisture. The averaged TMAS sensor data overstated soil moisture content levels. The tensiometer data appeared to track evaporative losses in the 0.5- to 2.5-kPa range of matric potential that corresponds to the water content needed to grow plants. This small range is characteristic of large particle media, and thus high-resolution tensiometers are required to distinguish changing moisture contents in this range.  相似文献   

15.
基于无线网络的远程墒情监测系统设计与实现   总被引:1,自引:0,他引:1  
吴春  姜波  申长军  邢振  闫华 《节水灌溉》2011,(12):37-40
为构建信息化的墒情监测网络,设计了一种基于串口无线模块、GPRS和短信3种通信模式的远程墒情监测系统,该系统采用图形化的方式实现对多种数据传输方式的墒情自动监测站的数据监测。为了满足多种墒情监测环境下系统的可靠性,采用Modbus RTU方式实时读取监测数据,采用短信方式和网络通信方式定时读取监测数据。通过对土壤墒情和...  相似文献   

16.
为了实时了解土壤墒情信息,为旱情预报预警及农业灌溉提供基础数据,设计了一套基于GPRS的土壤墒情远程监测系统。该系统利用太阳能供电,以STC12C5A60S2单片机作为主控单元核心控制器,通过GPRS网络进行土壤墒情数据无线传输。通过上位机软件的开发设计,可实现多个终端节点土壤墒情信息的动态实时监测。试验结果表明,系统运行稳定,满足设计要求,能够为农业灌溉提供可靠的依据。   相似文献   

17.
土壤墒情监测是生态环境保护和建设的重要内容,为此,设计了一种城市森林土壤墒情远程监测系统;详细介绍了系统的结构和网络监测管理系统的功能。监测管理系统采用J2EE构架,具有查看实时数据、查询历史数据以及对数据进行召测和对超标值进行报警等功能。实验表明,系统性能稳定,满足土壤墒情远程监测的要求。  相似文献   

18.
遥感计算土壤含水量方法的比较研究   总被引:13,自引:2,他引:13  
对目前国内外遥感计算土壤含水量的主要方法进行了对比研究,对不同遥感卫星数据在计算土壤含水量中的应用情况进行分析,指出这些方法和数据的应用概况、适用条件、存在问题以及改进的措施。对研究遥感计算土壤含水量方法,具有一定的指导意义。  相似文献   

19.
毛敏 《农业工程》2021,11(2):56-58
为了实时监测土壤湿度,通过Wi-Fi技术、土壤湿度传感器、Arduino Uno微处理器和Web服务器设计出基于物联网技术的智能灌溉系统,搭建了以土壤湿度传感器和Arduino Uno微处理器为核心的硬件体系,并通过Java语言编写JSP程序完成软件设计。通过试验,该系统可实时监测土壤水分,当测量数据小于设定的阈值时,自动开启浇灌设备,对土壤水分进行智能调节。采用此方法,可使用简单的电路完成复杂的功能,大大降低设计成本,适用于需要实时监测土壤水分的场合。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号