首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The instantaneous variations of the hydraulic characteristics take place in centrifugal pumps during their start up, shutdown and other variable speed operations. In this paper, the variable speed method was proposed to simulate the transient internal flow field and the external performance of the pump during starting and stopping periods. [JP2]The terms of accelerations due to variable speeds in the flow governing equations were analyzed[JP] in a multiple reference of frame (MRF). A transient CFD simulation was performed for a typical centrifugal pump by using ANSYS CFX with the standard k ε turbulence model.[JP2]The entire simulation process was composed of four stages: start up, normal run, shutdown and post shutdown. The function of rotating speed with regard to time was set by CEL language directly into the impeller domain in the pre processor of the software to conduct variable speed simulation. The variations of the flow field in the centrifugal pump were obtained from the transient simulation. The change laws of flow rate, head and other performance parameters over time were also analyzed and summarized.  相似文献   

2.
In order to study the influence of gas-liquid two phase flow to a centrifugal pump perfor mance and internal flow patterns, the steady three dimensional flow with different gas volume fractions is simulated by applying the Reynolds average N-S equation and mixture gas-liquid two phase flow model, and the compressibility of gas is taken into consideration in the simulation. Then we emphatically analyzed the centrifugal pump characteristic and the gas distribution law in different gas volume fractions. The computational results show that gas volume fraction has a certain influence on the performance of the centrifugal pump, and the efficiency and head of the pump are on the decline with the increase of it. Static pressure in the impeller increases in the radial direction, but the pressure gradient in the flow direction is different under the different gas volume fractions. The gas volume is distributed mainly in the ipsilateral direction of impeller back shroud in the flow channel of the volute. On the suction side of the blade inlet there is an obvious low pressure area, which causes bubbles agglutination and higher gas volume fraction. With the gas entering passage flow, gas volume fraction in the suction decreases and the pressure surface rises gradually. Higher gas volume fraction causes air blocking phenomenon in the flow passage and the discharge capacity reduces. The increase of gas volume makes the turbulent motion within the impeller more and more intense, which leads to more and more energy loss.  相似文献   

3.
【Objective】The cavity width L, blade width b2 and the number of blades Z are the most important geometric parameters affecting the performance of vortex pump. This paper aims to present a method to optimize the vortex pump. 【Method】The study was based on approximate model and the non-dominated sorting genetic algorithm II (NSGA-II), in which the pump cavity length, blade width and the number of blades were calculated using the central composite design of DoE (design of experiment). The performance of the designed pump was examined using CFD, and the effect of L, b2 and Z on vortex pump efficiency and shear stress on the blade wall was calculated using the Kriging model. The NSGA-II was used to optimize the geometric parameters.【Result】The optimal parameters calculated from the methods were L=25 mm, Z=8, b2=26.45 mm.【Conclusion】We proved that CFD and NSGA-II can be used in a combination to calculate the optimal parameters of the vortex pump, and they can significantly improve efficiency of the pump and reduce the shear stress on the blade. Our results revealed that the optimization can reduce the width of the non-blade cavity by 16.67%, and increase the number of blades of the impeller and the outlet width of the blade by 1 and 25.95% respectively. At the design flow rate, the optimal design increased pump efficiency by 1.06% and reduced the average shear stress on the blade from 274.37 Pa to 204.57 Pa. The optimal design made the shear stress on the blade more uniform, in addition to reducing the shear stress on the outlet of the blade. © 2019 Authors. All rights reserved.  相似文献   

4.
The slurry pump is the key component of a dredger. Solid particles have strong influence on the performance of a slurry pump. The movement of solid particles in a centrifugal impeller was studied using particle image velocimetry (PIV) measurement. The experiments were conducted in a dredging pump model at Hohai University. Some transparent glass spheres with diameter of 02-04 mm were used as solid particles. The concentration and relative velocities of the particles were analyzed to investigate the particle trajectory. The results show that the concentration of the particles on the pressure surfaces of the blades is higher than on the suction surfaces, and the particles tend to move towards the suction surfaces. Moreover, the particles have faster relative velocities than the liquid phase through the flow channels of the impeller.  相似文献   

5.
Different guide vane structures will affect the flow inside the pump,and then affect the transformation of the pressure energy and kinetic energy,and change the velocity distribution of the pump outlet.In order to study the influence of long and short guide vanes on the water-jet pump,on the basis of conventional design,eight schemes of guide vane with different vertical heights were designed in the method of computational fluid dynamics for numerical calculation,the performance curve of water-jet pumps with different long and short guide vanes was obtained,and finally the influence of different guide vanes on hydraulic performance and internal flow was analyzed.The results show that all of schemes reducing the height of blade can improve the head and efficiency.In the schemes reducing the height on the shroud,the guide vanes that the height of the blade is equal to the height difference between hub and shroud in impeller have the highest head and efficiency.In all schemes decreasing the blade height,with the increase of the height difference,the velocity increases gradually and the distribution of turbulence kinetic energy becomes more reasonable in the guide vane outlet.The schemes reducing the height on the hub have more reasonable distribution of velocity and turbulence kinetic energy according to schemes reducing the height on the shroud.The guide vanes of long and short blades can be used to stagger the position of the diffusion flow generated by adjacent blades,which can reduce the effect of the velocity circulation and make the flow of the outlet position more stable.  相似文献   

6.
The submerged propeller is an efficient diving mix device,which is applicable for oxidation ditch treatment in industry,city and village wastewater-treatment plant. The impeller structure and reasonable rotating speed are important factors that determine flow field distribution and energy conversion efficiency. So it is necessary to use modern design methods to develop new kinds of high efficiency submerged propellers,and research the flow field characteristics of submerged propellers. On the basis of the existing form drawing,three-dimensional model of submerged propellers and unstructured tetrahedral mesh were generated. Based on Navier- Stokes equations and standard k- ε turbulence model,the flow was simulated by using a simple algorithm. Through changing some design parameters of propellers,the corresponding numerical simulation results reveal that for the same impeller diameter and service area of submerged propellers,the power consumption could be reduced effectively by optimizing blade mounting angle,which can determine the best blade mounting angle and most suitable rotational speed under given conditions. The study can provide theoretical and project guidance for submerged propellers design.  相似文献   

7.
The simplified flow of drilling process in the soil hardening or oil rig site was experimentally investigated. Two flow models were used in this study. One is the concentric cylinders with helical protrusion at the inner cylinder. The other is the concentric plain wall cylinders with axial flow. The ra dius ratio and aspect ratio of both models are the same with 065 and 48, respectively. The mud is the typical fluid seen in the soil hardening processes. We used not only the water and but also the mud for the working fluid in this study. We used the optical PIV for the water flow measurement and echo PIV for the mud flow. In case of the water study, the dominant vortical structures appeared in both the protrusion and plain model with axial flow. In case of mud flow, the vortices shown in the water model disappeared and the push and pull up motion by the protrusion is dominant. We believe this information can be useful to understand the flow physics of drilling process in the complex fluid flow.  相似文献   

8.
Electric submersible pumps were widely used in agricultural fields, petroleum and various other industries. The pressure pulsation caused fatigue failure due to vibration in electric submersible pump and affects the life and performance of its system. The objective of this study was to experimentally investigate the characteristics of pressure pulsation which were generated at various stages of a multistage electric submersible pump during closed valve operation at different speeds. An electric submersible pump with five stages was selected for conducting experiments. A variable frequency drive(VFD)was used to operate the electric submersible pump at five different speed settings from 40 to 60 Hz. Piezoresistive pressure transducers were mounted at each stage of the electric submersible pump to capture the unsteady pressure signals. At each speed setting, the electric submersible pump was operated at the shut-off condition and the signals of unsteady pressure from all the five stages were captured. A fast fourier transformation(FFT)was carried out on the pressure signals to convert into frequency domain. From the spectra of pressure pulsation signals, the characteristics of pressure pulsation are obtained for each stage and for various speed settings which are then used to understand its variation with speed and stages.  相似文献   

9.
Elbow-inlet passage is widely used in large drainage pumping stations.Flow uniformity at the exit section directly determines its hydraulic performance.Flow uniformity must be optimized to improve the operational efficiency of the large axial-flow pumping station.Modeling and numerical simulation methods were used to investigate the elbow-inlet passage,and the accuracy of the calculation results was verified.The key geometric parameters affecting the uniformity of the flow were optimized by the orthogonal experiment design.The optimal schemes were obtained and compared with the original scheme.The results show that flow uniformity V u after optimization is 95.41%,which is increased by 1.04%.The pumping station efficiency is increased by 1.89%,thereby confirming the applicability and accuracy of the proposed scheme,especially for the optimization of flow uniformity of the exit section of the elbow-inlet passage.  相似文献   

10.
A finite volume, multiphase solver in the framework of OpenFOAM is used to calculate the flow field of the cavitating flow over the Clark-Y hydrofoil. This solver uses Transport Based Equation Model (TEM) to solve the liquid volume fraction, and utilizes volume of fluid (VOF) technique to predict the interface between liquid and vapor phases. The simulation is designed to study the cavitation shedding and different fluid characteristics in the cloud cavitation regime when adopting two different Large Eddy Simulation (LES) models, namely, one equation eddy viscosity (oneEqEddy) model and Smagorinsky model. It is shown that these two models can be used to study the cavitation shedding dynamics and predict the velocity profiles.  相似文献   

11.
为研究平衡孔直径对离心泵叶轮进口流态的影响,在降速后的IS80-50-315型离心泵上,用平衡孔直径d分别为0,4,6,8,10 mm的同一个叶轮,对离心泵的扬程、效率和轴功率进行预测,研究泵在设计工况、不同平衡孔直径时叶轮进口处速度矢量和压力的分布情况,并监测叶轮进口处的压力脉动特性.结果表明:加大叶轮平衡孔直径,泵的扬程与效率下降、轴功率提高,且在小流量工况下泵扬程变化更为明显;随着平衡孔直径的增大,平衡孔内液体流速减小,对叶轮进口流体的冲击作用逐渐减弱,叶轮进口处压力变得均匀,在一定程度上改善了泵的抗汽蚀性能;随着平衡孔直径的增大,叶轮进口主流区的压力脉动幅值减小,在一定程度上稳定了压力脉动幅值的变化,改善了其不稳定特性;平衡孔直径增大时,叶轮进口区平均静压变化逐渐稳定.研究成果为离心泵叶轮平衡孔直径的选择提供了参考.  相似文献   

12.
为研究叶轮出口斜切对于离心泵驼峰性能的影响,选用离心泵(IS 65-50-174)作为研究对象,利用试验获得叶轮斜切前后的外特性,并利用SST k-ω模型进行非定常数值模拟以获得内流场以及压力脉动特性.试验结果表明,叶轮出口斜切后,可以消除原模型泵中的驼峰现象,并在小流量区域引起更高的耗功.对驼峰附近工况0.2,0.3,0.4倍设计流量下的内部流动进行分析,可以得到以下结论:随着流量的减小,原模型泵叶轮出口的低能量区,从前盖板转移到后盖板附近;而叶轮斜切之后,回流发生在叶轮后盖板附近,并随着流量的减小出口回流强度逐渐上升,进而形成较为稳定的性能曲线.对叶轮出口的压力脉动进行分析,发现斜切后低频脉动幅值减小,叶轮出口流动不稳定性有所下降.  相似文献   

13.
为了研究柱形轮毂型式循环水泵的水力及结构性能,采用CFD软件对循环水泵装置进行数值模拟和结构计算,将其与传统球形轮毂轴流泵的水力性能进行对比分析,并通过模型试验验证数据的可靠性.结果表明:轮毂型式的改变主要对叶轮的水力性能产生影响,对导叶和进出水流道的影响很小.在设计工况下,柱形循环水泵装置的扬程3.35 m,效率86.29%,最高效率86.69%;而球形轮毂轴流泵装置的扬程3.19 m,效率85.63%,最高效率85.74%.2种型式的泵装置扬程相差约0.16 m,效率相差约0.66%,性能差距较明显.柱形循环水泵的扬程在全工况下均大于球型轴流泵;循环水泵的效率曲线在设计流量和大流量下均显著高于轴流泵,在小流量下二者的效率曲线差别很小.循环水泵叶轮的最大应力出现在叶轮进口轮毂与叶轮连接区域,最大位移出现在叶片进口靠近轮缘的位置;随着流量的增大,叶片的最大应力和最大位移均逐渐减小.研究结果可以为轴流泵的叶轮设计和发展提供参考依据.  相似文献   

14.
为研究离心泵在小流量工况运行下性能及其内部流动特性,以型号为IS160-50-65的离心泵为研究对象,采用商用化软件Ansys CFX 12.0对模型离心泵的叶轮进口、叶轮流道以及蜗壳流道组成的全流场进行定常数值计算.同时,为了提高数值计算的准确性,考虑采用3种不同的网格数对模型离心泵的扬程进行网格无关性分析.且从离心泵的外特性及其内部流场分析了不同小流量工况下离心泵性能的变化规律.研究结果表明:与试验结果相比,设计工况下,扬程预测偏差为1.47%,效率预测偏差为3.61%;且随着流量降低,计算扬程的偏差值呈一定的下降趋势,计算效率的偏差值逐渐增大.另外,在设计工况下,离心泵的内部流动比较均匀;而在小流量工况下,离心泵进口管道及叶轮流道均出现回流现象,而回流引起的旋涡流有时甚至会堵塞叶轮流道;在极小流量Q/Qd=0.2时,回流区域已延伸至全部的进水管路中.  相似文献   

15.
进水流道设计是大型立式循环泵装置设计中的重要环节,为了解不同工况下叶轮对流道出口流场的影响,分别对考虑叶轮影响和不考虑叶轮影响下的进水流道内部流场进行计算和分析.研究发现不考虑叶轮影响下的进水流道内部流场特征几乎不受流量变化的影响,而考虑叶轮影响的进水流道情况则比较复杂.在小流量情况下,叶轮流场的进口回流效应会对进水流道出口流场产生显著影响.随着流量的降低,进水流道出口分析截面内的流速分布均匀度和流速加权吸人角两个指标逐渐降低,在0.4Q0流量时,截面外缘出现明显的圆周速度分量,其变化接近于涡核内的圆周速度曲线,并不断向叶轮上游流道扩展.  相似文献   

16.
为了研究环形引流喷射对立式自吸泵性能的影响,以350WFB-1200-50型立式自吸泵为研究对象,采用RNG k-ε湍流模型和Zwart空化模型对不同环形喷射孔比面积下的立式自吸泵进行全流场数值计算.结果表明:环形引流喷射可明显提升叶轮进口压力,能有效改善泵的空化性能;引流流量会使叶轮进口处速度增大,导致泵的必需空化余量NPSHR增大,使泵的空化性能有所恶化;两者的共同作用下,泵的空化性能呈先变好后变差的趋势;随着环形喷射孔比面积k的增大,压水室出口处的泄漏量增大,导致泵的容积损失增大;泄漏流使压水室出口处产生较多旋涡,且射流对叶轮进口流线产生排挤,对主流造成较大影响,使泵的扬程和效率呈下降趋势;当环形喷射孔比面积k=0.25时,泵的汽蚀余量最小,相比于原模型,泵汽蚀余量减小了23%,扬程下降了2.1%,效率下降了2.5%.研究结果可为立式自吸泵优化设计提供一定参考.  相似文献   

17.
叶轮出口环量非线性分布条件下混流泵性能研究   总被引:2,自引:0,他引:2  
为研究反问题设计中叶轮出口翼展方向环量非线性分布对混流泵外特性及内流场的影响,拓展混流泵优化设计空间,在试验验证数值模拟准确性的基础上,通过在叶轮出口翼展方向插入5个控制点控制环量分布的方法构建了17种不同环量分布形式;在其他设计参数不变的基础上使用反问题设计方法对其进行三维造型并使用商业软件CFX进行数值模拟,对其外特性及内部流场进行对比分析。结果表明:环量分布形式对设计工况与小流量工况叶轮效率影响较小,对大流量工况叶轮效率影响较大;在全工况范围内,环量分布形式对叶轮空化性能影响均较大;环量分布形式可显著改变叶轮内部流场,影响叶片不同叶高处的做功能力。  相似文献   

18.
斜流泵不稳定特性及旋转失速研究   总被引:3,自引:0,他引:3  
为研究斜流泵出现的鞍形曲线机理,利用数值模拟的方法对斜流泵进行了研究。通过定常数值模拟得到了鞍形曲线组成部分——扬程骤降段和随后扬程小幅上升段两部分机理。小流量下叶轮轮缘处存在流动分离,并且形成漩涡,导致叶轮出口有效外径的减小,是扬程骤降主要原因。流量继续下降,在叶轮出口靠近轮毂处出现一个大尺度的涡,由于漩涡阻塞作用,导致液流由轮毂向轮缘处偏移,使叶轮内部流态由斜流式转变为离心式,是扬程小幅上升的原因。为研究叶轮出口出现回流的原因,利用非定常数值模拟对导叶进行研究,发现导叶进口处存在失速是斜流式叶轮内部流态转变为离心式的主要原因。同时发现在小流量下导叶进口压力不均匀性是失速核沿圆周方向传播的主要原因。  相似文献   

19.
半开式旋涡泵采用新型的半开式叶轮,为研究其空化特性,采用基于雷诺时均方程和RNGk-ε湍流模型的单相模型对其内部流场进行数值模拟,得到了叶片表面速度和压力的分布规律,半开式旋涡泵的叶片根部是发生空化的危险区域.在对空化监测方法进行总结分析的基础上,针对半开式旋涡泵的具体特点,选择能量和噪声结合的方法进行了试验研究,结果表明,半开式旋涡泵工作性能稳定,半开式叶轮改善了旋涡泵的空化性能.在同等条件下半开式旋涡泵比闭式旋涡泵的性能有较大改善,对深入研究半开式旋涡泵的理论计算和设计提供了依据.  相似文献   

20.
离心泵叶片泥沙磨损是引黄泵站面临的工程难题,采用模型试验及数值模拟相结合的方法,分析了双吸式离心泵叶片出口的磨损破坏规律及其形成机制。采用多层涂层法、丝线法和内窥式成像技术对叶片的磨损特征和近壁面流态进行了分析,并结合数值模拟分析了叶轮流道内的旋涡结构及颗粒轨迹。研究发现:叶片吸力面出口存在左右近似对称的“三角形”磨损破坏区域,该区域存在明显的流动分离;叶轮内的叶道涡和出口回流涡是导致叶片吸力面出口磨损的主要原因。源于叶片压力面进口的叶道涡诱导泥沙颗粒向叶片吸力面出口聚集,造成吸力面出口的集中磨损;叶片吸力面出口附近存在的回流涡诱导颗粒进行轴向旋转运动,加剧叶片吸力面出口的磨损破坏。本研究为双吸式离心泵的抗磨损设计提供了理论支撑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号