首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
针对玉米姿控驱导式排种器在高速工况下投种点位不一致,播种粒距均匀性不佳的问题,提出约束种子运动自由度并引导投种方向的方法,设计了一种新型导向投种机构,合理规划了待投种子的导种轨迹,进而确保投种点位及初速度恒定。完成了导向投种机构的结构参数设计与待投种子的动力学分析,明确了影响排种性能的关键参数及其取值范围,通过单因素与双因素试验获取了排种器的最优参数组合,并进行性能对比验证试验。结果表明,约束运移弧面圆心角取35°时,投种点位较为集中;在作业速度8 km/h、引导投种弧面半径24.3 mm时,排种性能达到最优,粒距合格指数、重播指数和变异系数分别为91.5%、4.7%和13.6%;当作业速度由8 km/h提升至14 km/h时,较原排种器粒距变异系数的降幅由0.1个百分点增大至2.7个百分点,采用导向投种机构可有效提升原排种器的高速作业性能。  相似文献   

2.
气吸机械复合式大豆精密排种器设计与试验   总被引:8,自引:0,他引:8  
针对现有气吸式高速精密排种器遇负压骤降时易发生大量漏播的技术难题,设计了一种在排种盘上同时设有吸孔、导种槽和取种槽3种种子拾取机构的气吸机械复合式大豆精密排种器,其中导种槽引导种子向取种槽运动,取种槽拾取种子,同时吸孔产生吸力促进种子的拾取,通过3种拾取机构共同改变种群运移行为,保证气流负压骤降情况下的排种性能;通过离散元仿真设计和理论建模分析等方法,研究关键设计参数对种群运移规律的影响,并对关键部件几何结构参数进行优化设计;通过回归分析和多因素试验得出作业速度、取种槽和导种槽几何结构尺寸、负压均对排种器播种效果有显著影响,并得出排种器最优结构参数为:导种槽倾角45°、导种槽深度2 mm、取种槽上边宽度9.5 mm、取种槽下边宽度7.3 mm、取种槽深度5.7 mm、取种槽前后槽面宽度9.5 mm,在该几何结构条件下,当作业速度不大于8.6 km/h、负压不小于1.6 k Pa时,播种粒距合格率不小于95%;通过排种器的田间验证试验,最优结构参数条件下该排种器播种粒距合格率为93.67%、重播率为3.32%、漏播率为3.01%;通过台架对比试验得出当负压降至1.1 k Pa时,该排种器相较于勃农气吸式排种器和MASCHIO气吸式排种器,粒距合格率分别提高6.48、1.92个百分点,当负压降至0.6 k Pa时,粒距合格率分别提高9.12、4.25个百分点。  相似文献   

3.
在水稻工厂化穴盘育秧播种过程中,排种器的投种过程是影响播种性能的最后环节,为满足排种器播种性能要求,对投种过程中种子运动规律、投种机理等进行了理论分析。把投种过程分为及时投种、延迟投种和强制投种过程,推导出每个过程中排种器各参数与穴盘运动速度间的关系式,并对投种过程进行了高速摄像分析,验证了理论分析的合理性。建立了型孔长度与排种器相关参数间的限制关系式,分析表明合理选择排种器设计参数,能够保证种子不与型孔另一边壁发生碰撞,实现顺利投种。  相似文献   

4.
为了改善小区小麦精密排种器排种不均匀、重播漏播现象,设计了一种窝眼轮式小麦精密排种器。以"西农223号小麦"为试验对象,进行了基于离散元法的排种器优化设计,同时采用了三因素三水平二次正交旋转组合试验,建立了粒距合格率、种子重播率、种子漏播率与窝眼数量、端面间距、排种轮转速三因素之间的数学模型,并进行正交试验,分析了各因素对种子重播率、粒距合格率、种子漏播率的影响,确定了各因素的最佳参数组合为:窝眼数量为38个、端面间距为5mm、排种轮转速为20r/min。台架试验结果表明:粒距合格率为95.92%、种子重播率为2.50%、种子漏播率为1.58%,为窝眼轮式小麦精密排种器的研发提供了设计依据。  相似文献   

5.
可调式内侧充种排种器型孔的分析   总被引:4,自引:0,他引:4  
通过对可调式内侧充种排种器的理论分析和实验,论述了排种器的工作原理,确定了可调型孔的几何形状及主要参数的选择方法,建立了种子的几何尺寸与型孔尺寸及可调变量的函数关系,实验结果表明,该排种器能穴播多种作物,对种子几何尺寸要求不严,在不选种的条件下能达到较高的单粒播种精度。  相似文献   

6.
针对研制的小子粒精少量播种机核心部件——多头异型螺旋槽排种器的设计参数确定,对小子粒种子在整个排种过程充种区、护种区和排种区的运动状态、受力情况和运动参数等动力特性进行了分析,并对多头异型螺旋槽及排种轮的几何参数进行了动力选择,以及比较分析了竖放形式的情况。获得了在正常播种行进速度下优化的排种轮设计参数,为小子粒精少量播种机设计提供了依据。   相似文献   

7.
为解决育种小区玉米高位投种过程中播种质量和粒距均匀性普遍较差等问题,针对排种器与导种管相对位置对粒距均匀性的影响进行了研究分析。通过对投种过程的理论分析,得出高速作业不同粒距条件会影响种子脱离种盘时产生的水平方向分速度,使得种子在导种管内产生碰撞,导致其排出的轨迹无法预测,播种粒距均匀性也随之下降。利用EDEM离散元分析软件对投种过程进行仿真试验,结果表明:在垂直距离344mm的条件下,150~230mm粒距采用水平距离82mm, 230~300mm粒距采用水平距离84mm,能够在满足农艺要求并获得较好的粒距均匀性。进行了台架试验验证,结果表明对比未优化单体,优化后的单体能够获得较好的播种质量,粒距均匀性变异系数最大为12.04%,符合小区玉米精密播种的作业要求。  相似文献   

8.
穴孔式水稻排种器投种过程分析   总被引:4,自引:0,他引:4  
在水稻工厂化穴盘育秧播种过程中,排种器的投种过程是影响播种性能的最后环节,为满足排种器播种性能要求,对投种过程中种子运动规律、投种机理等进行了理论分析.把投种过程分为及时投种、延迟投种和强制投种过程,推导出每个过程中排种器各参数与穴盘运动速度间的关系式,并对投种过程进行了高速摄像分析,验证了理论分析的合理性.建立了型孔长度与排种器相关参数间的限制关系式,分析表明合理选择排种器设计参数,能够保证种子不与型孔另一边壁发生碰撞,实现顺利投种.  相似文献   

9.
为了简化机械式玉米排种器结构,提高作业质量,设计了一种夹持式玉米精密排种器,通过压种环在各工作区域的不同结构配合夹种块控制种子的位置及运动状态,实现排种作业。结合玉米种子几何尺寸,对充种过程进行理论分析,获得种子填充力的变化规律,阐述了清种、投种工作原理,设计了夹种块、压种环等关键部件。为检验排种器的排种性能,选用天农九(大粒)、红旗688(中粒)、黄金糯(小粒) 3种不同几何尺寸的玉米种子为试验对象,以播种机工作速度为试验因素,以合格指数、重播指数、漏播指数为试验指标,进行单因素试验。试验表明,天农九排种效果较佳,在工作速度为11 km/h时,其合格指数为90. 1%,重播指数为9. 1%,漏播指数为0. 8%,满足排种作业要求。  相似文献   

10.
玉米精量播种机多采用高位投种,种子着床过程弹跳移位,粒距一致性变差的问题突出。为了探明高位投种着床位置影响因素,利用三维激光绝对臂测量机,扫描真实种沟外形,通过逆向建模方法构建种沟三维数字模型,采用正向测量和逆向验证组合标定种子与土壤接触参数:滚动摩擦因数0.22,滑动摩擦因数0.727,碰撞恢复系数0.16。基于标定参数的仿真试验与真实试验相比,着床种子与导种管出口距离误差为4.7%,仿真种子着床过程与真实过程接近。以播种作业速度、粒距和投种角为因素,以种子着床点与第1落点的纵向偏移量为指标,基于种沟三维数字模型,开展单因素仿真试验和两因素四水平仿真试验,单因素试验结果表明:高位投种过程中,粒距对种子纵向偏移量影响不显著(P>0.05),投种角和作业速度对种子纵向偏移量有显著影响(P<0.01);两因素四水平试验表明:相同投种角条件下,纵向偏移量随着作业速度的增大而增大;相同作业速度条件下,纵向偏移量随投种角的增大而增大;着床时种子与种床的纵向速度(种子速度沿作业方向的分量)与纵向偏移量呈线性相关关系,作业速度和投种角通过影响种子与种床的纵向速度影响种子着床分布。田间试验表明:随纵向速度增加,粒距合格指数先增大后减小,变异系数先减小后增加;粒距合格指数最大值出现在纵向速度为0.14m/s时,粒距变异系数最小值出现在纵向速度-0.18m/s时,说明纵向速度越接近零,播种效果越好,进一步验证了仿真试验结论。  相似文献   

11.
组合内窝孔精密排种器充种过程分析   总被引:5,自引:3,他引:5  
通过对组合内窝孔精密排种器充种过程的分析,探明了充种过程中种子的运动规律,机理及其影响因素,为系统建立该排种器的设计理论,进行优化设计奠定了基础。  相似文献   

12.
播种机参数和打穴铲结构对投种影响的计算机仿真   总被引:4,自引:2,他引:2  
根据铲式成穴器与倾斜圆盘勺式排种器组合设计成的打穴播种机的结构特点,建立了种子下落过程中运动轨迹的参数方程。以此为基础分析了播种机双向倾角、排种器投种角和打穴铲结构参数对种子在打穴铲内自由下落过程的影响,进而确定了打穴铲几何尺寸的设计原则。  相似文献   

13.
为实现小麦的精量排种,设计了一种精量小麦排种器。对排种器进行设计计算,最终确定排种器为锥盘式,型孔数量为50个,锥角为30°。采用EDEM软件进行仿真分析,结果显示:当转盘转动速度为19.38r/min、型孔长度平均值为7.95mm、小麦种子外层厚度为8.20mm时,作业合格率为89.55%,单粒率可达到50.80%,符合排种器的作业要求。试验结果表明:排种器具有行间的排量较足和一致性好的特质,在小麦的播种过程中,系数的变异已经控制在10%以内。根据测量的秧苗数量计算面积,小麦每667m 2可达到4万株,分蘖的数量为3~10株,分蘖完成后每667m 2达25万株,可以满足小麦种植的实际需求。  相似文献   

14.
通过对分种盘排种性能的单因素试验,确定了排种性能的主要影响因素;通过对分种盘排种性能的正交试验,明确了影响因素的主次顺序、优水平、最优组合以及试验因素的显著性水平;通过对分种盘排种性能的通用旋转组合试验,建立了排种性能指标与主要影响因素之间的数学模型,为进一步的参数优化奠定了基础。  相似文献   

15.
通过对分种盘排种性能的单因素试验,初步确定了排种性能的主要影响因素。为进一步验证所选因素对试验指标的影响程度,进行了分种盘排种性能的正交试验研究,通过对试验结果的极差和方差分析,得到了试验结果的最优组合,为分种盘结构参数设计和工作参数的选择提供了理论基础。  相似文献   

16.
倾斜圆盘勺式精密排种器清种过程分析与试验   总被引:8,自引:1,他引:8  
以排种器工作过程中种子的受力分析为基础。建立了排种器清种起始角和清种结束角的理论计算公式,分析了倾斜圆盘勺式精密排种器结构参数和工作参数对充种和清种性能的影响。通过试验确定了排种器对3种不同玉米种子的充种和清种极限速度。  相似文献   

17.
为了提高气送式高速玉米精量排种器的工作性能,设计了3种结构类型的导流涡轮,通过计算流体力学(Computational fluid dynamic, CFD)方法模拟仿真与理论分析得出,导流涡轮可有效提高排种器内部空气的流动性,增大外圈型孔处空气流速流量,增大压覆作用力,且具有较大迎风角和具备曲线结构的导流涡轮C具有较好的扰动性和导流性,效果最佳。为了获得安装有导流涡轮C排种器的最佳性能参数,以工作速度、种子喂入量和气送风压为试验因素,以合格指数、漏播指数和重播指数为试验指标进行三元二次回归正交旋转组合试验,并应用Design-Expert 8.0.6软件对试验数据进行多元回归分析和响应曲面分析,得到了各因素对指标的影响关系。采用多目标优化方法,确定最佳参数组合为:工作速度为9.8km/h、种子喂入量为1.8kg/min、气送风压为8kPa。此时,排种器合格指数最高,其性能指标为合格指数91.32%、漏播指数2.83%、重播指数5.85%。对优化结果进行对比验证试验,在相同条件下与未安装导流涡轮的排种器进行对比表明,安装导流涡轮可以有效提高排种器工作性能。  相似文献   

18.
大豆播种机偏置双圆盘气吸式排种器   总被引:10,自引:0,他引:10  
设计了一种大豆播种机偏置双圆盘气吸式排种器。通过分析偏置双圆盘气吸式排种器取种、排种作业原理,对其关键部件进行了设计、优化。以排种器播种吸盘转速、气流运动速度为试验因素,漏播率为试验指标分别进行单因素试验和二次通用旋转组合试验,运用Design-Expert软件得出回归曲面并建立数学模型,得出最佳因素组合为气流速度220 m/s、排种器播种吸盘转速100 r/min,此时漏播率为2.72%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号