首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 498 毫秒
1.
为了进行大颗粒谷物的含水率测量试验,设计了一种基于电磁波辐射法的大颗粒谷物含水率检测试验台。试验台由信号发生器、驱动电机、变频器、升运绞龙及无线通讯模块组成,可通过比较接收线圈接收电磁耦合后的畸变信号与发射信号,建立起信号变化与谷物含水率的关系,实现对谷物含水率的在线测量。本试验台具有测量速度快、结构简单及成本低廉等优点,满足了农业上对粮食水分的测量要求。  相似文献   

2.
基于称重法的收割机谷物测产方法的研究   总被引:1,自引:0,他引:1  
针对联合收割机实时监测谷物产量的需要,提出了一种基于称重法的产量测量方法,采用电阻应变式压力传感器对收获谷物进行称重测量,将采集的数据经过放大电路、A/D转换后传送给单片机进行计算处理,根据传感器采集的数据建立回归预测模型计算当前谷物产量。该系统可以对谷物产量进行实时监测并在液晶屏上显示和存储。  相似文献   

3.
针对联合收获机刮板式输粮装置内谷物分布不均、流量难以准确测量的问题,开展了刮板式输粮的联合收获机谷物流量监测方法研究,设计了基于激光对射阵列的谷物流量监测装置,主要由激光对射阵列、升运器转速传感器、数据处理模块和谷物流量计量显示终端组成。当升运器刮板输送谷物经过激光对射阵列时,会阻断激光发射器发出的红外光线,激光接收器由于无法接收到红外光信号,输出信号发生变化,通过定时采集激光接收器输出信号变化可获取谷物分布信息;同时,升运器转速传感器输出转速信号,谷物流量数据处理模块将采集到的升运器转速信号和激光对射阵列信号经滤波、整形后,与人工测定的谷物容重信息送至谷物流量计量软件系统,以分层积分法处理后,将谷物流量、谷物容重和升运器转速实时显示在终端上。为了验证基于激光对射阵列原理的谷物流量监测装置性能,选择含水率为14.7%的南梗5055号水稻,开展了室内台架试验。结果表明:谷物含水率相同的情况下,基于激光对射阵列原理的谷物流量监测装置室内台架试验测量结果相对误差≤3.00%,为田间谷物流量在线监测提供了技术基础。  相似文献   

4.
为准确获取农田中作物产量信息,以联合收获机刮板式升运器为研究对象,提出了一种基于单目视觉的联合收获机产量测量方法。首先,根据真实的升运器内部谷堆图像,提出了一种更加精确的刮板上谷物堆积模型。然后,基于视觉测量和图像处理技术,开发了一种谷堆体积测量方法。在辅助光源照射下,通过工业相机采集升运器内刮板和谷堆的侧面图像。采用邻域微分法提取图像感兴趣区域,再利用Otsu法和形态学处理方法从背景中准确分割出谷堆。根据相机成像模型,计算谷堆在世界坐标系中的实际侧面积,并通过谷堆几何模型得到谷物的体积。最后,将每个刮板上的谷堆体积累加求取产量。为验证所提方法的有效性,搭建了基于单目视觉的谷物测产系统,并在升运器试验台上开展了试验验证。试验结果表明,在不同的升运器转速工况下,所提方法测量的相对误差为-4.08%~3.41%,能够满足联合收获机产量测量精度要求。  相似文献   

5.
谷物产量实时监测是联合收获机的重要性能,为实现联合收获机对谷物产量实时监测的功能,设计一种基于物位传感器和STM32处理器的产量实时监测系统。该系统以物位传感器为检测元件,根据测量电极的电容变化检测粮箱内谷物的体积,通过数据处理模块得出结果并上传至监控计算机。田间试验表明,该系统安装方便,实时性强,检测误差小于4%,能够满足联合收获机测产系统的实际需要。  相似文献   

6.
作物产量的空间变异性反映了农田环境和管理等因素对产量的影响,获取准确的产量空间分布信息是实施资源按需最优化投入的前提。为了获取谷物产量空间信息,设计了基于移动终端的农田谷物产量空间分布信息实时监测平台,可实现对联合收获机实时位置、作业状况和产量数据的远程监测,进而对产量数据的空间分布状况进行分析。平台主要由数据接收及存储、数据传输、数据显示和数据分析4个模块构成。其中,数据接收及存储模块接收由收获机传来的位置、谷物流量、升运器转速、谷仓温湿度和割幅宽度等作业状况信息数据包,将数据解析并存入数据库。数据传输模块为移动终端提供Web service服务,提取数据库中相应数据供前端调用。数据显示模块在移动终端上实时显示联合收获机作业位置和作业状况等信息。数据分析模块通过调用ArcGIS Server GP服务,将谷物产量信息的空间分布进行插值分析,分析结果以产量空间分布图的形式显示。经过测试,该监测平台运行稳定,能够实时显示和分析农田谷物产量信息,为农田精细管理提供技术支持。  相似文献   

7.
穗状玉米测产系统设计与试验   总被引:5,自引:0,他引:5       下载免费PDF全文
设计了由产量监视器、速度传感器、产量传感器、差分全球定位系统(DGPS)、割台高度传感器、升运器转速传感器和玉米果穗导向装置组成的穗状玉米测产系统,并应用该系统进行田间测产试验。收获作业前抽样测量玉米果穗的粒穗比和含水率;玉米收获机工作时,以割台高度传感器作为逻辑开关,割台收获玉米果穗,通过导向装置使玉米果穗以相同速度冲击产量传感器;产量传感器将冲量转化为电信号,并传给产量监视器;产量监视器融合产量、速度、升运器转速及DGPS信息计算出当前小区产量并存储在扩展名为.vld的文件中,应用自行研制的农业空间信息采集与应用系统(DCAS)可绘制收获产量图。2009年秋季应用该系统进行田间玉米收获实时测产,田间试验数据表明该系统测产平均相对误差为18.11%。  相似文献   

8.
谷物联合收获机自动测产系统产量模型   总被引:4,自引:0,他引:4  
为了提高谷物联合收获机自动测产系统的测产精度,在研究了谷物联合收获机田间工作状态和升运器速度变异的基础上,通过分析谷物的运动学原理及其对冲量传感器作用的力学原理,建立了电压/升运器速度产量模型。为进一步消除收获机作业时的噪声干扰,在测产原始数据预处理时,先采用回归差分法降低振动噪声,然后采用双阈值滤波以及阈值取代法、前值取代法2种插值方法以消除差分电压中的奇异值,结果显示前值取代法效果较佳。此外,还提出了升运器速度归一化方法和冲量电压标准化方法以消除量纲影响并简化计算。田间测产试验结果表明,提出的电压/升运器速度模型比传统的质量-电压模型更能准确表征谷物运动实际情况,测产精度高,验证均方根误差为2.03%。  相似文献   

9.
正谷物联合收割机智能测产系统,依靠全球定位系统,可实现对收割机的前进速度、收获时间、谷物收获量等数据的实时监控测,能够获取精确的谷物产量在空间分布的信息。一、工作原理谷物产量的空间分布信息主要由地理位置、面积及谷物收获量等组成。农田的位置信息通过全球定位系统获取,收获面积通过收割机的前进速度、收获时间和割幅等数据计算获得,谷物收获量主要通过粮箱监测单元获得。收割机智能测产系统的结  相似文献   

10.
谷物产量智能测产监测器的设计与试验   总被引:3,自引:0,他引:3  
设计了一种谷物产量智能监测器,它由自主研制的GSM-1型单板冲量式谷物流量传感器、谷物产量采集器和谷物产量监视器组成。在谷物流量传感器试验台上进行了谷物产量实时监测的试验以及谷物产量采集器和监视器的通讯试验。实验结果表明,该装置无线接收性能稳定,试验台产量测量误差≤5.4%。  相似文献   

11.
联合收获机谷物损失实时监测系统研究   总被引:1,自引:0,他引:1  
为了实现联合收获机工作过程中谷物损失量的实时监测,设计了谷物损失实时监测系统。该系统以PVDF压电薄膜作为敏感元件,通过电压放大器、带通滤波器、精密全波整流、包络检波等构成信号调制电路来检测谷物冲击信号,为了减小联合收获机的振动干扰,设计了一种双层隔振结构。在1.1~2.6m/s范围内进行谷物冲击性能试验。结果表明,谷物冲击信号的电压峰值为2~4V,且电压峰值随冲击速度的增大而增加。以AT89C52单片机为核心开发了二次显示仪表,实时采集传感器输出的谷物冲击信号。田间试验表明,该系统能够有效获取谷粒冲击信号,实时显示联合收获机谷物夹带、清选损失率,具有预报警功能,且测量结果可以通讯输出。  相似文献   

12.
针对谷物联合收获机产量监测系统成本高、结构复杂和稳定性较低的问题,设计了基于占空比测量的谷物联合收获机产量监测系统,由对射式光电传感器、GPS模块、数据处理单元、数据存储单元和可视化单元组成。系统工作时,通过对射式光电传感器监测刮板上谷物遮挡与不遮挡两种电压信号,通过软件系统处理信号中高度对应的占空比,利用占空比与产量计量模型的关系获得产量数据,并连同系统的绝对时间、GPS数据存储到系统中。通过EDEM仿真和理论模型分析,推导了占空比测量值与谷物质量的正比例关系。利用台架试验对占空比测量值与谷物质量进行了全局模型和局部模型拟合,决定系数R2均不小于0.988。随后通过台架试验对全局模型和局部模型进行模型分析,台架试验结果表明,虽然局部模型可能对固定转速下的测量数据更优,但全局模型更具有通用性。随着系统测量数据的增加,相对误差逐步减小。田间试验中对系统测量的异常信号进行了统计和分析,为了减少异常信号对测产误差的影响,对系统测量值与实际产量进行了标定。田间试验结果表明,产量监测系统测产最大相对误差为3.83%,平均相对误差为0.40%,系统整体误差和误差波动均较小。  相似文献   

13.
螺旋输送试验台测试系统设计与试验   总被引:2,自引:0,他引:2  
为提高螺旋输送装置对散粒物料的输送质量,设计一种适用于螺旋输送试验台的测试系统,该系统可实时采集搅龙叶片压力、步进电机转速、搅龙轴扭矩、螺旋搅龙轴向推力、下料量质量等关键信息。试验结果表明:系统转速控制精度为96.4%;搅龙叶片压力采集精度不低于97.6%;轴向推力采集精度不低于95.92%;输送质量采集精度不低于96.47%。  相似文献   

14.
针对谷物联合收获机作业过程中清选损失较大的问题,设计了一种以AT89C52单片机为核心的谷物清选损失监测系统。该系统能区别出谷粒和杂质信号,实时显示机具前进速度和谷物清选损失率,当损失率超标时报警提示驾驶员及时调整相关机构,以降低收获损失。仿真试验结果表明,系统响应速度快、准确且稳定,符合设计要求。  相似文献   

15.
联合收割机清选损失率监测系统设计与实现   总被引:1,自引:0,他引:1  
谷物清选损失是判断联合收获机性能的重要参数,为实现联合收获机工作过程中谷物损失率的实时监测,研制了一种基于压电陶瓷传感器的损失率在线监测系统。该系统以压电陶瓷作为敏感元件,根据不同物料打击敏感板的碰撞力和信号的持续时间,导致信号频率和产生电压幅值的不同。设计一种信号处理电路用来区分饱满谷物与杂余,信号处理电路由电荷放大器、频率为5~12 kHz的带通滤波器、阈值可调的电压比较器组成。输送带速度在0.5~2 m/s范围内进行谷物冲击性能试验,试验结果表明,传感器具有很好的分辨饱满籽粒与杂余混合物的能力,测量误差小于4.1%。  相似文献   

16.
基于4YZ-8型玉米籽粒联合收获机,设计收获机工作状态信息采集、传输、存储、显示实时检测方法,以实现对籽粒流量、含水率、割台高度、行走速度、升运器转速、脱粒搅龙转速、粮仓状态、发动机状态等主要工作状态参数进行实时监测,以及对工作部件异常进行声光报警。  相似文献   

17.
冲量法谷物流量测量系统的试验研究   总被引:11,自引:7,他引:11  
根据精细农业研究的实际要求,首先在不考虑外部振动的情况下设计了一种基于冲量原理的谷物流量测量试验装置。该装置由自行研制的冲量传感器、数据采集器和谷物流动模拟箱体组成。试验结果表明,这种装置测量误差的绝对值小于5%,在此基础上又进行了谷物产量时监测系统的试验研究,试验结果表明,在引入外部机械振动的情况下,经过滤波处理系统测量误差的绝对值小于8%。  相似文献   

18.
联合收获机称量式测产系统软件设计   总被引:5,自引:0,他引:5  
运用VB 6.0编程语言设计了应用于谷物联合收获机称量式测产系统平台的测产软件。该软件能实时接收、显示和保存测产系统所采集的数据,计算得到实时收获总质量、收获面积等田间信息。软件对谷物流量数据计算处理作出谷物流量图;将GPS接收到的经纬度转换为高斯坐标,在平面直角坐标系中作出GPS轨迹图;最终将流量数据与GPS轨迹数据结合运算生成产量图。作图过程中当曲线即将到达界面边界时,曲线图会自动平移远离边界以保证实时图像的正常显示,在作图结束后可拖拽图像查看完整图形。经测试,软件在室内测产相对误差小于2%,在田间测产相对误差小于3%。  相似文献   

19.
针对甘薯分段收获技术需求,结合国内外甘薯收获技术及装备,提出一种甘薯秧蔓收获方式,并设计甘薯秧蔓收获机专用割台。该甘薯秧蔓收获割台主要由拨禾切割装置和防堵防缠输送装置组成,可以实现甘薯秧蔓的切—送—归集。首先,理论分析该割台的关键部件结构参数及传动配置关系,确定拨禾切割装置上仿垄型排列的割刀和弹齿的安装高度和安装密度,以及拨禾轮、割刀和弹齿的结构参数。其次,通过对拨禾切割装置、捡拾装置和螺旋输送装置进行运动学和力学分析,明确拨禾轮、捡拾器、螺旋输送绞龙转速和结构决定秧蔓切割效果和收获质量,并确定捡拾器和螺旋输送绞龙的关键结构参数,最后进行田间试验验证该机具的切—送—归集收获效果。结果表明:当整机前进速度为0.6 m/s,拨禾轮转速为46 r/min,捡拾器转速为43 r/min,割台损失率仅为1.3%,整机作业效率为0.45 hm2/h。割台搭配48 kW拖拉机在工作过程中运行稳定,割台在工作过程中无堵塞、无缠绕,满足甘薯秧蔓联合收获机的设计需求  相似文献   

20.
徐海萍 《农机化研究》2023,(5):225-228+232
基于使用状态参数监测技术,设计了一种农业机械设备状态监测与分析的安全管理系统,用于对农业机械运行过程状态参数进行监控,并与设备设计参数进行对比,实时进行设备运行安全状态监测,避免超负荷使用造成的农业机械安全隐患。分别在小麦收割机、玉米收割机及块茎作物收获机上搭载系统进行试验验证,结果表明:安全管理系统能够有效地对农业机械运行过程中的实时状态进行监测,并可对设备的运行状态进行预测。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号