首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
水稻幼苗耐缺氧能力的QTL分析   总被引:5,自引:0,他引:5  
利用粳稻品种秀水79与粳稻恢复系C堡及其衍生的247个重组自交系(RIL)和粳稻Nipponbare与籼稻Kasalath及Nipponbare/Kasalath//Nipponbare衍生的98个回交重组自交系(BIL)为材料,在缺氧胁迫和正常萌发条件下调查了萌发7d的幼苗芽鞘长度。以缺氧反应指数为衡量指标,对幼苗耐缺氧能力进行了QTL分析。RIL群体在第2染色体上检测到1个与SSR标记RM525紧密连锁的QTLqSAT-2-R,解释表型变异的8.7%;在第7染色体上检测到1个与RM418紧密连锁的QTLqSAT-7-R,解释表型变异的9.8%;增效等位基因均来自C堡。BIL群体检测到6个QTL,分布在第2、3、5、8、9和12染色体上,分别解释表型变异的16.2%、11.4%、7.3%、5.8%、9.5%和14.0%;其中qSAT-2-B、qSAT-3-B和qSAT-9-B增效等位基因来自Nipponbare。与qSAT-2-B紧密连锁的RFLP标记为C747,C747对应SSR标记RM1367;qSAT-2-R与qSAT-2-B相距7.2cM。  相似文献   

2.
水稻籼粳交DH群体幼苗中胚轴长度的QTLs定位和上位性分析   总被引:14,自引:3,他引:11  
应用籼粳交IR64/Azucena的DH群体及其构建的分子标记遗传图谱,在遮光条件下,通过适温和低温逆境下发芽,测定中胚轴长度。采用QTL Mapper 基因定位软件检测控制中胚轴长度的加性效应QTLs和加性×加性上位性QTLs,在第1、3、6、7、8、12等6条染色体上定位了8个控制中胚轴长度的QTLs,其中在第1、3、7、8染色体上定位了4个具有加性效应的QTLs,位于第7染色体的1个加性效应QTL的增长等位基因来自于父本Azucena,它能使中胚轴伸长0.26 cm,其贡献率达17.5%,其余3个加性效应QTLs的增长等位基因来自于母本IR64,能使中胚轴伸长0.10~0.21 cm,在第3、7、12等3条染色体中共检测到2对加性×加性上位性效应,其贡献率分别为21.62%和2.27%,同时各检测到2对加性效应×环境的互作效应和上位性与环境的互作效应。对应用分子标记辅助育种选育中胚轴伸长的矮秆水稻的可能性进行了讨论。  相似文献   

3.
水稻低温发芽力的QTL定位   总被引:1,自引:0,他引:1  
以珍汕97B与多年生稻种质AAV002863的DH群体(198个株系)构建了包含140个SSR标记的连锁图谱,检测了影响水稻低温发芽力性状的数量性状座位(QTL)。15℃下处理6 d,两亲本珍汕97B与多年生稻AAV002863的发芽率分别为79.7%和30.1%,DH群体间的发芽率变化在0%~100%。QTL定位分析检测到2个与低温发芽力相关的基因座,分别位于第3和第10染色体上,贡献率分别为12.6%和12.9%,增效等位基因分别来自多年生稻AAV002863和珍汕97B。上位性分析结果显示,第1与第10染色体上存在影响低温发芽力的互作位点,其互作可以提高低温发芽力,参与互作的第10染色体上的位点也具有加性主效应。  相似文献   

4.
 利用水稻植酸含量差异较大的品种中花11(粳型)和LPA(籼型)为亲本杂交获得F2群体的172个单株,构建了含126个SSR和4个STS标记的遗传连锁图谱,利用贝叶斯(Bayesian)法对水稻籽粒植酸含量性状进行了主效应QTL定位和上位性互作分析。共检测到 3 个与水稻籽粒植酸含量性状有关的主效QTL,分布在第3、5和6 染色体的相应区间内,表型贡献率分别为538%、802%和462%,降低籽粒植酸含量的等位基因均来自亲本LPA。检测到10对上位性互作影响籽粒植酸含量, 分布于水稻第1、3、5、6、11染色体上,互作效应值为169~518,其表型变异的解释率为867%~2473%。  相似文献   

5.
利用回交重组自交系定位稻米赖氨酸含量的基因座位   总被引:1,自引:0,他引:1  
利用日本晴(粳稻)/Kasalath(籼稻)//日本晴组合衍生的98个回交重组自交系(BILs)株系和具有245个RFLP标记的遗传图谱,在浙江和海南2个环境条件下,开展了精米赖氨酸含量的QTL定位。精米赖氨酸含量在浙江和海南均表现连续变异和超亲分离。在第6染色体发现2个具有显著遗传主效应的QTL(qLYS6 1和qLYS6 2),表型贡献率分别为2708%和4756%。qLYS6 1 还具有显著的环境互作效应。qLYS6 1的增效基因来自Kasalath,而qLYS6 2的增效基因来自日本晴。未检测到显著的上位性效应。  相似文献   

6.
稻米直链淀粉含量和胶稠度对高温耐性的QTL分析   总被引:9,自引:1,他引:8  
利用由98个家系组成的Nipponbare/Kasalath//Nipponbare回交重组自交系群体,以直链淀粉含量耐热指数(高温下直链淀粉含量/适温下直链淀粉含量×100)和胶稠度耐热指数(高温下胶稠度/适温下胶稠度×100)为评价指标,采用混合线性模型的QTL定位方法,在南昌和南京两个试验地点对水稻蒸煮食用品质性状的高温耐性QTL进行了检测。两个性状在两个试验地点共检测到9个QTLs,其中直链淀粉含量高温耐性QTL 3个,胶稠度高温耐性QTL 6个。两个性状中共有3个QTLs在两个地点同时被检测到。其中位于第6染色体上与Wx基因相同的染色体区域和第8染色体G1073-R727区域分别是控制直链淀粉含量和胶稠度高温耐性的重要区域。  相似文献   

7.
小麦抽穗期QTL及其与环境的互作   总被引:3,自引:0,他引:3  
为筛选稳定表达的小麦抽穗期QTL用于辅助选择,以旱选10号×鲁麦14的DH群体为试材,在四种环境下对抽穗期进行QTL。结果表明,该DH群体抽穗期呈连续性分布,表现为多基因控制的数量性状。四种环境下共检测到6个抽穗期加性QTLs,分别位于1B、1D、4D、6B、7B、7D染色体上,LOD值为3.13~10.88,贡献率在1.57%~6.72%之间,其中QHd-1D-1和QHd-7B与环境具有互作效应。共检测到10对上位性QTL位点,互作效应值为-0.39~0.423,表型贡献率在1.39%~4.86%之间,其中4对上位性位点与环境具有互作效应。  相似文献   

8.
水稻开花期高温胁迫下的花粉育性QTL定位   总被引:2,自引:1,他引:1  
 以耐热水稻品系996和热敏感品系4628为亲本构建的重组自交系为材料,采用水稻开花期高温胁迫下的花粉育性为指标,对水稻耐热性进行了QTL分析。采用复合区间作图法检测到2个花粉育性耐热性QTL,暂命名为qPF4和qPF6。qPF4位于第4染色体上的RM5687―RM471区间,LOD值为7.54,对高温胁迫下花粉育性的表型解释率为15.1%,来自耐热亲本996的等位基因使高温下花粉可育率提高7.15%。qPF6位于第6染色体上的RM190―RM225标记区间,LOD值为4.43,对高温胁迫下花粉育性的表型解释率为9.31%,能使高温下花粉可育率提高5.25%,加性效应亦来自耐热亲本996的等位基因。定位到的2个耐热QTL为进一步精细定位以及通过分子标记辅助选择培育耐热水稻新品种奠定了基础。  相似文献   

9.
水稻穗芽相关性状的QTL定位   总被引:6,自引:2,他引:4  
利用305个株系组成的源自籼稻品种中156和谷梅2号的重组自交系群体进行了水稻穗芽性状的QTL检测和遗传效应分析。以穗芽指数及相关指标作为穗芽性状的表型值,采用QTL Mapper 1.01统计软件进行QTL定位和上位性分析,共检测到控制穗芽指数的3个加性效应QTL,分别位于第2、9、11染色体上;控制穗芽速率的加性效应QTL 3个,分别位于第1、3、6染色体上;控制穗穗芽率的加性效应QTL 3个,分别位于第1、9、10染色体上;控制粒穗芽的加性效应QTL 2个,分别位于第9、11染色体上。还检测到3对影响穗芽指数的加性×加性上位性互作效应QTL;3对控制穗芽速率的上位性QTL和3对控制粒穗芽率的上位性QTL。  相似文献   

10.
水稻耐热性的QTL定位及耐热性与光合速率的相关性   总被引:22,自引:1,他引:21  
应用典型的籼粳交组合IR64×Azucena花药培养的DH群体及其已构建的分子连锁图谱,在田间及温室高温条件下对该DH群体的结实性状进行考查,采用QTLmapper 1.0软件检测控制结实率的加性和上位性效应的QTL。在第1、3、4、8和11等5条染色体上,共检测到6个具有加性效应的QTL,其中位于第1、3染色体的2个加性效应QTL来自父本Azucena的等位基因,它们是耐热的QTL,能分别提高结实率9.50和6.46个百分点,其贡献率分别为19.15%和2.86%;位于其余3条染色体的4个加性效应的QTL来自母本IR64的等位基因,它能提高结实率4.33~10.37个百分点,在第1、2、3、4、5、7、8、11等8条染色体之间还检测到8对加性×加性上位性效应,其贡献率为2.27%~8.13%。同时还对水稻分蘖盛期和抽穗期进行了光合速率的测定,发现抽穗期剑叶光合速率与耐热性呈显著的正相关。  相似文献   

11.
Mapping QTL for Heat-Tolerance at Grain Filling Stage in Rice   总被引:7,自引:1,他引:6  
A mapping population of 98 lines (backcross inbred lines, BILs) derived from a backcross of Nipponbare/Kasalath// Nipponbare was planted at two experimental sites, Nanjing and Nanchang, and treated with high and optimal temperature during grain filling, respectively. The grain weight heat susceptibility index [GWHSI= (grain weight at optimum temperature-grain weight at high temperature) / grain weight at optimum temperature ×100] was employed to evaluate the tolerance of rice to heat stress. A genetic linkage map with 245 RFLP markers and a mixed linear-model approach was used to detect quantitative trait loci (QTLs) and their main effects, epistatic interactions and QTL×environment interactions (Q×E). The threshold of LOD score=2.0 was used to detect the significance of association between marker and trait. A total of 3 QTLs controlling heat tolerance during grain filling were detected, on chromosomes 1, 4 and 7, with LOD scores of 8.16, 11.08 and 12.86, respectively, and they explained the phenotypic variance of 8.94, 17.25 and 13.50 %, correspondingly. The QTL located in the C1100-R1783 region of chromosome 4 showed no QTL×environment interaction and epistatic effect, suggesting that it could be stably expressed in different environments and genetic backgrounds, and thus it would be valuable in rice breeding for heat tolerance improvement. This QTL allele, derived from Kasalath reduced 3.31% of the grain weight loss under heat stress. One located between R1613-C970 on chromosome 1 and the other between C1226-R1440 on chromosome 7, with additive effect 2.38 and 2.92%, respectively. The tolerance alleles of both these QTLs were derived from Nipponbare. Both of these QTLs had significant QTL×environment interactions, and the latter was involved in epistatic interaction also. Eight pairs of epistatic effect QTLs were detected, one pair each on chromosomes 1,2,3, 5, 7, 8, 10 and 12. The results could be useful for elucidating the genetic mechanism of heat-tolerance and the development of new rice varieties with heat tolerance during grain filling phase.  相似文献   

12.

Background

Fe toxicity occurs in lowland rice production due to excess ferrous iron (Fe2+) formation in reduced soils. To contribute to the breeding for tolerance to Fe toxicity in rice, we determined quantitative trait loci (QTL) by screening two different bi-parental mapping populations under iron pulse stresses (1,000 mg L−1 = 17.9 mM Fe2+ for 5 days) in hydroponic solution, followed by experiments with selected lines to determine whether QTLs were associated with iron exclusion (i.e. root based mechanisms), or iron inclusion (i.e. shoot-based mechanisms).

Results

In an IR29/Pokkali F8 recombinant inbred population, 7 QTLs were detected for leaf bronzing score on chromosome 1, 2, 4, 7 and 12, respectively, individually explaining 9.2-18.7% of the phenotypic variation. Two tolerant recombinant inbred lines carrying putative QTLs were selected for further experiments. Based on Fe uptake into the shoot, the dominant tolerance mechanism of the tolerant line FL510 was determined to be exclusion with its root architecture being conducive to air transport and thus the ability to oxidize Fe2+ in rhizosphere. In line FL483, the iron tolerance was related mainly to shoot-based mechanisms (tolerant inclusion mechanism). In a Nipponbare/Kasalath/Nipponbare backcross inbred population, 3 QTLs were mapped on chromosomes 1, 3 and 8, respectively. These QTLs explained 11.6-18.6% of the total phenotypic variation. The effect of QTLs on chromosome 1 and 3 were confirmed by using chromosome segment substitution lines (SL), carrying Kasalath introgressions in the genetic background on Nipponbare. The Fe uptake in shoots of substitution lines suggests that the effect of the QTL on chromosome 1 was associated with shoot tolerance while the QTL on chromosome 3 was associated with iron exclusion.

Conclusion

Tolerance of certain genotypes were classified into shoot- and root- based mechanisms. Comparing our findings with previously reported QTLs for iron toxicity tolerance, we identified co-localization for some QTLs in both pluse and chronic stresses, especially on chromosome 1.  相似文献   

13.
[目的]挖掘水稻粒重和粒型相关性状QTL,对于解析水稻籽粒遗传机理具有重要作用.[方法]本研究以籼稻9311为受体、粳稻日本晴为供体构建的染色体片段置换系(Chromosome Segment Substitution Lines,CSSLs)群体为材料,在4个环境下对控制稻谷与糙米的粒重和粒型QTL进行了定位分析.[...  相似文献   

14.
水稻顶部三叶与穗重的关系及其QTL分析   总被引:17,自引:2,他引:17  
 摘要: 对水稻汕优63重组自交系群体顶部3张叶片的长、宽、重和单穗重等10个性状进行了相关分析和QTL定位。穗重与9个叶片性状存在极显著的正相关,其中与倒2叶重的相关系数最大,剑叶重次之。所有性状在重组自交系群体中均存在双向超亲分离,接近正态分布。共检测到44个主效QTL和43对双位点互作影响上述10个性状。主效QTL分布于水稻的除第8染色体外的其余11条染色体上,贡献率介于3.19%~26.23%;互作分布于水稻的12条染色体上,贡献率变幅为2.03%~8.93%。第2染色体的R2510-RM211标记区间同时检测到控制单穗重和倒2叶重的QTL,该QTL对超级稻株型育种具有应用价值。  相似文献   

15.
Mapping Quantitative Trait Loci for Palatability of Milled Rice   总被引:1,自引:0,他引:1  
Quantitative trait loci (QTLs) controlling palatability in rice were identified using a set of 98 backcross inbred lines (BILs) population derived from a cross between a japonica variety Nipponbare and an indica variety Kasalath. The palatability scores of the population measured by RQ1/Plus Rice Analyzer, showed a continuous and transgressive segregative distribution with a range from 66 to 92. Four putative QTLs for palatability, qPAL-5, qPAL-7, qPAL-8a and qPAL-8b, were detected on chromosome 5, 7 and 8, and they accounted 7.83, 7.03, 11.58 and 7.19% of the total phenotypic variation, respectively. Three alleles qPAL-5, qPAL-7 and qPAL-8b from Kasalath increased the palatability score, whereas only one Nipponbare allele qPAL-8a increased the score. Eight transgressive lines in palatability were selected to make a comparison between phenotypic and genotypic classes. The result explained the possibility of positive QTLs pyramiding through marker-assisted selection of highly palatable rice.  相似文献   

16.
 水稻叶片的形态改良是水稻株型育种和产量育种的重要目标之一。以9311/日本晴染色体片段置换系(CSSLs)群体为材料,定位了上3叶叶片长、宽、叶面积共9个性状QTL,分析了叶片性状与产量性状之间的相关性,同时定位了主穗重及产量构成因素(颖花数、千粒重、结实率)相关QTL。结果表明,CSSLs群体的叶片性状之间存在显著或极显著相关性;叶片性状与主穗重呈显著或极显著正相关,与主穗颖花数呈极显著正相关;叶片形态多数性状与结实率、千粒重没有显著相关性。两年共定位到20个叶片性状QTL,分布于第1、3、4、5、6、9、11共7条染色体的10个区间,贡献率为3.82%~14.61%,其中贡献率大于10%有6个,多个QTL成簇分布在相同区间,3个QTL在两年间重复检测到,8个QTL为前人未报道的新位点。两年共检测到16个与控制主穗产量相关的QTL,分布于第1、2、3、5、7、8、10共7条染色体13个区间,其中有7个主穗产量相关QTL所在5个区间与叶片形态14个QTL所在区间一致。  相似文献   

17.
特大粒水稻材料粒型性状的QTL检测   总被引:1,自引:0,他引:1  
 利用特大粒粳稻TD70(2011年千粒重达80 g)和籼稻品种Kasalath杂交,经单粒传法获得的240个重组自交系(RIL)为作图群体,分别于2010年和2011年对粒长、粒宽、粒厚性状进行鉴定,用完备区间作图法,以均匀分布于12条染色体的141个SSR标记对粒型性状进行QTL检测。共检测到粒型性状的 QTL 18 个,分布于第2、3、5、7、9和12染色体上。其中,控制粒长的QTL 5个,控制粒宽的QTL 6个,控制粒厚的QTL 7个。两年间均能检测到的QTL有7个,分别为粒长QTL qGL3.1,粒宽QTL qGW2.1、qGW2.2、qGW5.1、qGW5.2,粒厚QTL qGT2.3、qGT3.1;其平均贡献率分别为56.19%、4.42%、29.41%、10.37%、7.61%、21.19%和17.06%。第2染色体RM1347-RM5699区间是粒长、粒宽、粒厚的共同标记区间。第3染色体RM6080-RM6832区间为粒长qGL3.1、粒厚qGT3.1共同标记区间。18 个QTL的增效等位基因均来源于大粒亲本TD70,且增效作用显著。定位的大部分位点包含已报道的精细定位和克隆的主要粒型基因;除第2染色体的qGW2.1(qGT2.1)、qGW2.3、qGL2.2和第12染色体的qGT12等位点已有粒型性状相关报道外,定位的qGT22,qGW9 和qGT9可能是新的QTL。  相似文献   

18.
稻米垩白性状对高温耐性的QTL分析   总被引:1,自引:1,他引:0  
【目的】本研究旨在筛选与稻米外观品质高温耐性连锁的分子标记,为稻米品质育种提供参考。【方法】以耐热水稻品系996和热敏感水稻品系4628为亲本构建的重组自交系为材料,采用垩白粒率耐热指数、垩白大小耐热指数和垩白度耐热指数为评价指标,对水稻垩白性状的高温耐性QTL进行检测。【结果】采用复合区间作图法两年共检测到垩白性状高温耐性QTL 24个,包括垩白粒率高温耐性QTL 8个,垩白大小高温耐性QTL 12个,垩白度高温耐性QTL 4个。其中,第6染色体上的2个垩白粒率高温耐性QTL和第7染色体上的2个垩白度高温耐性QTL在两年中重复检测到,且这2个稳定表达的垩白度位点与2015年检测到的第7染色体上的垩白粒率位点重合。另外,发现有4个QTL一因多效,同时影响垩白粒率、垩白大小及垩白度。【结论】控制垩白粒率耐热指数的q HTCGR6.1和控制垩白度耐热指数的q HTCD7.1是新的QTL。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号