首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于TRIZ理论的红花丝盲采装置设计与试验   总被引:6,自引:0,他引:6  
针对红花花球分布层次不齐造成机械采收效率低等问题,设计一种红花丝盲采装置。通过分析人工手采摘红花丝的过程,利用TRIZ理论,建立红花丝采摘的物质-场模型,得出红花丝最佳采摘方案为利用采摘齿与红花丝碰撞的盲采。采用凸轮机构作为红花丝采摘的驱动机构,利用TRIZ理论的冲突矩阵对应的发明原理,对凸轮机构的结构进行改进,使凸轮机构完成红花丝的夹紧与拉拔两个驱动。设计了一种新的弧形采摘齿,解决了红花丝漏采难题。利用Creo软件建立红花丝盲采装置的三维模型,并研制样机进行试验,试验结果表明,当该装置前进速度为0.5 m/s,采摘齿转速大于6 r/s时,红花丝的采摘效果最佳,采净率约为90%。  相似文献   

2.
为提高梳夹式采收装置的作业质量,利用实验室研制的梳夹式采收装置试验台,以新疆裕民无刺红花为试验对象,以顶部位置差、顶部高度差、中间位置差和中间高度差为影响因素,以整株采净率、含杂率和采摘质量度为评价指标,进行四因素五水平正交中心组合优化试验。通过Design Expert 10(32-bit)软件,建立了评价指标和各影响因素的数学回归模型,分析了显著因素对评价指标的影响,确定了最优参数组合为:顶部位置差198mm,顶部高度差108mm,中间位置差200mm,中间高度差135mm。在该参数组合下,取植株顶部80%以上花球开花后1~5天的红花(含水率≥44.6%)进行花丝采摘试验,结果表明:整株采净率为79.55%,含杂率为1.52%,采摘质量度为0.9,效果理想。本研究为梳夹式红花采收机具的设计提供了参考依据。  相似文献   

3.
基于ANSYS/LS-DYNA的梳夹式红花采摘装置研究   总被引:1,自引:0,他引:1  
红花梳夹采摘过程中红花的运动姿态对采摘效果有重要影响,为得到满足红花理想采摘的梳夹采摘装置的结构参数和工作参数,根据红花的物料特性,建立梳夹采摘模型,利用ANSYS/LS-DYNA软件动态模拟采摘过程,揭示采摘装置不同结构参数和工作参数与红花运动姿态之间的关系特性,不断调节采摘装置的结构和运动参数,直至红花花球和分枝到达理想采摘位置。模拟结果表明,低位置采摘时花球及分枝运动相对高位置稳定,且在行走速度2.5km/h,梳齿转速150r/min,限位杆与梳齿旋转中心的水平距离a=30mm时采摘效果最佳,可实现理想位置采摘。根据红花田间采摘要求搭建试验台并进行台架试验,采摘试验结果表明,56%的花球可以实现理想采摘,其平均采净率为48.5%。  相似文献   

4.
针对研制的梳夹式红花采收装置存在采摘后的花丝掉落严重,导致花丝采集效率低的问题,提出一种新型的气吹-气吸组合式集花机构。该机构利用正压气流吹动粘附花丝脱离采摘头,同时结合梳夹装置前端安装的采摘头护罩,利用负压气流收集采摘后的花丝并防止花丝掉落。通过分析花丝在正压气流中受力情况,优化了集花机构的关键结构及工作参数。为验证整机性能,以含水率≥44.5%的新疆裕民红花为对象,对集花机构优化后的梳夹式红花采收装置进行了田间试验。试验结果表明:优化后的红花采收装置花丝采净率提升至81.74%,花丝掉落率降低至2.31%,相较于优化前采净率提高了4.47%,掉落率降低了0.31%,减少了花丝损失,整机性能得到提升,可为红花机械化高效低损采收提供参考。  相似文献   

5.
切割-气吸式红花花丝采收装置的设计   总被引:1,自引:0,他引:1  
为解决红花鲜花丝采摘过程中效率低、劳动强度大、成本高等问题,设计了一种切割-气吸式红花花丝采收装置。该装置采用负压风机转动产生的吸气流梳理花丝,使花丝竖立起来且偏向一侧,并露出花丝与瘦果连接处,电机转动带动刀具旋转切割花丝,采摘下的花丝在吸气流的作用下被输送至储花室,完成红花鲜花丝的采摘、输送、收集工作。同时,对具有不同导流片的储花室结构进行流场模拟,分析了不同个数的导流片对储花效果的影响;对采收装置的整机结构在Solidworks软件中进行三维实体建模,且进行了干涉检查。结果显示,该装置各部件组装合理,可以进行后续的物理样机制作。  相似文献   

6.
螺旋输送试验台测试系统设计与试验   总被引:2,自引:0,他引:2  
为提高螺旋输送装置对散粒物料的输送质量,设计一种适用于螺旋输送试验台的测试系统,该系统可实时采集搅龙叶片压力、步进电机转速、搅龙轴扭矩、螺旋搅龙轴向推力、下料量质量等关键信息。试验结果表明:系统转速控制精度为96.4%;搅龙叶片压力采集精度不低于97.6%;轴向推力采集精度不低于95.92%;输送质量采集精度不低于96.47%。  相似文献   

7.
为解决红花花丝采收不及时、采摘效率低及雇工难等问题,提高红花花丝的采收效率,降低劳动成本,设计了一种便携对辊式红花采收机。该机主要由采摘头、风机、汽油机等组成,工作原理是利用高速旋转的双辊挤压吸附花丝,并利用风机产生的气流进行花丝的输送与收集。为此,对花丝经辊子挤压、拉拔采摘过程中的力学特性进行了分析,对风机的特性参数进行了计算,并对采摘腔室内的气流场进行了仿真。田间样机试验结果表明:该机能较好地完成红花花丝的采摘与输送、收集工作,花丝的平均采净率为90.22%,掉落率为2.26%,含杂率为0.05%。该机型对于降低劳动强度,促进当地经济增长具有较好的实际作用。  相似文献   

8.
旋转剪切式红花花丝采摘机械关键部件的设计   总被引:2,自引:0,他引:2  
针对新疆红花采摘时对花难、切割时破碎率高、采集时采净率低等问题,设计一种旋转剪切式红花花丝采摘机械,该机械采用偏心式进花口及斜置割刀;基于测定的物料特性,含水率为50%左右的花丝适合旋转剪切收获,偏心的进花口与具有7°斜置角度的刀具对红花进行点切割,降低花丝破碎率;设计拟合瘦果轮廓的球面箱体,确定采摘箱地面半径为68 mm,进花口直径设定为35 mm,提高盲采成功率;运用Fluent软件进行分析不同转速下花丝运动情况,确定负压风机适宜为2 400 r/min。  相似文献   

9.
针对现有牧草收割机收割饲用苎麻作物时,割台输料不畅,搅龙易被麻类纤维缠绕的问题,设计一种专用收割机割台。该割台由往复式切割装置、拨禾轮、茎秆捡拾输送器及螺旋搅龙组成。根据饲用苎麻的田间生长特性及物料特点,开展收割机割台设计。通过理论计算与试验分析,确定割台各关键装置结构参数:拨禾轮的圆周半径为840 mm、切割器离拨禾轮轴高度为1 470 mm、拨禾轮转速27.9 r/min、升降行程为700 mm、往复式割刀曲柄转速为540 r/min、茎秆捡拾输送器拨齿轮滚筒半径为150 mm、转速为152.80 r/min,喂入搅龙直径为320 mm、转速为170 r/min。田间试验表明:该机收获损失率为3%,标准草长率为91%,作业小时生产率为0.25~0.35 hm2/h,割茬高度为150 mm。收割时,割台未出现堵料及纤维缠绕现象;收割后,苎麻割茬整齐,未发现作物茎秆基部存在明显撕裂现象。试验结果表明往复式切割器切割效果良好,整机工作性能稳定,该收割机割台能够满足对饲用苎麻作物的收割要求。  相似文献   

10.
针对目前采用气力-切割组合式红花丝采摘器收获时破碎率高的问题,提出在切割分离前增加梳理整形环节的思路,使粘附在果球上的冠状红花丝在负压气流场中竖立悬浮,显露出红花缩颈切割部位,便于准确切割,从而减少红花丝破碎率。利用空气动力学理论,以提高吸附效率为优化目标,建立红花丝在气流场作用下梳理整形过程的动力学模型,揭示气流的流动变化规律。试验测得裕民无刺红花花丝最大迎风面积为11~4 0 mm2,当负压气流速度大于2.78 m/s时,即可完成红花丝的梳理整形。  相似文献   

11.
红花分枝力学特性测试及运动分析   总被引:3,自引:0,他引:3  
为研究红花丝采摘机喂入装置喂入过程中红花分枝及种球的运动特性,以新疆区域主栽品种无刺红花为试验对象,在DF-8000动态疲劳试验机上对红花分枝进行三点弯曲试验,得到了红花分枝的弹性模量及抗弯强度。建立ANSYS中的Explicit Dynamics模块,并求解喂入装置与红花分枝及种球的刚柔耦合动力学模型,运用LS-Prepost进行结果后处理,分析了喂入装置在不同转速下分枝的运动姿态、种球的喂入角度及速度,为更好地将种球端部红花丝喂入采摘装置,提高采收效率提供了部分理论依据。  相似文献   

12.
弹齿滚筒式辣椒采摘装置性能的试验研究   总被引:1,自引:0,他引:1  
针对弹齿滚筒式辣椒采摘装置采净率低、破损率高、损失率严重的问题,设计试验台并进行采摘装置性能的试验研究。以运行速度、齿间距离、滚筒转速作为试验影响因素,以采净率、破损率、损失率为指标,对试验结果进行极差分析和方差分析。结果表明:当运行速度为3m/s、齿间距离为45mm、滚筒转速为150r/min时,采摘装置采净率可高达95.29%,破损率降低为2.89%,损失率减少到6.47%。同时,针对采净率建立回归方程,为采摘机理研究和分析提供了必要的参数依据。  相似文献   

13.
为解决花椒收获过程中的摘净率低、损伤率高的问题,在现有结构基础上,基于梳刷摘果原理对采摘装置、传动装置等零部件进行设计和分析,确定了影响花椒采收机采摘效果的因素。利用ADAMS软件,以采摘装置梳刷滚筒转速、梳刷滚筒与喂入口间距、两梳刷滚筒间距为影响因素,以花椒果实未损伤摘净率为检测目标,进行响应面仿真分析试验。结果表明:梳刷滚筒转速对花椒果实未损伤摘净率影响极其显著,梳刷滚筒与喂入口间距、两梳刷滚筒间距影响比较显著。最优参数下,即梳刷滚筒转速531r/min、两梳刷滚筒间距70.6mm、梳刷滚筒与喂入口间距46.7mm时,花椒果实未损伤摘净率为96.6%。研究结果可为后续花椒采收机的研究提供参考。  相似文献   

14.
针对目前花生捡拾联合收获机捡拾台螺旋喂入与升运输送过程中秧果易拥堵而造成荚果破碎高等问题,设计了一种花生捡拾联合收获机喂入输送装置。通过动力学与运动学的秧果喂入和输送过程分析,开展花生秧果与搅龙输送装置、花生秧果与链靶升运装置的互作关系研究;通过理论分析与计算,确定秧果喂入和输送关键部件的结构和运动参数,并进行集成研究。以田间自然晾晒3~5天的花生植株为材料,以输送率、荚果破碎率为试验指标,以喂入量、喂入搅龙转速、喂入口输送间隙为因素进行台架试验,结果表明:当喂入量3kg/s、喂入搅龙转速150r/min、喂入口输送间隙90mm时,作业性能达到最优,输送率为99.83%,荚果破碎率为0.28%,输送过程稳定可靠,未发生堵塞现象,满足花生联合收获机的作业要求。  相似文献   

15.
针对甘薯分段收获技术需求,结合国内外甘薯收获技术及装备,提出一种甘薯秧蔓收获方式,并设计甘薯秧蔓收获机专用割台。该甘薯秧蔓收获割台主要由拨禾切割装置和防堵防缠输送装置组成,可以实现甘薯秧蔓的切—送—归集。首先,理论分析该割台的关键部件结构参数及传动配置关系,确定拨禾切割装置上仿垄型排列的割刀和弹齿的安装高度和安装密度,以及拨禾轮、割刀和弹齿的结构参数。其次,通过对拨禾切割装置、捡拾装置和螺旋输送装置进行运动学和力学分析,明确拨禾轮、捡拾器、螺旋输送绞龙转速和结构决定秧蔓切割效果和收获质量,并确定捡拾器和螺旋输送绞龙的关键结构参数,最后进行田间试验验证该机具的切—送—归集收获效果。结果表明:当整机前进速度为0.6 m/s,拨禾轮转速为46 r/min,捡拾器转速为43 r/min,割台损失率仅为1.3%,整机作业效率为0.45 hm2/h。割台搭配48 kW拖拉机在工作过程中运行稳定,割台在工作过程中无堵塞、无缠绕,满足甘薯秧蔓联合收获机的设计需求  相似文献   

16.
<正>凯斯Cotton Express 620采棉机发动机功率可达365马力,具备全天采摘的生产力,在最恶劣的工作条件下可以轻松采摘,采摘效率高。从棉株两侧同时采摘的独特设计,使得凯斯620采棉机具有更高的采净率和采摘质量。超大容量的棉箱和油箱容量,田间摘棉时间更长;特殊设计的搅龙压实系统用来压实棉花,使棉箱的容  相似文献   

17.
整秆式甘蔗收割机组合式扶起装置运动学分析   总被引:1,自引:0,他引:1  
为改进整秆式甘蔗收割机对倒伏甘蔗的扶起能力,设计了一种组合式扶起装置,这种装置能把倒伏的甘蔗扶起到夹持输送口的高度.通过分析计算得出了组合式扶起装置中弧形拨指链的导轨与地面的角度、最佳转速和弧形拨指间距,推出了装置在扶起甘蔗的运动过程中的基本方程,并得出了各参数之间的关系.通过对组合式扶起装置的关键部件-圆锥形螺旋滚筒的运动分析,得出了螺旋滚筒合理的螺旋角.  相似文献   

18.
为了分析刀盘螺旋提升装置结构与工作参数对甘蔗输送顺畅性的影响,对不同结构设计方案进行仿真分析,并采用二次回归通用旋转组合试验研究刀盘螺旋杆高度、刀盘转速、相邻输送辊高度等3个因子对甘蔗输送率指标的影响。利用SPSS软件进行回归分析和响应面分析,研究单因素与交互作用对响应值的影响。综合非线性优化方法,得到最佳参数组合,即在刀盘转速为400r/min、螺旋高203mm、输送辊高236mm时最优输送通过率可达到97.72%。  相似文献   

19.
目前,水草污染对环境造成严重影响,针对滩涂深水水草难以收割的问题,设计了一种水草水下收割台。为了研究割台水下作业时内部水流与水草的流动规律,应用Fluent软件中的Eulerian多相流与Realizable k-ε湍流模型进行液固两相流三维数值模拟,分析了在不同的搅龙转速、搅龙螺旋叶片圈数、搅龙滚筒直径参数影响下割台体内水流与水草的速度分布。结果表明:在搅龙转速为90r/min,两侧螺旋叶片分别为3片、螺距360mm、搅龙滚筒直径为200mm时,水草收割台的水流流场与水草流动更为稳定、流畅,模拟结果较好地反映了割台内流体的运动过程,为割台的结构优化提供了一定的理论依据。  相似文献   

20.
针对西南地区坡度较大、免耕地表秸秆及根茬等造成耕地平整度较差,驱动式破茬防堵免耕播种机作业时机具整体产生振动较大,导致排肥器排肥及导肥管导肥作业性能差的问题,基于螺旋输送原理,设计了一种柔性无轴螺旋排肥输肥装置。通过对肥料的螺旋输送以及物料临界输送速度分析,得出螺旋叶片最佳充肥尺寸以及转速范围。采用EDEM仿真进行二次回归正交旋转试验和响应曲面法分析无轴螺旋排肥输肥装置最佳工作参数:螺旋叶片内半径3mm、螺旋叶片外半径12.8mm、螺旋叶片转速319r/min以及螺旋间距24.5mm。田间测试结果表明,在地表平整度平均值以及地表坡度分别为8.9cm、16.1°时,无轴螺旋排肥输肥装置在作业速度1.5 m/s时,排肥精度误差、均匀性变异系数分别为1.87%、2.52%,满足国家施肥标准,播肥符合当地农艺要求。所设计的无轴螺旋排肥输肥装置满足免耕播种施肥要求,可为在地表平整度较差时排肥和振动较大条件下排肥器以及导肥管的设计与改进提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号