首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Protein contamination on refuge kernels due to cross-pollination from Bt corn to non-Bt corn ears is a major concern in the use of a seed mixture refuge strategy (“RIB”) for resistance management of ear-feeding pests. In this study, occurrence, distribution, and ear damage of the corn earworm, Helicoverpa zea (Boddie), were evaluated in three planting patterns of non-Bt and Bt corn plants containing Genuity® SmartStax™ traits. The three planting patterns were 1) pure stands of 27 Bt plants; 2) pure stands of 27 non-Bt plants; and 3) one non-Bt plant in the center surrounded by 26 Bt plants. A total of six trials were conducted in open field conditions with natural infestations in 2011 and 2012. Egg populations of H. zea were distributed randomly or uniformly, and the number of eggs laid was similar between Bt and non-Bt corn ears regardless of the planting patterns, suggesting that females of H. zea have no egg-laying preference between Bt and non-Bt plants. Bt corn plants containing Genuity® SmartStax™ traits were equally effective in the control of H. zea in pure stands of Bt corn and “RIB” plantings. Occurrence of larvae and ear damage on Bt corn were significantly lower than on non-Bt plants and there were no significant differences between pure stands of Bt and “RIB” plantings across all trials. However, the limited numbers of live larvae in the pure stands of Bt plants were distributed non-randomly, suggesting a possibility of uneven expression of Bt proteins or elevated larval movement in the pure stands of Bt plants. Larval occurrence (3rd–5th instars) and ear damage on the refuge ears in “RIB” plantings were similar to or greater than found on ears of pure stands of non-Bt plants. However, more studies are needed to understand the effect of pollen movement on the full life cycle of H. zea before a final conclusion on the refuge function of RIB planting can be made.  相似文献   

2.
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target of transgenic corn, Zea mays L., expressing Bacillus thuringiensis (Bt) proteins in both North and South America. A highly Cry1F-resistant strain of S. frugiperda was established from a field collection in Puerto Rico in 2011. In this study, three greenhouse trials were conducted to evaluate larval survival and leaf injury of Cry1F-susceptible, -resistant, and -heterozygous genotypes of S. frugiperda on whole plants of five non-Bt and eight Bt corn hybrids. The Bt corn products included two single-gene Bt corn hybrids containing Herculex®I (Cry1F) and YieldGard® (Cry1Ab) traits and six pyramided Bt corn hybrids representing four traits: Genuity® VT Double Pro™, Genuity®VT Triple Pro™, Genuity® SmartStax™, and Agrisure® Viptera™ 3111. In each trial, neonates of S. frugiperda were placed into the plant whorls at vegetative plant stages (V6–V10). Larvae of the three insect genotypes on non-Bt corn hybrids survived well and caused serious plant injury. Cry1Ab corn was ineffective against all three insect genotypes. On Cry1F corn plants, resistant larvae survived on 72.9% plants after 12–15 d and caused a leaf injury rating (Davis' 1 to 9 scales) of 5.7 after 7 d and 7.6 after 12–15 d. Both the larval survivorship and leaf injury rates of the resistant larvae on Cry1F corn plants were not significantly different from those observed on non-Bt corn hybrids. In contrast, no live larvae and little or no leaf injury were observed on the Cry1F corn plants that were infested with susceptible or heterozygous genotypes, or on the pyramided Bt plants. The results demonstrated that the Cry1F-resistant S. frugiperda was highly resistant to whole plants of Cry1F corn and the resistance was recessive. Hybrids that contained one of the four pyramided Bt traits were effective for managing the Cry1F resistance in S. frugiperda.  相似文献   

3.
Spodoptera cosmioides (Walker), Spodoptera eridania (Stoll) and Spodoptera frugiperda (J. E. Smith) have caused significant damage on soybean Glycine max (L.) Merrill in Brazil. Genetically-modified MON 87701 × MON 89788 soybean that expresses the Cry1Ac protein is potentially an alternative tool for the management of these species. Purified protein bioassays were done to evaluate the susceptibility of S. cosmioides, S. eridania and S. frugiperda to Cry1Ac protein. The level of efficacy of the Bt soybean plants in controlling these species was measured through laboratory and greenhouse trials under high artificial insect infestations. The biology of these insects was evaluated over their development cycles to understand their life history when fed on Bt soybean. Purified Cry1Ac protein at the maximum concentration tested (100 μg Cry1Ac mL−1 diet) resulted in low mortality of S. cosmioides and S. eridania (<13%) and intermediate mortality of S. frugiperda (50%). No significant effects of the Bt soybean plants were observed in the life table parameters of S. cosmioides and S. eridania. However, S. frugiperda fed on Bt soybean plants had a prolonged larval stage (by 5 days), reduced larvae viability, increased mean generation time (by 8 days) and reduced intrinsic rate of increase. In general, the Bt soybean plants showed poor control of Spodoptera species when evaluated by leaf-disc bioassay and greenhouse trials. Consequently, other control tactics must be used in combination with MON 87701 × MON 89788 soybean in the field for the efficient management of S. cosmioides, S. eridania and S. frugiperda.  相似文献   

4.
Fall armyworm (FAW), Spodoptera frugiperda (J. E. Smith), is the main target pest of transgenic maize expressing insecticidal proteins from Bacillus thuringiensis Berliner (Bt) in Brazil. To optimize resistance management strategies, we evaluated the functional dominance of different aged larvae of Bt-resistant FAW on Vip3Aa20 maize. We measured the survival and development of Vip3Aa20-resistant, -heterozygote, and -susceptible strains on MIR162 (expressing Vip3Aa20) and Bt11 × MIR162 × GA21 (expressing Vip3Aa20 and Cry1Ab) maize. The resistant strain, from neonate to sixth instar, showed more than 72% survival on Vip3Aa20 maize. From surviving larvae, more than 64 and 54% developed to pupae and adults, respectively. In contrast, heterozygote and susceptible strains showed no larval survival up to fourth instar, and less than 25% larval survival in the fifth and sixth instar on Vip3Aa20 maize. These larvae produced less than 21% of pupae and adults. The development time of FAW strains from neonate-to-adult exposed to Vip3Aa20 maize was similar; however, the resistant strain showed an increase of ∼ 2 d when compared to those fed only non-Bt maize. In summary, the resistance of S. frugiperda to Vip3Aa20 maize is functionally recessive from neonate up to fourth instar larvae. However, high larval survival of resistant strain and some survival of heterozygote larvae in advanced instars on Vip3Aa20 maize were observed. These results will be important for designing insect resistance management to Bt maize plants expressing Vip3Aa20 protein in Brazil.  相似文献   

5.
In the United States, fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target species of transgenic corn (Zea mays L.) expressing pyramided Bacillus thuringiensis proteins. In 2011, a total of 150 F2 two-parent families of S. frugiperda were established using single-pair matings of feral individuals collected from three locations in Louisiana and Florida. The objective of this study was to determine the susceptibility of these field derived families of S. frugiperda to a pyramided Bt corn hybrid containing Agrisure®Viptera™ 3111 traits. For each F2 family, 96 neonates were assayed on leaf tissue of Agrisure®Viptera™ 3111 corn in the laboratory. None of the 150 families survived for 7 days on leaf tissue of the Bt corn plants. The results demonstrate that the field populations of S. frugiperda collected from Louisiana and Florida were susceptible to the pyramided Bt corn product containing Agrisure®Viptera™ 3111 traits. The data generated in this study can be used as baseline data for resistance monitoring.  相似文献   

6.
The main insect pest in Brazilian corn is fall armyworm, Spodoptera frugiperda (Smith, 1797) (Lepidoptera: Noctuidae). Entomopathogenic nematodes (EPNs) can be used to control this pest, and can be applied together with various insecticides. Thus, the objective of this work was to evaluate the efficacy of mixtures of EPNs and insecticides to control S. frugiperda in corn crops. In laboratory bioassays three species of EPNs were tested (Heterorhabditis indica, Steinernema carpocapsae and Steinernema glaseri) together with 18 registered insecticides to control S. frugiperda in corn. Efficacy of association between insecticides and EPNs on S. frugiperda larvae was evaluated against the insect's third instar, 2 and 4 days after applications in laboratory. Experiments in the field were performed in two consecutive years, with located application of H. indica and S. carpocapsae (250 IJs/cm2) mixed with chlorpyrifos (0.3 L/ha) and lufenuron (0.15 L/ha) on the corn husk. In laboratory, after two days exposure the interaction between chlorpyrifos and H. indica was synergistic, while interaction with cypermethrin, spinosad, methoxyfenozide and deltamethrin + triazofos was additive, as was interaction between lufenuron, chlorpyrifos and cypermethrin with S. carpocapsae. In contrast, the interaction between chlorpyrifos (Vexter™ and Lorsban™) and lufenuron with S. glaseri was synergistic. In the field, the best treatment was the mixture of H. indica with lufenuron (0.15 L/ha), with 62.5% and 57.5% larval mortality in the two evaluation years in the field, respectively.  相似文献   

7.
An alternative to traditional larval lepidopteran resistance-monitoring bioassays was developed. Feeding disruption tests were developed for detecting insects resistant to three Bacillus thuringiensis (Bt) proteins: Cry1Ac, Cry1F and Cry1Ab. The assays rely on a diagnostic dose of Bt toxin in 100-μl hydratable meal pads of artificial diet containing blue indicator dye. The assay was formatted as a portable (palm-sized) plastic plate containing an array of 16 test wells, each containing a single hydratable meal pad with one insect added per well. The diagnostic dose was the concentration of Bt in meal pad rehydration solution that reduced 24 h dyed fecal production of Bt-susceptible neonates to ≤2 fecal pellets per larva. Bt-resistant neonates were able to consume the diagnostic dose of the insecticidal protein and produce >2 blue fecal pellets. The feces were distinctly visible on the white background of the feeding disruption test plate. Diagnostic doses were determined with lab-strain Bt-susceptible Heliothis virescens and Helicoverpa zea. For H. virescens, the diagnostic doses were 10, 20 and 15 μg/ml for Cry1Ac, Cry1F and Cry1Ab, respectively. For H. zea, the diagnostic doses were 40, 200 and 500 μg/ml, respectively. The assays were validated against a lab-strain of Bt-resistant H. virescens and with susceptible larval H. virescens collected as eggs from field-grown tobacco in North Carolina.  相似文献   

8.
Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) is a serious pest of cotton and many other crops in northern China. To evaluate the contribution of alternative hosts as an effective refuge for transgenic cotton expressing the Bacillus thuringiensis (Bt) Cry1Ac toxin, the susceptibility to this toxin was measured in progeny derived from field-collected H. armigera larvae and pupae from different hosts in the Xiajin’s region of the Shandong Province in northern China. During 2008-2010, progeny from a total of 258,56,184 and 160 single-pair crosses derived from wheat (first-generation), Bt cotton (second-generation), Bt cotton (third-generation), and corn (third-generation) were screened on Cry1Ac diets, respectively. Based on relative average development rates (RADR) of H. armigera larvae in these F1 tests, the second and third-generation moths emerging from Bt cotton fields were more tolerant to the Bt toxin than the first and third-generation moths emerging from wheat and corn each year. These results suggest that there is significant variation in susceptibility to Bt toxins among H. armigera populations derived from different host crops. Alternate crops, such as corn, that maintain Bt susceptible populations of H. armigera could be used as refugia to minimize the evolution of resistance to Bt cotton.  相似文献   

9.
Field corn, Zea mays L., plants expressing Cry1Ab and Cry1F insecticidal crystal (Cry) proteins of Bacillus thuringiensis (Bt) Berliner are planted on considerable acreage across the Southern region of the United States. The fall armyworm, Spodoptera frugiperda (J.E. Smith), is an economically important pest during the mid-to-late season on non-Bt and some commercial Bt corn hybrids. The objective of this study was to quantify foliar injury and survivorship of fall armyworm on transgenic corn lines expressing Cry1Ab or Cry1F Bt proteins. Corn lines/hybrids expressing Cry1Ab, Cry1F, and a conventional non-Bt cultivar were evaluated against artificial infestations of fall armyworm in field trials. Larvae (second instars) of fall armyworm were placed on corn plants (V8-V10 stages). Leaf injury ratings were recorded 14 d after infestation. Hybrids expressing Cry1F had significantly lower feeding injury ratings than non-Bt corn plants. Development and survivorship of fall armyworm on Bt corn lines/hybrids were also evaluated in no-choice laboratory assays by offering freshly harvested corn leaf tissue to third instars. Transgenic corn hybrids expressing Cry1Ab or Cry1F significantly reduced growth, development, and survivorship of fall armyworm compared to those offered non-Bt corn tissue. However, 25-76% of third instars offered Bt corn leaf tissues successfully pupated and emerged as adults. These results suggest Cry1Ab has limited effects on fall armyworm; whereas Cry1F demonstrated significant reductions in foliar injury and lower survivorship compared to that on non-Bt corn tissues. Although fall armyworm is not considered a primary target for insect resistance management by the U.S. Environmental Protection Agency, these levels of survivorship could impact selection pressures across the farmscape, especially when considering that transgenic Bt cotton cultivars express similar Cry (Cry1Ac or Cry1F) proteins.  相似文献   

10.
Large-scale adoption of transgenic crops expressing genes from Bacillus thuringiensis (Bt) imposes high selection pressure for evolution of field-relevant resistance that can reduce pest control efficacy, such as reported for Cry1F maize (Zea mays L.) in populations of fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), of Puerto Rico, Brazil, and the United States. As part of our effort to improve fall armyworm resistance management to Bt crops, here we determined the genetic basis of Cry1F resistance in two S. frugiperda strains originated from field collections in different regions of Brazil and further selected in the laboratory for high levels of resistance to Cry1F maize. Continuous exposure to the TC1507 event for 11 generations resulted in more than 183-fold resistance to Cry1F in the two strains studied, and such a high resistance level enabled the insects to complete larval development on the Bt maize plants. Genetic analyses using concentration-response bioassays with progenies from reciprocal crosses between resistant and susceptible insects indicated that the inheritance of the resistance is autosomal, recessive and without maternal effects. Backcross of the F1 progeny with the parental resistant strains revealed that the resistance in the two selected strains is conferred by a single locus or set of tightly linked loci. These results support some of the assumptions of the strategy in use for fall armyworm resistance management to Bt Cry1F maize, but survival rates of heterozygotes on the Bt plants were higher than 5%, showing that the Cry1F maize does not produce a high dose of the insecticidal protein for S. frugiperda. Additionally, we detected a delay in larval development time that may favor assortative mating of individuals carrying resistance alleles. These findings are consistent with the rapid evolution of Cry1F resistance in certain field populations of fall armyworm. Implications for resistance management of S. frugiperda to Bt maize are discussed.  相似文献   

11.
The Cry1F protein from Bacillus thuringiensis Berliner expressed in event TC1507 maize (Zea mays L.) was one of the most effective ways to control Spodoptera frugiperda (J. E. Smith) in Brazil. After reports of reduced effectiveness of this Bt maize event in some areas of Brazil, research was undertaken to investigate if damage to Cry1F maize was caused by resistant S. frugiperda. Additional investigations were conducted to evaluate the genetic basis of the resistance and to test if Cry1F resistant S. frugiperda selected from populations of different regions of Brazil share the same resistance locus by using complementation tests. Neonate larvae of S. frugiperda collected from TC1507 maize fields with damage in Western Bahia region in 2011 were able to survive on Cry1F maize plants under laboratory conditions and subsequently produced normal adults. Survival of Cry1F-susceptible S. frugiperda on non-Bt maize was significantly higher in leaf than plant bioassays. Resistance ratio in diet overlay bioassays was >5000-fold. A discriminating concentration of 2000 ng cm−2 of Cry1F protein was defined for monitoring the frequency of resistance of S. frugiperda to Cry1F. Cry1F resistant S. frugiperda showed a recessive autosomal inheritance for alleles involved in resistance to Cry1F protein. In complementation tests, the resistant population from Western Bahia was crossed with the other seven resistant populations collected from different States of Brazil. F1 larvae from each cross had the same survival at discriminating concentration of 2000 ng cm−2 of Cry1F protein, indicating that the resistance alleles in each population were likely at the same locus. Therefore, implementation of resistance management strategies is urgent to prolong the lifetime of Cry1F for controlling S. frugiperda in Brazil.  相似文献   

12.
Glyphosate-resistant (GR) volunteer corn is a troublesome weed in soybean fields in a corn-soybean rotation as well as in corn fields in a continuous corn production system. The objectives of this study were to evaluate the impact of (1) different densities of GR volunteer corn on soybean yields, present as individual plants or clumps, controlled at fourth trifoliate (V4), sixth trifoliate (V6), or full flowering (R2) soybean growth stages, and (2) late-season volunteer corn emergence on soybean yields, after being controlled at different soybean growth stages. Field experiments were conducted in 2013 and 2014 under irrigated conditions in Clay County, Nebraska, and under rain-fed conditions in Lancaster County, Nebraska, USA. To maintain the desired number of isolated volunteer corn plants (1250, 2500, 5000, and 10,000 plants ha−1) and clumps (63, 125, 250, and 500 clumps ha−1), individual seeds and/or corn ears were hand-planted in each plot based on their respective target densities. Volunteer corn was controlled with applications of clethodim at V4, V6, or R2 soybean growth stages. Late-season volunteer corn emergence had no effect on soybean yield with volunteer corn densities and control timings at both locations in 2013 and 2014. During the first year of study at Clay County, volunteer corn densities and control timings had no effect on soybean yield. When volunteer corn was left uncontrolled or controlled at the R2 soybean growth stage, yield was the lowest at highest isolated volunteer corn plants (10,000 plants ha−1) plus clump density (500 clumps ha−1) during the second year of study in Clay County (≤5068 kg ha−1) and during both years of study in Lancaster County (≤1968 kg ha−1).  相似文献   

13.
The inclusion of the cry gene in corn may produce direct effects on non-target pests. Our research was focused on the relationship between Bt corn germplasm, expressing the cry1F protein to control the fall armyworm [Spodoptera frugiperda (Noctuidae)], and a non-target pest, the corn leafhopper [Dalbulus maidis (Cicadellidae)]. The aim of this contribution was to elucidate if Bt corn plants have influence on the oviposition preference of the leafhopper and to evaluate the effect of the transgenic plant on the hatching rate of egg. Female corn leafhoppers were released in cages each containing two potted plants in the V2 stage: a Bt germplasm and the corresponding isogenic hybrid. Laid eggs were counted and the number of hatched nymphs recorded. D. maidis females oviposited and laid more eggs in Bt plants. The egg hatching rate was negatively affected by the Bt germplasm. In addition, a field study was conducted in order to determine the abundance of D. maidis adults in Bt corn and the corresponding non-Bt isoline. Two corn plots sown with the same germplasms as used in the laboratory bioassays were sampled weekly. In the field, the population of the corn leafhopper was higher in the Bt corn plot than in the non-Bt isoline. Possible hypotheses for the differences in abundance of the vector in the field are: a) that pleiotropic effects of Bt corn could attract adults; b) the existence of a possible direct competition between the corn leafhopper and the target pest in order to utilize the whorls of corn plants as refuge and feeding sites, so the high populations of the vector could be due to the large supply of healthy whorls in the transgenic plot; and/or c) a differential attack of natural enemies occurring in non-Bt plots.  相似文献   

14.
The Mexican rice borer, Eoreuma loftini (Dyar), attacks crops including corn, Zea mays L., rice, Oryza sativa L., sorghum, Sorghum bicolor (L.) Moench, and sugarcane, Saccharum spp. Strongly resistant varieties of any kind, native or otherwise, have not been identified. A field plot corn variety test using two transgenic Bt varieties, Pioneer 31G71, expressing the Cry1F insecticidal protein, and Golden Acres 28V81, expressing the Cry1A.105, Cry2Ab2, and Cry3Bb1 insecticidal proteins, and two non-Bt controls, Dekalb DKC 69-72 and BH Genetics 9050, all four commonly grown in the Lower Rio Grande Valley of Texas, showed that, although oviposition preference was not affected, 28V81 resisted larval stalk boring to the extent that Mexican rice borer injury was almost non-existent. Pioneer 31G71 was infested nearly as much as the controls, but larval development to adulthood was reduced by ≈70%. Rearing larvae on 5, 50, 500, and 5000 μg of corn leaf tissue per ml of artificial diet showed that, while the three lowest concentrations did not affect larval growth and development, the high concentration of 28V81 reduced survivorship to the pupal stage, decreased weight of 4-wk-old larvae, and prolonged development to pupation. Lower numbers of pheromone trap-captured adults at the edges of commercial Bt and non-Bt corn fields showed that populations were lower at the Bt cornfields, suggesting a lesser rate of adult production. Because corn is a preferred host plant over sugarcane, sorghum or rice, use of resistant transgenic Bt corn varieties will likely protect the crop from the substantial injury that can be caused by the pest. This study also suggests that Bt genes might result in similarly strong resistance when inserted in other vulnerable crops such as sugarcane.  相似文献   

15.
Seven-day laboratory bioassays with first-instar Helicoverpa armigera and Helicoverpa punctigera larvae were conducted using leaves from field-grown Bollgard II® cotton during the 2009/10 season and larval mortality and development recorded. Leaves were from three farms in the St George region and two fields on one farm at Emerald in eastern Australia. The Cry1Ac and Cry2Ab content of leaves from the same samples was determined (see Knight et al., 2013) and the relationships between Cry protein content and larval mortality and development were examined. The Cry1Ac protein content was between 3.98 and 12.08 μg/g during the growing season, while Cry2Ab content ranged between 300.6 and 953.3 μg/g. Cry1Ac and Cry2Ab content of leaves were highly correlated (r = 0.8276, P < 0.001). Seven-day mortality of H. punctigera larvae was close to 100% throughout the season. H. armigera mortality was close to 100% early in the season, but fell to ∼65% by mid-to late February in the laboratory bioassays. Fitting three-dimensional non-linear models associating Cry1Ac and Cry2Ab content with H. armigera and H. punctigera mortality elucidated the relative importance of the two proteins in determining larval mortality; for this analysis, data were pooled with data from an isoline study to provide better sampling of the three-dimensional surface being modelled. For both Helicoverpa species, the fitted mortality response to the Cry1Ac protein was close to its maximum at protein concentrations above ∼3 μg/g Cry1Ac. For H. punctigera, response to the Cry2Ab protein was close to maximal once Cry2Ab was greater than ∼200 μg/g. In contrast, the fitted H. armigera mortality response to Cry2Ab increased steadily with concentration up to ∼1200 μg/g Cry2Ab. These responses led to markedly different response surfaces for the two species; H. punctigera mortality was close to 100% at most places on the response surface, while for H. armigera the response surface showed stronger increases in mortality with concentration for Cry2Ab than for Cry1Ac. These results can be interpreted as meaning that at the plant-expressed range of concentrations in Bollgard II cotton the two proteins are approximately equally important for H. punctigera but that changes in Cry2Ab content more strongly influences changes in larval mortality in H. armigera than does Cry1Ac, with Cry1Ac contributing a consistent 40–45% mortality for concentrations above 3 μg/g. For H. armigera, there was no evidence of either synergism or antagonism between Cry1Ac and Cry2Ab proteins (P > 0.05) but this aspect was not testable for H. punctigera because mortality was mostly close to 100%.  相似文献   

16.
Corn rootworm (Diabrotica spp.) has become the most concern and widespread insect pest of corn (Zea mays L.) production in North America. Two field experiments were conducted to assess the agronomic and yield performance of transgenic rootworm trait, Bacillus thuringiensis (Bt) Cry3Bb, seed-coating treatment, and a soil-applied insecticide under natural corn rootworm infestation. Experiment 1 compared a conventional corn hybrid with and without insecticide (Force 3G) with its near isoline Bt hybrid from 2003 to 2005, on a clay loam soil. Experiment 2 investigated the same treatments as in Experiment 1 plus an additional seed-coated Poncho treatment on a sandy loam in 2004 and 2005. Rootworm population before the crop anthesis, root node injury and root:shoot dry weight ratio during the early grain filling stage, and stalk lodging and grain yield were determined. Our data showed that rootworm population diminished over the 3 years owing to rootworm displacement and adverse weather conditions. At the clay loam site, both Force 3G and the Bt hybrid significantly reduced the larval populations, root injury and lodging score, and increased root:shoot ratio. Over the 3 years, grain yields of the Bt hybrid were 11–66% greater than the untreated non-Bt isoline hybrid; yield of the non-Bt hybrid treated with Force 3G was also significantly greater than the same untreated non-Bt hybrid in 2 of 3 years. Despite less root node injury in the first rows of non-Bt plants adjacent to the Bt plots was observed, yield benefit of this effect remained to be proven. On sandy loam soil, the larval population was very low and there were no differences in root node injury and plant lodging among all the four treatments in either 2004 or 2005. The yield of the Bt hybrid was up to 10% greater than its non-Bt isoline hybrid treated or not with an insecticide in 1 year. Our data showed that Bt rootworm seed technology was effective to control the rootworm larvae and protected grain yield under severe infestation. Furthermore, our data suggest that some of the gain in Bt hybrid yield may be attributed to the genetic transformation as observed in sandy loam soil experiment. In all cases, corn producers should be aware of the pest history, rootworm pressure in relation to economic threshold, soil type and the expected cost-to-benefit ratio before deciding to adopt any protective measures.  相似文献   

17.
Blending Bacillus thuringiensis (Bt) corn and non-Bt corn seeds in the same bag is a convenient and easier compliance solution to satisfy refuge regulations. However, there has been considerable debate and concern about larval movement of the target insects in a seed blend because of its potential effect on the development of resistance. Reported here are studies to determine the larval movement of European corn borers, Ostrinia nubilalis (Hübner), in a seed blend compared to a structured refuge and their effects on survival, feeding injury and larval fitness. Also evaluated is the relative performance of a purple-seeded corn hybrid as a surrogate host plant for tracking gene flow. Seed blend and structured refuge arrangements of Agrisure GT/CB/LL Bt corn expressing Cry1Ab and isoline plants were evaluated at two locations in 2013 and 2014 by manually infesting refuge plants with first and second generation corn borer larvae. The majority of leaf and stalk injury was recorded on the refuge plant, which amounted to 66–83% of the total tunnel length. In both refuge arrangements, plant injury and the number of larvae recovered significantly decreased on neighboring plants with increasing distance away from the refuge plant in the same row. The relative decline in injury was much more pronounced in the seed blend, with neighbor Bt plants experiencing very minor tunneling or no injury at all due to the high dose trait. Eighty-nine percent fewer live larvae were also found on neighbor Bt plants in the seed blend compared to those found in the structured refuge plots. Larvae that moved to Bt plants as well as older instars that were manually placed on Bt plants failed to complete development. Comparison of the number of tunnels and larvae recovered per refuge plant indicated that the seed blend may not produce as many susceptible individuals as those produced in a structured refuge arrangement. Although the purple-seeded hybrid showed lower levels of ear and stalk injury, it could serve as an appropriate surrogate refuge plant to track gene flow.  相似文献   

18.
Biological control of the fungus Aspergillus flavus has been shown to be effective in reducing aflatoxin contamination in corn. This study compared field application of a bioplastic-based formulation for delivering atoxigenic A. flavus isolates in Northern Italy and the Mississippi Delta.Due to an extremely hot and dry summer at the Italy site in 2012, aflatoxin contamination was approximately seven times higher than in 2011. In 2011, and 2012, application of bioplastic granules inoculated with the atoxigenic isolate A. flavus NRRL 30797 at 15 and 30 kg ha−1 resulted in a reduction of aflatoxin contamination by 67.2 ± 4.1% and 94.8 ± 5.3%, respectively. The higher application rate was also effective when soil abundance of A. flavus was artificially increased by applying contaminated corn residues. At the Mississippi site, summer 2012 was also hot and dry, with high levels of aflatoxin contamination. In fields planted with non-Bt or Bt hybrids, application of biocontrol granules inoculated with A. flavus NRRL 30797 or NRRL 21882 at 30 kg ha−1 reduced aflatoxin contamination to up to 89.6%. Field experiments on two continents showed that bioplastic-based A. flavus formulations markedly reduced aflatoxin contamination under different agro-environmental conditions and infestation intensities.  相似文献   

19.
Multiple independent trials were conducted to evaluate the performance of Cry1Ab-susceptible (Cry1Ab-SS), -heterozygous (Cry1Ab-RS), and -resistant (Cry1Ab-RR) genotypes of the sugarcane borer, Diatraea saccharalis (F.), on eight commercial hybrids and six experimental corn lines. The commercial varieties included two non-Bt and six Bt corn hybrids that expressed a single Bt protein (either Cry1Ab or Cry1F) targeting above-ground lepidopteran pests. The six experimental lines consisted of two non-Bt and four Bt corn lines, two expressing just the Cry1Ab protein and two containing the pyramided-genes Cry1A.105 and Cry2Ab2 (event MON 89034). Larval mortality on non-Bt corn leaf tissue ranged from 6 to 45% after 12 d across insect genotypes. The 12 d mortality of Cry1Ab-SS on leaf tissue of commercial Cry1Ab or Cry1F corn was 96-100%, whereas it was 80-96% for Cry1Ab-RS and 68-78% for Cry1Ab-RR. On intact plants, 39-64% of larvae survived on non-Bt corn plants after 21-25 d. Larval survivorship on intact plants of commercial Cry1Ab or Cry1F corn was 0-8.1% for Cry1Ab-SS, 1.3-34% for Cry1Ab-RS, and 19-51% for Cry1Ab-RR. Larvae of Cry1Ab-RR and -RS also caused significant plant injury to most of the commercial Bt corn hybrids, especially to the Cry1Ab corn. Cry1Ab resistance in D. saccharalis was incompletely dominant on commercial Bt corn hybrids. However, both experimental lines with pyramided genes of Cry1A.105 and Cry2Ab2 provided complete control of all three insect genotypes in both leaf tissue and intact plant tests. Results of this study suggest that MON 89034 should offer a means for Bt resistance management in D. saccharalis.  相似文献   

20.
Numbers of adult diamondback moth, Plutella xylostella (L.), captured in pheromone-baited traps may predict the density of damaging larval stages in canola, Brassica napus L. Two years of season-long experiments in Alberta, Canada compared captures of male moths in traps baited with commercial pheromone to larval densities. Significant relationships between moth catch and larval density were infrequent and generally curvilinear indicating that moth numbers were not directly related to larval density. Stronger relationships occurred late season and may indicate that population establishment is necessary before moth capture can predict larval populations. Relationships between moth capture and immature stages sampled at the same time were similar to those sampled two weeks later. A statistically similar number of moths was captured throughout the season in traps baited with lures changed at 6- versus 3-week intervals. During years of moderate and low populations of diamondback moth in canola, moth counts from one pheromone-baited trap per field are sensitive enough to detect densities of immature stages and are more accurate than sweep net sampling. Experiments have contributed to the development of a monitoring system to forecast P. xylostella densities in canola, but research of additional variables may help to develop a consistent relationship between moth catch and larval and pupal densities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号