首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Trichoderma viride was proved as an effective biocontrol agent against two fungal pathogens, Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes, infecting soybean. During an in vitro biocontrol test, Trichoderma showed mycoparasitism and destructive control against the tested fungal pathogens. Both the pathogens significantly influence the germination and P. arrhenomanes had a severe effect (only 5% germination). The root system of the soybean plant was poorly developed due to the infection and it exerted a negative influence on the nodulation and further growth phases of the plant. During pot assay along with biocontrol activity, Trichoderma showed growth promoting action on the soybean plant. Trichoderma enhanced growth of shoot and root systems and fruit yield after 12 weeks of growth. Pythium and Fusarium infected plants treated with Trichoderma had ∼194% and 141% more height than pathogens alone. The fruit yield treated with Trichoderma was ∼66 per plant whereas the yield was only 41 for a control plant. The plants infected with Pythium and Fusarium and treated with Trichoderma had fruit yields of 43 and 53 respectively and those were 5 and 1.6 times higher than plants infected with pathogens.  相似文献   

2.
The efficacy of Hanseniaspora uvarum against gray mold by adding ammonium molybdate (NH4–Mo) and the mode of actions were evaluated. The results showed that H. uvarum at 1 × 106 CFU ml−1 plus 1 mmol l−1 NH4–Mo greatly reduced gray mold in grape fruits. NH4–Mo at concentrations of 1, 5, 10 and 15 mmol l−1 significantly inhibited spore germination and mycelium growth of Botrytis cinerea. Population growth of H. uvarum was markedly inhibited by NH4–Mo at 5 mmol l−1in vitro and not affected by addition of NH4–Mo at 1 and 5 mmol l−1 in wounds combination of NH4–Mo and H. uvarum induced higher activities of peroxidase (POD), polyphenoloxidase (PPO), phenylalanine ammonialyase (PAL), superoxide dismutase (SOD), catalase (CAT) and β-1,3-Glucanase than individual application of H. uvarum or NH4–Mo. The enhancement of disease control may be directly because of the inhibitory effects of NH4–Mo on spore germination and mycelial growth of B. cinerea in vitro, and indirectly because of the induced defense reactions by NH4–Mo in grape berries.  相似文献   

3.
Mycorrhizal associations imply a remarkable reprogramming of functions in both plant and fungal symbionts. This consequent alteration on plant physiology has a clear impact on the plant responses to biotic stress management. As a consequence, a pot experiment was conducted to study the interactions between the arbuscular mycorrhizal fungus (AMF) Glomus fasciculatum and the two pathogens Fusarium oxysporum and Colletotrichum gloeosporioides and subsequent effect on growth, disease tolerance and the changes in antioxidative ability in cyclamen plants under growth chamber condition were investigated. At plant maturity, inoculation with F. oxysporum and C. gloeosporioides, responsible for Fusarium wilt and anthracnose of cyclamen respectively, significantly reduced shoot and root dry weights, increased both the disease incidence percentage and showed lower antioxidative activity viz. superoxide dismutase (SOD), ascorbate peroxidase (APX), ascorbic acid (AA) and polyphenol contents in plants. In contrast, the growth response and biomass production of cyclamen plants inoculated with AMF was significantly higher than the nonmycorrhizal control plants, both in the presence and absence of the pathogens. Mycorrhization enhanced plants to reduce the Fusarium wilt and anthracnose incidence compared to nonmycorrhizal controls. In every case, without and with pathogen association, plants inoculated with AMF increased the antioxidant (SOD, APX, AA and polyphenol) production compared to control plants. The results demonstrate that AMF have the ability to induce resistance against Fusarium wilt and anthracnose in cyclamen by increasing the antioxidative activity in plants, which promoted plant growth, biomass production and drastically reduced the disease incidence in cyclamen.  相似文献   

4.
Bioconverted eicosapentaenoic acid (bEPA), obtained from Pseudomonas aeruginosa PR3, was assessed for its in vitro and in vivo anti-fungal potential. Mycelial growth inhibition of the tested plant pathogens (Rhizoctonia solani, Botrytis cinerea, Fusarium oxysporum, Fusarium solani, Phyptophthora capsici, Sclerotinia sclerotiorum and Colletotrichum capsici) was measured in vitro. bEPA at the concentration of 5 μl/ml inhibited 52–60% fungal mycelial growth for all of the plant pathogens in vitro except S. sclerotiorum. Minimum inhibitory concentrations (MICs) of bEPA were found in the range of 250–500 μg/ml. Also, bEPA had a detrimental effect on spore germination for all the tested plant pathogens. Three plant pathogenic fungi (F. oxysporum, P. capsici and C. capsici) were subjected to an in vivo anti-fungal screening. bEPA at the initial concentration of 3000 μg/ml had a 100% anti-fungal effect against all of the tested plant pathogens. Concentrations of bEPA corresponding to 1500, 500 and 300 μg/ml were applied to the plants and revealed promising anti-fungal effects, supporting bEPA as a potential anti-fungal agent.  相似文献   

5.
The antifungal activity of acetone, methanol, hexane and dichloromethane leaf extracts of six plant species (Bucida buceras, Breonadia salicina, Harpephyllum caffrum, Olinia ventosa, Vangueria infausta and Xylotheca kraussiana) were evaluated for antifungal activity against seven plant pathogenic fungal species (Aspergillus niger, Aspergillus parasiticus, Colletotricum gloeosporioides, Penicillium janthinellum, Penicillium expansum, Trichoderma harzianum and Fusarium oxysporum). These plant species were selected from 600 evaluated inter alia, against two animal fungal pathogens. All plant extracts were active against the selected plant pathogenic fungi. Of the six plant species, B. buceras had the best antifungal activity against four of the fungi, with minimum inhibitory concentration (MIC) values as low as 0.02 mg/ml and 0.08 mg/ml against P. expansum, P. janthinellum, T. harzianum and F. oxysporum. Some of the plant extracts had moderate to low activity against other fungi, indicating that the activity is not based on a general metabolic toxicity. P. janthinellum, T. harzianum and F. oxysporum were the most sensitive fungal species, with a mean MIC of 0.28 mg/ml, while the remaining four fungi were more resistant to the extracts tested, with mean MICs above 1 mg/ml. The number of active compounds in the plant extracts was determined using bioautography with the listed plant pathogens. No active compounds were observed in some plant extracts with good antifungal activity as a mixture against the fungal plant pathogens, indicating possible synergism between the separated metabolites, B. salicina and O. ventosa were the most promising plant species, with at least three antifungal compounds. Leaf extracts of different plant species using different methods (acetone, hexane, DCM and methanol) had antifungal compounds with the same Rf values. The same compounds may be responsible for activity in extracts of different plant species. Based on the antifungal activity, crude plant extracts may be a cost effective way of protecting crops against fungal pathogens. Because plant extracts contain several antifungal compounds, the development of resistant pathogens may be delayed.  相似文献   

6.
Tea gray blight, caused by the fungus Pestalotiopsis theae, is one of the most destructive diseases in tea plants. In this study, we evaluated the individual and synergistic antifungal activities of tea saponin (TS) and mancozeb against P. theae, as well as the mechanisms underlying their activity. The results indicated that TS significantly inhibited both the mycelial growth of P. theae, at an EC50 value of 1.03 mg mL−1, and its spore germination, at an EC50 value of 3.68 mg mL−1. TS also significantly enhanced the antifungal activity of mancozeb, and the cotoxicity factor (CTF) assays revealed that there was a synergistic interaction between TP and mancozeb (3:7) against mycelial growth and spore germination, with CTC values exceeding 100. Our results also revealed that TS and mancozeb treatments damaged the cell membranes of P. theae, leading to a significant leakage of soluble protein, reduction of sugar and induction of a significant increase of chitinase activity in the mycelial cells; the combination treatment significantly enhanced the observed damage, leakage and induction. These findings suggested that TS had antifungal activity and a synergistic effect with mancozeb and that the mechanism of this activity might be membrane damage and the consequent cytoplasm leakage.  相似文献   

7.
Biological control agents offer one of the best alternatives to reduce the use of pesticides. This investigation studied the tolerance to fungicides and integrated use of the potential biocontrol agent Streptomyces sp. A6 for control of Fusarium wilt of pigeon pea, Cajanus cajan. Streptomyces sp. A6 exhibited strong tolerance towards most of the fungicides used in the study at concentrations higher than those recommended for field applications. The isolate showed enhanced growth and mycolytic enzyme production in the presence of sulphur, mancozeb, carbendazim, fosetyl aluminium and triadimefon. The fungicides mancozeb, sulphur and carbendazim were selected for further studies. Effective concentrations (EC50 values) of the test fungicides that reduced Fusarium spore germination and fungal biomass by 50% were determined. Similarly, the EC50 for inhibiting fungal spore germination and reducing fungal biomass to 50% by Streptomyces sp. A6 and culture filtrate (CF) were also determined. Combining the EC50 dose of the culture and CF with test fungicides was found to be more effective for controlling Fusarium infection in C. cajan compared to the sum of the effects of the individual treatments. Such combined use of biocontrol agent with fungicides can reduce the dosage of toxic fungicides in agricultural fields, thereby reducing environmental risks. Tolerance and synergistic interaction of Streptomyces sp. A6 with frequently used fungicides suggested its potential in integrated pest management. To the best our knowledge, this is the first extensive study on integrated use of Streptomyces species with fungicides.  相似文献   

8.
Potassium phosphite (Phi) was evaluated for its in vitro activity against Penicillium expansum and for its potential long-term efficacy against postharvest blue mold infections on apple fruit. Phi amended to malt extract agar medium at 2 and 4 mg/ml completely inhibited mycelial growth and conidial germination, respectively. Conidia of P. expansum suspended for 3 min in a solution of 2 mg/ml Phi at 20 °C or heated to 50 °C germinated at 53 and 0%, respectively. Disease incidence of P. expansum on Elstar apples wounded and inoculated with a thiabendazole-resistant isolate was reduced significantly (P = 0.01) following a curative treatment with Phi at 2 mg/ml. When applied on freshly harvested unwounded Elstar apples, Phi (2 mg/ml) reduced blue mold incidence about three-fold compared to the control and was found to be as effective as thiabendazole against natural blue mold infections after six months of storage at 2 °C. Our results suggest that potassium phosphite has a potential to be part of the general management program implemented for the control of postharvest blue mold infections on pome fruits.  相似文献   

9.
Summary The influence of freeze dried potato powder derived from tubers (cvs Désirée and Epicure) exposed to light as a culture medium on the growth, number and spore size of nine fungal pathogens was determined in vitro with particular emphasis on the role of glycoalkaloids. Greater reductions in pathogen growth reflected increased exposure to light of tubers prior to freeze drying. High correlations (% R2 adj) were obtained between glycoalkaloid concentration and growth rate of the majority of pathogens tested. Where spores were produced, numbers were in general significantly less when cultured on freeze dried powder derived from tubers exposed to light. No effects on spore size ofFusarium species were recorded, but spore length of remaining pathogens was reduced and spore width increased, with the exception ofC. coccodes where spore length and width was increased following culture onto freeze dried powder derived from tubers exposed to light.  相似文献   

10.
Fusarium wilt of banana (also known as Panama disease), is a severe fungal disease caused by soil-borne Fusarium oxysporum f. sp. cubense (Foc). In recent years, biocontrol strategies using antifungal microorganisms from various niches and their related bioactive compounds have been used to prevent and control Panama disease. Here, a thermotolerant marine strain S185 was identified as Bacillus amyloliquefaciens, displaying strong antifungal activity against Foc. The strain S185 possesses multiple plant growth-promoting (PGP) and biocontrol utility properties, such as producing indole acetic acid (IAA) and ammonia, assimilating various carbon sources, tolerating pH of 4 to 9, temperature of 20 to 50 °C, and salt stress of 1 to 5%. Inoculation of S185 colonized the banana plants effectively and was mainly located in leaf and root tissues. To further investigate the antifungal components, compounds were extracted, fractionated, and purified. One compound, inhibiting Foc with minimum inhibitory concentrations (MICs) of 25 μg/disk, was identified as iturin A5 by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and nuclear magnetic resonance (NMR). The isolated iturin, A5, resulted in severe morphological changes during spore germination and hyphae growth of Foc. These results specify that B. amyloliquefaciens S185 plays a key role in preventing the Foc pathogen by producing the antifungal compound iturin A5, and possesses potential as a cost-effective and sustainable biocontrol strain for Panama disease in the future. This is the first report of isolation of the antifungal compound iturin A5 from thermotolerant marine B. amyloliquefaciens S185.  相似文献   

11.
The effect of chitosan treatment alone or in combination with methyl jasmonate (MeJA) against Alternaria alternata in vitro and in vivo, and defense related enzyme activities were investigated. 100–500 μl/l MeJA significantly inhibited mycelial growth of A. alternata. The inhibitory activity of MeJA on mycelial growth, spore production, spore germination and germ tube length of A. alternata in vitro could be enhanced by 0.1% chitosan. The combination of 0.1% chitosan and 500 μl/l methyl jasmonate was more effective to reduce the disease incidence and lesion diameter of postharvest decay of cherry tomato than the application of MeJA or chitosan alone. The combined treatments resulted in higher activities of PPO (polyphenol oxidase), POD (peroxidase) and PAL (phenylalanine ammonialyase) than the control. This work indicated that the combination of chitosan and methyl jasmonate is a promising method to control postharvest decays of fruit and vegetables.  相似文献   

12.
Forty-six fungal endophytes were isolated from Lagerstroemia loudoni. Only one fungus, identified as Nodulisporium spp. CMU-UPE34, produced antifungal volatile compounds. It produced 31 volatile compounds, primarily composed of alcohols, acids, esters and monoterpene. The most abundant volatile compound was eucalyptol. In vitro tests showed that volatile compounds produced by Nodulisporium spp. CMU-UPE34 inhibited or killed 12 different plant pathogens. In vivo mycofumigation with jasmine rice grain cultures of Nodulisporium spp. CMU-UPE34 controlled green mold decay on Citrus limon caused by Penicillium digitatum, blue mold decay of Citrus aurantifolia and Citrus reticulata caused by Penicillium expansum. Nodulisporium spp. CMU-UPE34 has potential as a biofumigant for controlling postharvest disease.  相似文献   

13.
The protective effect of fresh spent mushroom substrate (SMS) of hatakeshimeji (Lyophyllum decastes Sing.), a popular culinary-medicinal mushroom, and its water extract against anthracnose of cucumber was investigated. Plants were treated with water extract from SMS or autoclaved water extract by spraying the whole plant or by dipping the first true leaf, and inoculated with Colletotrichum orbiculare seven days later. Plants treated with either of the extracts showed a significant reduction of necrotic lesions. On the other hand, when plants were grown in a mixture (1:2, v/v) of SMS or autoclaved SMS and soil, a disease reduction of over 70% was observed in autoclaved SMS. The water extract showed no antifungal activity against spore germination and mycelial growth of the pathogen. Real-time PCR analyses of chitinase and β-1,3-glucanase genes revealed a significant increase of expressions after 24 h of pathogen inoculation in water extract-treated plants compared with the control plants. These results suggest that water-soluble and heat-stable compounds in SMS enhance the state of systemic acquired resistance and protect cucumbers from anthracnose. Thus, the use of SMS for disease control may offer a new technology for the recycling and management of waste from mushroom cultivation.  相似文献   

14.
Sorghum accessions from Uganda were evaluated for grain mold and anthracnose resistance during the 2005 and 2006 growing seasons at the Texas A&M University Research Farm, near College Station, TX. Accession PI534117 and SC719-11E exhibited the lowest grain mold severities of 2.4, whereas, accessions PI534117, PI534144, PI576337, PI297199, PI533833, and PI297210, with SC748-5 were highly resistant to anthracnose in both years. Accessions PI534117, PI297134, PI297156 exhibited low grain mold severities in 2006. Significant negative correlation was recorded between grain mold and percent germination and high temperature in both years. In 2006, daily precipitation recorded significant positive correlation with grain mold. The seed mycoflora was analyzed across sorghum lines and treatments. In 2005, Curvularia lunata and Fusarium thapsinum were the most frequently recovered fungal species with 31 and 21% incidence, respectively, followed by Alternaria spp. (19%) and F. semitectum (13%). In 2006, predominant colonizers were F. thapsinum (58%), followed by Alternaria and F. semitectum with 15 and 10, percent respectively, while C. lunata had a 6% incidence. In this study, PI534117 holds promise for multiple disease resistance, as it had the lowest disease severity of grain mold and was highly resistant to anthracnose in both years. It also has a high germination rate, a high seed weight, and its short stature is more advantageous for the new A-line conversion program.  相似文献   

15.
The development of natural crop protective products as alternatives to synthetic fungicides is currently in the spotlight. In vitro experiments are valuable precursors to more costly in vivo trials, allowing the identification of effective essential oils and establishing the concentrations required for inhibition of a specific, or spectrum of decay pathogens. In this study, the antifungal properties of eighteen essential oils were evaluated in vitro by addition to the fungal growth medium of five pathogens (Lasiodiplodia theobromae, Colletotrichum gloeosporioides, Alternaria citrii, Botrytis cinerea and Penicillium digitatum) isolated from mango, avocado, citrus, grapes and cactus pear. The inhibitory properties of some of the major compounds of the oils, identified and quantified by gas chromatography-mass spectroscopy and gas chromatography-flame ionization detection were also determined. Most of the oils were selected on the basis of commercial availability and for containing a predominant compound. Visual inspection of fungal growth was done and the lowest concentration where fungal growth was completely inhibited on all replicates was recorded. Thyme oil proved to be the most effective inhibitor, totally inhibiting all of the pathogens tested at concentrations of 1000 μl/l and lower, with the exception of a resistant Penicillium strain. Cinnamon oil, rich in eugenol (81.2%), demonstrated good fungicide potential, while the carvone-rich oils displayed promising activity against the citrus pathogens. Oils characterized by high concentrations of S-carvone were less effective than those containing the R-enantiomer. Essential oil of Lippia citriodora was active against all of the pathogens, excluding L. theobromae from avocado. These essential oils, applied alone or in combination, are good candidates for further in vivo testing and for investigations concerning their modes of action.  相似文献   

16.
The present study aimed to determine the in vitro and in vivo effects of Ziziphora clinopodioides Lam. essential oil (ZCEO) against Sclerotinia sclerotiorum on rapeseed plants. Gas chromatography-mass spectrometry (GC-MS) detected 21 compounds that represented 98.3% of the total amount of extracted oil, which mainly comprised pulegone (53.5%), isomenthone (10.4%), and carvone (5.7%). The mycelial growth of S. sclerotiorum was completely inhibited at essential oil concentrations of 1.25 and 0.15 μl ml−1 under contact and vapor phase conditions, respectively. Under contact phase, the germination of sclerotial was inhibited at the concentration of 1.00 μl ml−1. The essential oil concentration of 0.15 μl ml−1 in the vapor phase showed a strong inhibitory effect on sclerotial germination. Sclerotinia sclerotiorum growth on detached rapeseed leaves and potted rapeseed plants were dose dependently inhibited by the essential oil. Considerable morphological changes were also observed in the fungal hyphae and sclerotia. Both in vitro and in vivo results indicated ZCEO can effectively inhibit the growth of S. sclerotiorum. Thus, ZCEO could be used for crop protection.  相似文献   

17.
Artichoke seeds suffer attacks of various fungi that result in a decreased yield. Coatings based on chitosan were used as an antifungal agent and for enhancing the germination and quality of artichoke seeds. The effect of formulation (chitosan molecular weight, presence or absence of Span 80, pH), and thickness (number of coating layers) on seed germination (G%), fungi activity and vegetative growth were studied. Results indicated significant differences between treatments on seed germination. It was observed that all chitosan treatments reduced the number of type of fungi and increased plant growth. Chitosan with lower Mw gave better results both from microbial and germination point of view. In addition results indicated that treatments including chitosan and TMTD increased significantly G% and plant growth of artichoke seeds and produced a decrease in fungi contamination.  相似文献   

18.
The sweetpotato whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) continues to be a serious threat to crops worldwide. The UK holds Protected Zone status against this pest and, as a result, B. tabaci entering on plant material is subjected to a policy of eradication. Q biotype (Mediterranean species) is the predominant whitefly now being intercepted entering the UK. With increasing reports of neonicotinoid resistance in this biotype, it is becoming more problematic to control/eradicate. The current study evaluated sequential insecticide applications of a range of chemicals and two entomopathogenic fungi, Beauveria bassiana and Lecanicillium muscarium, applied within the first 21 days after potting poinsettia cuttings. All sequential treatment programmes tested eradicated Q biotype from poinsettia plants. The efficacy of chemicals and fungi against various Q biotype life-stages was also evaluated as individual treatments. Against the egg stage, abamectin (Dynamec), acetamiprid (Gazelle), refined petroleum spraying oil (Tri-Tek) and the physically acting product SB-Plant Invigorator all proved excellent. None of the products gave total control of second instar larvae. However, Agri-50E, B. bassiana, Tri-Tek and SB-Plant Invigorator all gave over 71% mortality. For adult control, B. bassiana and the oil based products (Addit, Tri-Tek and Spraying Oil) all produced 100% mortality. The work also demonstrated that B. bassiana offers better control of B. tabaci than L. muscarium. Investigating direct tank-mixing of the fungi with the chemical products proved that Majestic (physically acting product), spiromesifen (Oberon), Savona (physically acting product) and SB-Plant Invigorator significantly reduced germination of B. bassiana spores and so could not be recommended as mixes. Tri-Tek Oil, Spraying Oil, Addit, Dynamec and Gazelle showed best potential to be used as tank-mixes with over 90% B. bassiana spore germination following exposure to the test products for 24 h. A direct tank mix of L. muscarium with Tri-Tek allowed full fungal spore germination. The implications of the work in regards to continued protection of the UK horticultural industry from B. tabaci and overcoming insecticide resistance among biotypes are discussed.  相似文献   

19.
为研究东莨菪素(一类香豆素类植物保卫素)对大豆灰斑病的防治效果,本研究通过室内试验,盆栽试验和田间小区试验,调查了东莨菪素对大豆灰斑病的防效及促生作用。结果表明:东莨菪素对灰斑病菌有显著的抑制效果。在东莨菪素浓度为8.10 mg/L时对灰斑病的诱抗效果较好,且处理后的大豆叶片内东莨菪素含量显著上升,在田间试验中,对株高、鲜重、主根长等生理指标有促进作用,且抗病性显著增加。   相似文献   

20.
The effects of ultrasound (US) and electrolyzed oxidizing (EO) water on postharvest decay of pineapple cv. Phu Lae were investigated using Fusarium sp. isolated from pineapple fruits. The effect of EO water and US irradiation on in vitro growth inhibition of Fusarium sp. was studied. Spore suspensions were treated EO water with free chlorine at 100, 200 and 300 ppm and different frequencies of 108, 400, 700 KHz and 1 MHz US irradiation for 0, 10, 30 and 60 min and incubated at 27 °C for 48 h The study showed that all treatments of EO water totally inhibited the spore germination of the fungus. Additionally, US irradiation of 1 MHz for 60 min was the most effective to suppress the spore germination when compared with the control. When the fruits inoculated with Fusarium sp. were washed in EO water at 100 ppm and US irradiation or combination of US and EO water significantly inhibited the decay incidence and prolonged the shelf life of the pineapple for 20 days. Treatments had no effect on fruit quality (weight loss percentage, total soluble solids, titratable acidity, pH, and ascorbic acid). The potential for EO water in combination with US in pineapple handling systems is high, due to marked synergistic effects against fungal decay of decrowned pineapple fruit during storage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号