首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research investigates applying zinc oxide nanoparticles to polypropylene nonwoven fabrics via electrospinning for the development of UV-protective materials. Layered fabric systems with electrospun zinc oxide nanocomposite fiber webs were developed at various concentrations of zinc oxide in a range of web area densities. The effects of zinc oxide concentration and web area density on the UV-protective properties of layered fabric systems were examined. Air and moisture vapor transport properties of layered fabric systems were assessed to examine the effect of electrospun web layers on thermal comfort properties of the material. A very thin layer of electrospun zinc oxide nanocomposite fibers significantly increased the UV blocking for both UV-A and UV-B ranges, and exhibited an ultraviolet protection factor (UPF) of greater than 40, indicating excellent UV protection. UV-protective properties of layered fabric systems increased with increasing zinc oxide concentrations of the nanocomposite fiber web. Increasing the electrospun web area density of the zinc oxide nanocomposite fiber web also enhanced UV-protective properties of layered fabric systems. Air and moisture vapor transport properties of layered fabric systems decreased as the electrospun web area density increased for the range of web area densities examined.  相似文献   

2.
To develop waterproof breathable materials for diverse consumer applications, we used electrospinning to fabricate layered fabric systems with varying composite structures. Specifically, we developed layered fabric structures based on electrospun nanofiber webs with different levels of nanofiber web density, as well as different substrates and layer structures, and then examined the breathability and waterproofness of the material. The breathability and waterproofness of the layered fabric systems were compared with those of traditional waterproof breathable fabrics, including densely woven fabric, microporous membrane laminated fabric, and hydrophilic nonporous polyurethane coated fabric. Different breathability and barrier performance levels were achieved by varying the layer structure and substrates in the electrospun nanofiber web layered fabric systems. The uniformity of the nanofiber web and lamination process also affected the barrier and comfort performances. The comparison of waterproofness and breathability performances between the new materials and the traditional waterproof breathable materials revealed that the layered structures based on electrospun nanofiber webs provide a higher level of resistance to water penetration than densely woven fabrics and a higher degree of moisture vapor and air permeability than microporous membrane laminates and coated fabrics, with a proper selection of layer structure, substrate fabric, and lamination process.  相似文献   

3.
Electrospun web may possibly be widely applied to protective garments or specialty textiles due to its high level of protection as well as comfort. Of particular interest in this study is to develop waterproof-breathable fabric by applying electrospun web of polyurethane directly onto the substrate fabric. The optimal electrospinning condition was examined with regards to the concentration, applied voltage and tip-to-collector distance. Solvent-electospinning of polyurethane was performed at the optimum condition, using N,N-dimethylacetamide as solvent. The thickness of 0.02 mm of electrospun web was applied onto the polyester/nylon blended fabric. For comparison, the polyester/nylon fabrics were coated with 0.02 mm thickness of polyurethane resin membranes adopting four different conditions. The electrospun PU web/fabric was compared to resin coated fabrics in terms of water-proof and breathable properties. The electrospun web applied fabric showed higher air permeability, vapor transmission, and thermal insulation properties than resin coated fabrics, which can be translated as greater comfort sensation of electrospun applied fabrics. However, water resistance value of electrospun web applied fabric did not reach that of resin coated fabrics.  相似文献   

4.
Thermal protection of firefighter protective clothing is greatly influenced by the air gap entrapped and moisture in clothing. In this paper, the effects of air gap size and position on thermal protective performance exposed to 84 kW/m2 heat source were investigated. Water was also added to thermal liner to understand the effect of air gap coupled with moisture on thermal protection. It was indicated that the TPP of fabrics system increased with the air gap size. The air gap position also greatly influenced the heat transfer during exposure to flash fire. Moisture added weakened the positive effect of air gap size when the air gap exists far from heat source, and almost eliminated the favorable effect of air gap position. However, when there is no air gap or small air gap between outer shell fabric and moisture barrier, moisture increased the thermal protection performance of multilayer fabrics system. The results obtained suggested that certain air gap entrapped in fabrics system and clothing microclimate could improve thermal protection, and the complicated effect of moisture should also be considered.  相似文献   

5.
Waterproof breathable layered fabrics allow water vapor passing through, but resist liquid water to pass. This ability of the fabrics to protect rain and snow water while allowing sweat vapor to evaporate from inside to outside atmosphere, leads them to be used as outdoor sportswear or protective clothing. The big challenge of enhanced hydrostatic resistance of these fabrics with proper breathability and thermal comfort has widened the research scope. This study presents an experimental investigation on hydrostatic resistance and thermal behavior of layered waterproof breathable fabrics. Six different types of hydrophobic and hydrophilic membrane laminated layered fabrics were evaluated by varying different fabric parameters in the experiment. Hydrostatic resistance and water vapor permeability of the laminated fabrics were measured by SDL ATLAS Hydrostatic Head Tester and PERMETEST respectively. Thermal properties were evaluated by ALAMBETA instrument. Moreover, FX-3300 air permeability tester was used to measure air permeability which represents the porosity of the fabrics and computer based See System software was used for water contact angle measurement on the outer fabric surface in order to determine the hydrophobic and hydrophilic properties. This experiment clearly discusses the influence of different fabric characteristics and parameters on hydrostatic resistance and thermal properties of the breathable laminated fabrics. The results show that fabric material composition, density, thickness, and hydrophobic and hydrophilic membranes have significant effects on hydrostatic resistance, breathability and thermal properties of different laminated fabrics.  相似文献   

6.
This work deals with the study of acoustic performance of struto nonwovens and their relation to fabric air permeability. In order to achieve the objective of the research, sound absorption coefficient of struto nonwovens was determined via impedance tube method, the average value of sound absorption coefficient (α?) was calculated. Air permeability of struto nonwovens was examined by using FX3300 Textech Air Permeability Tester. Results showed that struto nonwoven exhibited good absorption ability at frequency bands 3000-6400 Hz while it was ineffective for frequency lower than 3000 Hz. Struto nonwovens with high GSM and fabric thickness showed better acoustic performance and lower air permeability. It was observed that α? was inversely proportional to air permeability, with correlation coefficient 0.95. It was concluded that air permeability can be used as a criterion of sound absorption behavior of struto nonwovens. A lower air permeability suggests a better sound absorption performance for struto nonwoven fabrics.  相似文献   

7.
Three layered clothing assemblies were constructed from commercial heat protective textile clothing materials for outer, middle and inner layers. Thermal liners, used as middle layer, were prepared from Nomex fibres of two different fineness keeping other parameters constant. Different three layered combinations of fabrics were compared for radiant heat protective performance based on the estimate of burn injury time using Stoll’s curve. Analysis of experimental results showed that characteristics of the outer layer fabric and its interaction with applied heat flux are important factors that affect thermal response of the clothing assemblies. Fineness of the constituent fibres of nonwoven thermal liner was found to significantly affect the protective performance. Thermal properties, porosity, optical properties of the clothing layers found to affect heat protection provided by clothing assembly.  相似文献   

8.
Comfort is one of the most important aspects of clothing. Thermal comfort is related to fabric’s ability to maintain skin temperature and allow transfer of perspiration produced from the body. Properties like thermal resistance, air permeability, water vapor permeability, and liquid water permeability are suggested as critical for thermal comfort of clothed body. In this study the fabrics developed from the EliTe compact yarns are compared with the fabrics made from normal yarns. The thickness of the fabrics made from EliTe® compact yarns is also slightly less than the fabrics made from normal yarns. Fabrics made from EliTe® compact yarns have shown greater air permeability as compared to the fabrics made from normal yarns. It is observed that, thermal resistivity values of the fabrics developed from EliTe® compact yarns are lower than the fabrics made from normal yarns indicating they are cooler fabrics compared to normal fabrics. Fabrics developed from the EliTe® compact yarns have shown slightly higher values of MVTR (moisture vapor transmission rate) as compared to the fabrics made from the normal yarns. The wicking characteristic of fabrics developed from EliTe® compact yarns was slightly higher than the fabrics developed from normal yarns.  相似文献   

9.
Moisture management behavior is a vital factor in evaluating thermal and physiological comfort of functional textiles. This research work studies functional 3 dimensional (3D) warp knitted spacer fabrics containing high-wicking materials characterized by their profiled cross section. These spacer fabrics can be used for protective vest to absorb a user’s sweat, to reduce the humidity and improve user’s thermal comfort. For this reason, different 3D warp knitted spacer fabrics were produced with functional fiber yarns in the back layer of the fabric (close to the body) and polyester in the front and middle layers (outer surface). Comfort properties such as air and water vapor permeability and wicking and other moisture management properties (MMP) of different fabric samples were measured. It is demonstrated that by using profiled fibers such as Coolmax fiber, moisture management properties of spacer fabrics can be improved, enabling them to be use as a snug-fitting shirt worn under protective vests with improved comfort.  相似文献   

10.
The properties of moisture transfer and the comfort of mesh-structured fabrics with various knit compositions and properties were investigated. The comfort effects of the double knitted fabrics combined with different cross-shaped fibers composed of dyeable-polypropylene (PPd) and regular polyester (PET) double-knitted fabrics were studied. A series of PET, PPd, Coolmax® (Cm) with single knitted fabrics and PPd/Cm with double knitted fabrics were evaluated to determine the physical properties and wearing performance for comfortable clothing. To compare the structural properties involving the vapor transfer of 4 types of fabrics with different fiber compositions, fiber types, weights, and thicknesses, the surface structure and pore characteristics were evaluated by scanning electron microscopy and a capillary flow porometer. The properties of moisture transfer were tested using vertical wicking and gravimetric absorbent testing system (GATS). In addition, the comfort performance measured by the thermal insulation value (Rt) and moisture permeability index (im) with a thermal manikin in a conditioned walk-in environmental test chamber was predicted. The result showed that the PPd/Cm sample has potential applications as good comfort fabric materials.  相似文献   

11.
It’s urgent to investigate moisture effect on thermal protection of thermal protective clothing in simulated fire scene as accurately as possible. The current bench top tests can’t evaluate thermal protective performance (TPP) of fabrics under microclimate with high temperature and relative humidity (RH). In this paper, to well investigate effect of different RH under microclimate on thermal protective performance of flame-retardant fabrics exposed to flashover, a new modified TPP testing apparatus was developed. It consisted of a typical TPP tester and RH adjustable microclimate chamber. Three kinds of air gaps under fabrics were also employed to simulate different spaces between skin and clothing. The results showed that the temperature increment under microclimate of 35 % RH was highest, and that of 95 % RH was lowest. There was significant temperature difference found among above three adjusted environment. Time required of temperature rise to 12 oC highly prolonged as RH became higher. It could be deduced that the effect of RH on heat transfer became significant as air gap increasing; if the air gap width still increased, the moisture effect diminished. The newly developed testing apparatus could be well used to evaluate the moisture effect on thermal protective performance of flame-resistant fabrics.  相似文献   

12.
The effect of dynamic change of air gap between protective clothing and skin caused by continuous human body motion on thermal protective performance of protective fabric cannot be simulated in current bench-top test. In this study, a newly modified TPP test apparatus with a dynamic air gap manufacturing system was applied to investigate the effect of body motion on heat transfer of fabrics exposed to flash fires. Three different velocities of body motion were simulated respectively. The results indicated that the dynamic air gap with variation range of 0–25 mm significantly improved thermal protection of fabric comparing with no air gap, but approximated to static air gap of 6.4 mm width for different heat transfer modes. It was manifested that thermal protection had no linear relationship with the air gap width variation frequency due to convection heat in microclimate, and the TPP values was shown as 0.5 rps < 0.25 rps, 0.5 rps < 1 rps and uncertain for 0.25 rps with 1 rps. The amplitude of simulate epidermis surface temperature fluctuation had a negative correlation with air gap variation frequency. Most of the temperature curves rose smoothly along with periodical variation, only the temperature fluctuation of 0.25 rps could be observed in a variation cycle.  相似文献   

13.
The fabric used for intimate apparel is widely required to have excellent antibacterial and comfort performances. In order to improve its antibacterial ability, this paper studied chitosan-silver finishing on the cotton knitted fabric. The study indicates that the chitosan-silver attached to the fabric exhibits excellent antibacterial action against the typical bacteria of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureu). The anti-bacterial mechanism of chitosan-silver against E. coli and S. aureu were investigated. To guarantee its prominent comfort performance, measurements were made on the finished fabric of its air permeability, water vapor transmission, hydrophily, surface friction and bending ability against the control fabric, which is currently used for intimate apparel. The antibacterial and comfort performances were compared between the tested fabrics. The results show that the air permeability and the hydrophily of the finished cotton fabric are significantly better than the control one, while the water vapor transmission, the surface friction and the adjustable rate remain similar to each other. The bending rigidity of the finished fabric is slightly better due to the attachment of chitosan within accepted threshold. The dual compounding theory of chitosan-silver proves to be useful for a higher synergistic effect of anti-bacteria, lower whiteness degradation and overall optimization of comfort performance. This dual compounding theory of chitosan-silver is valuable for improving antibacterial and comfort performances of intimate apparel.  相似文献   

14.
A novel antibacterial agent polysulfopropylbetaine (PSPB) bearing carboxyl groups was synthesized and its application on cotton fabric to provide durable antibacterial property was also presented. The successful synthesis of PSPB and its immobilization onto the cotton fabric surface were verified by a series of tests including FTIR, 1H NMR, XPS and SEM. Viable cell counting method was employed to investigate antibacterial properties of the finished cotton fabrics. It was found that the cotton fabrics treated with PSPB were endowed with desirable antibacterial activity against both gram-negative bacteria Esherichia coli (E.coli, AATCC 6538) and gram-positive bacteria Staphylococcus aureus (S.aureus, AATCC 25922), with the bacterisotatic rates of 99.69 % and 99.95 %, respectively. Notably, the bacterial reduction rates still maintained over 90 % against both bacteria even after 50 consecutive laundering cycles. Moreover, tests concerning the hydrophilicity, air permeability, water vapor transmission, mechanical properties as well as thermal properties were carried out systematically. The experimental results indicated the hydrophilic performance, air permeability and moisture penetrability of the cotton fabrics finished with PSPB were improved greatly in spite of a slight reduction in thermal performance and little obvious influence on mechanical performance. The antibacterial cotton fabric has the potential to be applied in sportswear, underwear, household textiles, medical fields and much more.  相似文献   

15.
Little work has been done in the past on how clothing thermal and moisture transport properties affect human comfort sensations during different periods of an exercise. In this work, by correlating the thermal and moisture transport properties of T-shirt fabrics and garments with the comfort sensations during different stages of exercises, we found that thickness, thermal insulation and warm/cool feeling of the T-shirt fabrics are important to warmth sensation, skin wetness sensation and overall comfort throughout the entire period of exercise and immediately after the exercise. Water vapor transmission properties of T-shirt fabrics or garments are not important to comfort sensations at the start of the exercise, but become an important factor to comfort sensations in the middle of the exercise up to the resting period after the running exercise, probably due to the fact that sweating occurs during these periods. Fabric water absorption and air permeability are not significant factors at the start and during the exercise, but are important after exercise, probably because these properties determine how quickly the skin can be dried after sweating.  相似文献   

16.
The purpose of the research is to investigate the fabric structure (with gripping yarns) in influencing ballistic performance aiming to improve the ballistic performance of the currently used body armour materials. Thirteen different fabrics having gripping yarn were designed along fabric warp and/or weft directions. Their ballistic performance in terms of energy absorption has been studied and comparisons made among the single layered fabrics and between the two double layered fabrics, as well as to the conventional used a plain woven fabric for both cases. It was found that fabrics with gripping yarns have improved fabric ballistic performance. The inter-jointed two-layer fabric performed better than the un-jointed two-layer fabric, and it showed a 16.6 % increase in the energy absorption. The implication of the research is that body armour can be made lighter without reducing ballistic impact performance by using gripping yarns.  相似文献   

17.
In this study, Polylactic Acid (PLA) nonwoven fabric and thermoplastic polyurethane (TPU) honeycomb air cushion (TPU-HAC) were employed to form an impact resistant layer for functional knee pads. PLA nonwoven fabric has low manufacture cost and flexibility of the honeycomb air cushion improved the quality of functional knee pad sold in the market. This study focused on the strength of PLA nonwovens and the impact resistance of TPU honeycomb air pads. The PLA fibers and low-melting-point (low-Tm) PLA fibers are used as raw materials to fabricate PLA nonwoven fabric. The PLA fibers and low-melting-point PLA fibers were mixed at weight ratios of 10, 20, 30, 40, and 50 %. PLA nonwoven fabric and TPU-HAC materials were combined in a sandwich structure to protect against impact. Impact resistance was evaluated using a falling-weight impact-resistance machine. Experimental findings indicate that changing various layers can improve the impact resistance of the sandwich structure of the TPU-HAC materials. A TPU-HAC layer with a thickness of 2/8/10 mm optimized the impact resistance. In 25 J falling-weight impact test, the TPU-HAC layer 2/8/10 mm provides an impact resistance of 2932 N; the PLA/TPU-HAC composite had the best impact resistance; 2516 N. PLA nonwoven fabric had the best mechanical properties with low-Tm PLA fibers at 30 % weight. The impact resistance achieved using above combination of materials met the level 2, range 3 impact values mentioned in EN 14120 standards.  相似文献   

18.
Nowadays, the use of nonwovens as absorbent products is increasing. One of the most important methods for the nonwoven production is spunlace. This research evaluates the effect of spunlace nonwoven structures in wicking, water retention, water vapor permeability and porosity structural parameter of nonwoven. Carded webs from polyester fibers and viscous fibers of four different basis weights (35, 40, 45, and 50 g/m2) were hydroentangled using three different water jet pressures (50, 60, and 70 bar). To study the effect of these variables on the structure of nonwovens and absorbency related properties, sample’s characteristics such as thickness and mass density were measured. An electrical resistance technique was used to study the liquid penetration into nonwovens. The results showed that with increasing water jet pressure, mass density increased and other parameters like thickness, water retention, water vapor permeability and capillary pore size decreased. Also, it was observed with increasing basis weight, the sample thickness increased. On the other hand, with increasing weight, the amount of water retention, water vapor permeability and porosity structural parameter of nonwoven were reduced. The wicking characteristic of nonwovens using the least jet pressure and weight was the best of all the samples.  相似文献   

19.
The melt-blowing technique is usually used for thermoplastic resins, not for non-thermoplastic materials. In this study, nonwoven fabric was successfully obtained by a cellulose solution through melt-blowing technique. The solution was prepared by a twin-screw extruder after mixing cellulose pulp with 1-Allyl-3-methylimidazolium Chloride ([AMIM]Cl). Nonwoven fabric exhibited typical characteristics of those from melt-blown thermoplastic resins. Some aspects of meltblowing process are discussed, such as cellulose concentration, temperature of extrusion die and hot air pressure. In experimental range, to obtain nonwoven web, cellulose concentration was below 15 wt%. Temperature of extrusion die and hot air pressure had great influence on the fabric. With the increasing of temperature of extrusion die and hot air pressure, the fiber changed thin and the fiber web became better, while the fiber diameter became thicker after increasing the cellulose concentration. Elevating the temperature of extrusion die, the degree of polymerization decreased, and the quality of the fiber webs declined.  相似文献   

20.
Fabric porosity is the result of fabric constructional parameters combination and used technology of nonwoven production. The effects of fabric porosity structure, as well as the content of hydrophilic viscose and hydrophobic polyester fibres in the web mixture, on the vertical wicking rate by nonwoven fabrics have been explored in this research. Fibrous webs with a different content of viscose and polyester fibres, with the web volume mass range of 0.019-0.035 g/cm3 were utilized during this study. The samples were produced using a dry-laid method of web forming and two methods of web bonding, e.g. needle punching and calendar bonding. Results show that higher volume porosity gives higher vertical wicking rate by all groups of tested samples regarding the content of used hydrophilic/hydrophobic fibres and that fluid flow is faster in samples with larger pores. The higher content of viscose fibres improve the vertical wicking rate, but better rising height can be achieved at samples made from 100 % of coarser polyester fibres. A prediction model of vertical wicking rate of viscose/ polyester nonwovens was developed on the basis of the fundamental constructional parameters of nonwoven fabrics (fibre fineness, type of raw material, and web density) and a non-deterministic modelling method, e.g. genetic algorithms, which can serve as a useful tool for fabric engineers by developing a nonwoven fabric in order to fit desired wicking rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号