首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of fluoride enriched groundwater for irrigating the paddy crops is prevalent in many parts of the world. The fluoride in the irrigated water not only affects the growth and productivity of the crops, but is also accumulated in the plant tissues. We studied the accumulation of fluoride in roots, leaves and seeds two paddy varieties (i.e. Oryza sativa L. var. IR-36 and Oryza sativa L. var. Swarno) when treated with different concentrations of fluoridated water. The translocation pattern of fluoride was also observed. The water soluble fluoride ( $ {\text{F}}_{{{\text{H}}_{ 2} {\text{O}}}} $ ) in the soil and plant parts increased substantially with increasing fluoride concentration in treated water. The Swarno variety showed a slight but consistent higher uptake of fluoride than the IR-36 variety. Fluoride uptake by the germinated seedlings was many folds higher than the uptake by mature plants. At 30 mg l?1 fluoride exposure, the mean $ {\text{F}}_{{{\text{H}}_{ 2} {\text{O}}}} $ accumulation (mg kg?1 dry weight) in root, leaves, and seeds of Swarno was 54.1, 51.4 and 42.3, whereas the corresponding values in IR-36 were 50.9, 48.5 and 39.2. For the same exposure, the fluoride accumulation in root and shoot of Swarno and IR-36 seedlings were 3,480, 3,463 and 3,386, 3,360 mg kg?1, respectively. Normally, the fluoride accumulation follows the order of soil > root > shoot > grain. However, at early stage of fluoride contamination (5 mg l?1 NaF) roots tended to hyper accumulate fluoride from the soil.  相似文献   

2.
Methane emission from two rice fields of Lambhvel village, Anand district, Central Gujarat, India, was measured for whole cultivation period during pre-summer season. Along with the methane emission, soil chemistry of the two rice fields (Organic Carbon, PO4−2 and SO4−2) was determined. The methane emission ranged from 0.10 to 0.56 mg/m2 per h, having maximum emission during noon period (11 a.m. to 1 p.m.) of the day at the Rice field-1. Besides, at rice field-2, the methane emission ranged between 0.15 and 0.94 mg/m2 per h, having maximum peak during same period (11 a.m. to 1 p.m.) of the day. The results of the current investigation confirm that the methane emission vary substantially between two rice fields, and suggest that soil chemistry and water level might control the methane emission in both the rice fields and suppressed by the phosphate and sulphate concentrations. The greater methane emission was declined with the age of rice plantation. Correlation analysis, ANOVA and F test showed that the methane emission from both the sites has positive correlation with organic carbon and negative correlation with sulfate and phosphate content of the soil and the details of these reasons will be discussed in this paper.  相似文献   

3.
Total antioxidant activity of six non-cultivated but traditionally collected fruits from the south of Europe was assessed by measuring their ability to reduce the hydroxyl radical ( OH· ) \left( {{\hbox{O}}{{\hbox{H}}^\bullet }} \right) and hydrogen peroxide (H2O2), and their Trolox equivalent antioxidant capacity (TEAC). This antioxidant activity was compared with that shown by the synthetic antioxidants BHA (E-320), BHT (E-321) and propyl gallate (E-310). Total phenolics, ascorbic acid and the carotenoid content of the fruits were also analyzed. All fruits showed a high ability to scavenge the OH· {\hbox{O}}{{\hbox{H}}^\bullet } radical, ranging from 60.61% to 81.04% inhibition for Rosa canina and Crataegus monogyna, respectively. The H2O2 scavenging capacity and the TEAC value varied widely, ranging between 3.63% and 87.26% inhibition of H2O2 and between 0.47 and 416.64 mM trolox g−1 FW for Sorbus domestica and Rosa canina, respectively. The antioxidant activity of fruits was higher than that of the synthetic additives analyzed, except in the TEAC assay. The phenolic and carotenoid content of R. canina was much higher than that of the other fruits analyzed and its ascorbic acid concentration was also high, reflecting its higher efficacy towards ABTS ·- {\hbox{ABT}}{{\hbox{S}}^{ \bullet - }} (TEAC assay) and H2O2 species. In spite of these associations, the correlation coefficients between total antioxidant activity and the antioxidant compounds analyzed were not very significant; only phenolics and carotenoids showed a marginal correlation with the TEAC assay. The results support the possible use of R. canina as natural antioxidant to replace the synthetic additives, as well as their use in the production of functional foods with a high antioxidant activity.  相似文献   

4.
The presence of arsenic in irrigation water and in paddy field soil were investigated to assess the accumulation of arsenic and its distribution in the various parts (root, straw, husk, and grain) of rice plant from an arsenic effected area of West Bengal. Results showed that the level of arsenic in irrigation water (0.05–0.70 mg l−1) was much above the WHO recommended arsenic limit of 0.01 mg l−1 for drinking water. The paddy soil gets contaminated from the irrigation water and thus enhancing the bioaccumulation of arsenic in rice plants. The total soil arsenic concentrations ranged from 1.34 to 14.09 mg kg−1. Soil organic carbon showed positive correlation with arsenic accumulation in rice plant, while soil pH showed strong negative correlation. Higher accumulation of arsenic was noticed in the root (6.92 ± 0.241–28.63 ± 0.225 mg kg−1) as compared to the straw (1.18 ± 0.002–2.13 ± 0.009 mg kg−1), husk (0.40 ± 0.004–1.05 ± 0.006 mg kg−1), and grain (0.16 ± 0.001–0.58 ± 0.003 mg kg−1) parts of the rice plant. However, the accumulation of arsenic in the rice grain of all the studied samples was found to be between 0.16 ± 0.001 and 0.58 ± 0.003 mg kg−1 dry weights of arsenic, which did not exceed the permissible limit in rice (1.0 mg kg−1 according to WHO recommendation). Two rice plant varieties, one high yielding (Red Minikit) and another local (Megi) had been chosen for the study of arsenic translocation. Higher translocation of arsenic was seen in the high yielding variety (0.194–0.393) compared to that by the local rice variety (0.099–0.161). An appreciable high efficiency in translocation of arsenic from shoot to grain (0.099–0.393) was observed in both the rice varieties compared to the translocation from root to shoot (0.040–0.108).  相似文献   

5.
Future space exploration by humans will require reliable supplies of food, oxygen and clean water to sustain the expeditions. Potato is one of several crops being studied for such a “life support” role. Tests sponsored by the US National Aeronautics and Space Administration (NASA) confirmed the well-known short day tendencies for tuberisation, but also revealed that some cvs. (e.g., Norland, Denali and Russet Burbank) could tuberise well under continuous high light. Horticultural tests showed that plants grew well and tuberised readily using a nutrient film technique (NFT). CO2 enrichment studies with potato showed typical C3 responses in photosynthesis and yield, with maximum rates occurring near 1000 μmol mol−1. The highest tuber yields from these controlled environment studies reached 19.7 kg FM m−2 or equivalent to nearly 200 t ha−1. This equated to a productivity of 38 g m−2 DM m−2 day−1. Stand evapotranspiration (ET) rates ranged from 3.4 to 5.2 l m−2 day−1 throughout growth, while maximum ET rates for canopies could approach 10 l m−2 day−1. Harvest indices (tuber DM/total DM) typically ranged from 0.7 to 0.8, indicating that waste (inedible) biomass from potato would be less than that from many other crops. An experiment was conducted in 1995 on NASA’s Space Shuttle using excised potato leaves to study tuber formation at axillary buds during spaceflight. The results showed that tubers formed equally well in space as in the ground controls, indicating that reduced gravity should not be an impediment to tuberisation.  相似文献   

6.
While many water-saving rice production techniques have been adopted in China, the environmental effects of these techniques require further investigation. This study aims to assess nitrogen (N) and phosphorus (P) leaching losses under real conditions in different water and N managements. Two water and three N treatments are conducted in the Taihu Lake region of China. Results show that the total N leaching losses during the rice season under flooding irrigation (FI) are 12.4, 9.31, and 7.17 kg ha−1 for farmers’ fertilization practices (FFP), site-specific N management (SSNM), and controlled-release nitrogen fertilizer management (CRN), respectively. Under controlled irrigation (CI), the respective losses were 7.40, 5.86, and 3.79 kg ha−1 for the same management methods. The total P leaching losses during the rice season under FI were 0.939, 0.927, and 0.353 kg ha−1 for FFP, SSNM, and CRN, respectively. Under CI, the losses were 0.424, 0.433, and 0.279 kg ha−1, respectively, for the same management methods. Ammonium and nitrate N accounted for 42.2–65.5% and 11.8–14.7% of the total nitrogen leaching losses under different water and N management methods, respectively. Due to significant decrease of volumes of percolation water and nitrogen and phosphorus concentrations in percolation water, N and P leaching losses were reduced in the CI treatment compared to the FI treatment under the same N management. The reduction of N input and application of controlled-release nitrogen fertilizer can reduce N and P leaching losses from paddy fields.  相似文献   

7.
In order to assess direct seeding of rice technology to cope with future agricultural labor shortage in Cambodia, agronomic experiments were conducted in 2005 and 2006 to compare direct seeding with transplanting under three water conditions (non-flooded, shallow flooded, and deep flooded conditions) with/without weed control by herbicides (bentazone and cyhalofop-butyl) for two Cambodian rice varieties (shorter stature and early maturity Sen Pidao, taller stature and longer maturity Phka Rumduol). Average rice yield in 2 years was lower in direct seeding (341 g m−2) than transplanting (404 g m−2), but interaction components with year, varieties, water conditions, and weed management were significant, and the attained maximum yield of direct seeding (510 and 464 g m−2 for Phka Rumduol variety in shallow flooded condition with weeding in 2005 and 2006, respectively) was similar to that of transplanting. Plant length and dry weight of rice were reduced in non-flooded and deep flooded conditions compared with shallow flooded condition, and grain yield was the highest in shallow flooded condition. Yield advantage of Phka Rumduol over Sen Pidao increased under direct seeding, particularly under non-flooded conditions in 2005 because weed infestation was more suppressed in Phka Rumduol even without weeding. Increase in 100 g m−2 of weed infestation prior to heading (dry weight basis) reduced about 20% of attainable yield with weed control. This study identified importance of stature and growth duration of rice varieties and presence of standing water as well as the weed control, in order to develop and extend direct seeding in the Cambodia.  相似文献   

8.
Ponded water convection kinetics should be altered by growth stages of rice plants. We investigated the convective velocity of ponded water in a vegetated paddy field. The convective velocity was measured using the equipment through use of the principle of a hot-wire anemometer, and the temperature profile of the ponded water was measured using lysimeters with and without paddy rice vegetation. The maximum convective velocity in a vegetated plot was 0.7 mm s−1, slower than the maximum velocity in an unvegetated plot, which was 1.6 mm s−1. The convective velocity in a vegetated plot increased slightly when the temperature of the surface water was higher than that near the soil, between 09:00 and 17:00.  相似文献   

9.
The objective of this research was to investigate the critical water content (θ c) and water stress coefficient (K s) of soybean plant under deficit irrigation. This research was conducted in a plastic house at the University of Lampung, Sumatra in Indonesia from June to September 2000. The water deficit levels were 0–20%, 20–40%, 40–60%, 60–80%, and 80–100% of available water (AW) deficit, arranged in Randomized Completely Block (RCB) design with four replications. The results showed that the soybean plant started to experience stress from week IV within 40–60% of AW deficit. The fraction of total available water (TAW) that the crop can extract from the root zone without suffering water stress (p) was 0.5 and θc was 0.305 m3 m−3. The values of K s at p=0.5 were 0.78, 0.86, 0.78, and 0.71 from week IV to week VII, respectively. The optimum yield of soybean plant with the highest yield efficiency was reached at 40–60% of AW deficit with an average K s value of 0.78; this level of deficit irrigation could conserve about 10% of the irrigation. The optimum yield of soybean plant was 7.9 g/pot and crop water requirement was 372 mm.  相似文献   

10.
Percolation loss of water in rice fields is a major cause of low water use efficiency. Variation of infiltration rate and soil compactness in four paddy fields (with clay, silty clay, clay loam, and loam textures) was investigated in northern Iran. In each field, in longitudinal and transverse directions, points located 0.5, 2.5, 6.5, 12.5, … m from the bunds were selected and water infiltration rate and resistance to penetration of a pocket penetrometer were measured. The results showed that in clay soil, average final infiltration rate (f c) in longitudinal direction, transverse direction, and center of the field was 0.216, 0.136, and 0.08 cm day−1, respectively. The f c for loamy soil was 2.77, 2.32, and 0.409 cm day−1, respectively. Similar differences were observed in the other two soil textures. In general, effect of direction of the field for measuring infiltration rate was not statistically significant. Loam and clay loam soils, with resistance to penetration of 0.37 and 0.33 kg cm−2, were not significantly different. But, clay and silty clay soils with resistance to penetration of 0.25 and 0.14 kg cm−2 were significantly different (P < 0.05). Resistance to penetration of the penetrometer was not affected significantly (P < 0.05) by direction of measuring this parameter in the field. The conclusion is that if measured soil physical properties in a paddy field are going to be representative of the whole field, they should be measured at different locations, especially near the bunds. Another strategy for obtaining a representative infiltration rate or compactness for a paddy field is uniform puddling of the field.  相似文献   

11.
A field study was conducted at Al-Mishkhab Rice Research Station (MRRS) during the summer season 2009 to evaluate irrigation water use efficiency (IWUE) using Anbar 33 variety with the System of Rice Intensification compared to traditional methods. During the growth phase, the number of leaves, stems, and roots, and the average plant height were measured every 15 days for the two sets of methods. At maturity, the depth and length of plant roots was assessed, along with leaf area index (LAI) of the flag leaf and plant height. The amount of irrigation water applied was measured by water meter for both methods. SRI principles for plant age, spacing, etc., were implemented in the SRI plots. The results indicated more vigorous growth of roots under SRI methods, reaching 13,004 cm plant−1 compared with non-SRI results of 4,722 cm plant−1. There was 42% increase in grain yield when SRI methods were used. These had water use efficiency (WUE) of 0.291 kg m−2 compared with WUE of 0.108 kg m−2 for non-SRI cultivation, almost a threefold difference. SRI practices reduced the need for irrigation water by 38.5%.  相似文献   

12.
Labour and water scarcity in north west India are driving researchers and farmers to find alternative management strategies that will increase water productivity and reduce labour requirement while maintaining or increasing land productivity. A field experiment was done in Punjab, India, in 2008 and 2009 to compare water balance components and water productivity of dry seeded rice (DSR) and puddled transplanted rice (PTR). There were four irrigation schedules based on soil water tension (SWT) ranging from saturation (daily irrigation) to alternate wetting drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. There were large and significant declines in irrigation water input with AWD compared to daily irrigation in both establishment methods. The irrigation water savings were mainly due to reduced deep drainage, seepage and runoff, and to reduced ET in DSR. Within each irrigation treatment, deep drainage was much higher in DSR than in PTR, and more so in the second year (i.e. after 2 years without puddling). The irrigation input to daily irrigated DSR was similar to or higher than to daily irrigated PTR. However, within each AWD treatment, the irrigation input to DSR was less than to PTR, due to reduced seepage and runoff, mainly because all PTR treatments were continuously flooded for 2 weeks after transplanting. There was 30–50% irrigation water saving in DSR-20 kPa compared with PTR-20 kPa due to reduced seepage and runoff, which more than compensated for the increased deep drainage in DSR. Yields of PTR and DSR with daily irrigation and a 20 kPa irrigation threshold were similar each year. Thus irrigation and input water productivities (WPI and WPI+R) were highest with the 20 kPa irrigation threshold, and WPI of DSR-20 kPa was 30–50% higher than of PTR-20 kPa. There was a consistent trend for declining ET with decreasing frequency of irrigation, but there was no effect of establishment method on ET apart from higher ET in DSR than PTR with daily irrigation. Water productivity with respect to ET (WPET) was highest with a 20 kPa irrigation threshold, with similar values for DSR and PTR. An irrigation threshold of 20 kPa was the optimum in terms of maximising grain yield, WPI and WPI+R for both PTR and DSR. Dry seeded rice with the 20 kPa threshold outperformed PTR-20 kPa in terms of WPI through maintaining yield while reducing irrigation input by 30–50%.  相似文献   

13.
Effect of PRD (partial rootzone drying) on yield and yield components of canola (Brassica napus L.) was investigated in greenhouse conditions. The treatments were: T1, full watering of both sides of roots; T2, alternate irrigation on both sides; T3, half of irrigation water in T1 was given to one side; T4, same as T3 but without plate; T5, same as T2 but without plate. In T1, T2, and T3 treatments, the boxes were evenly separated into two compartments with thin plates. The results showed that grain yield of T1 to T5 treatments was 18.11, 16.38, 12.44, 9.29, and 8.66 g plant−1. T2 treatment increased plant height by 46.9% and 1000-seed weight by 17.8%, but reduced lateral branches by 16.7% and number of pods by 24%, over T1 treatment. T2 treatment was the most efficient (irrigation water use efficiency = 0.679 kg m−3) and treatment T5 was the least efficient (0.359 kg m−3). The difference between irrigation water use efficiency (IWUE) of T2 and T5, and T3 and T4 treatments, was significant (p < 0.05). Therefore, halving the amount of applied irrigation water and applying this water alternatively on both sides of the root zone will produce the highest IWUE. This study showed that PRD irrigation management has high influence on rooting system of canola. This phenomenon could affect nutrients uptake and consequently all aspects of plant growth and development.  相似文献   

14.
Summary Leaf stomatal resistance varies considerably in response to changes in environmental conditions. Understanding cultivar differences in the response of stomata to these conditions is important for effectively simulating water-use and growth. In this study the stomatal resistance of three field grown potato (Solanum tuberosum L.) cultivars Atlantic. Monona and Norchip was observed in response to photosynthetic photon flux density, leaf to air vapour pressure difference and root zone available soil water. Substantial variation in stomatal resistance was accounted for by functions of the environmental variables for both Monona and Norchip. The explained variation for Atlantic was considerably less. Light saturation occurred near 500 μmol m−2 s−1. Increasing stomatal resistance above 1000 μmol m−2s−1 was also observed but is likely an artifact of stomatal closure on days in which mid-day leaf water potentials dropped below critical levels. Although the leaf presumably insufficient to obtain substantial effects. The soil water status was partially linked to the average 1000 h to 1500 h stomatal resistance on clear, sunny days. Significant differences were observed among the cultivars in the response of stomata to changes in the available soil water.  相似文献   

15.
Enhancing the performance of transplanted coarse rice by seed priming   总被引:1,自引:0,他引:1  
Raising the rice seedlings in the nursery and its transplantation into the flooded fields is principal method of rice cultivation in the world. Traditional nursery raising method in Pakistan is tedious and produces week seedlings, which reduces the final yield due to high mortality. The potential of seed priming to improve the nursery seedlings and thus the transplanted rice was evaluated in the present study. Seed priming tools employed during the investigation included traditional soaking (pre-germination), hydropriming for 48 h, osmohardening (KCl or CaCl2) (ψs-1.25 MPa) for 24 h (1 cycle), ascorbate priming (with 10 ppm ascorbate) for 48 h or seed hardening for 24 h. Priming improved nursery seedling vigor and resulted in improved growth, yield and quality of transplanted rice. Osmohardening (KCl) consequently resulted in the best performance, followed by osmohardening (CaCl2), hardening and ascorbate priming. Osmohardening (KCl) produced 4.28 t ha−1 (vs. 3.51 t ha−1 from untreated control) kernel yield, 10.27 t ha−1 (vs. 9.34 t ha−1 from untreated control) straw yield and 29.41% (vs. 27.31% from untreated control) harvest index. The improved yield was attributed to increase in number of fertile tillers.  相似文献   

16.
Summary The weight in water (m u ) of 100 g air-free potatoes multiplied by the dry matter factor (K) equals the percentage dry matter (m t ) in the tubers. The weight in water is unaffected by the water in the potatoes but is reduced by air in the intercellular spaces and must be corrected for this by a constantk. From the specific gravity of the dry matter the factorK is estimated as 2.50. From the weight in water and the percentage of dry matter estimated by oven-drying of 5.413 samples between 1937 and 1964.K is also estimated as 2.50. The amount of air in potatoes varies. In 1.911 samples examined between 1937 and 1948 air reducedM u on average by 0.8g, therefore,m t (m u +0.8)·2.5 orm t ·m u 2.5–2.00., In 2,732 samples examined between 1952 and 1964 the reduction was 0.6 g therefore,m t —(m u —0.6) 2.5 orm t ·m u ·2.5+1.5. The percentage dry matter can be calculated more exactly from the weight in water of potatoes from which the air has been evacuated by immersing the tubers in water in a closed container and subjecting to vacuum (50–20 mm Hg) for about 30 minutes.
Zusammenfassung Die Beziehung zwischen Unterwassergewicht (m w ) und Trockensubstanzgehalt (m t ) von 100 g Kartoffeln wurde untersucht. In den Jahren 1937 bis 1964 wurde bei 5413 Mustern zu 5 kg von verschiedenen Kartoffelsorten das folgende Verh?ltnis festgestellt:K−m t /m w −2,5 auf der Basis von zunehmendemm w bei zunehmendemm t (Tabelle 1). Das spezifische Gewicht (d) der Trockensubstanz wurde bestimmt auf Grund der Wasserverdr?ngung, und das Verh?ltnisd/(d−1) wird Trocken-substanzfaktor K genannt. Im Jahre 1952 wurde das mittlere spezifische Gewicht von 26 Mustern mit 1,6689 errechnet. Daraus kann geschlossen werden, dassK−m t /m w −1,6689/(1,6689-1)−2,5 ist. Dieser Wert für K stimmt mit der für die 5413 Munster erhaltenen Zahl überein. Wenn diese Bestimmung ohne Fehler ist, erhalten wir:m t −m w K. In der Regel jedoch wird die Bestimmung vonm w einem systematischen Fehler unterliegen, allgemein ungef?hr gleichwertig dem Volumen von luftgefüllten Interzellularr?umen. Diese vergr?ssern das Volumen der Kartoffeln und dadurch auch deren Wasserverdr?ngung, jedoch ohne Erh?hung des Kartoffelgewichtes, so dassm w reduziert wird. Der Umfang, durch den das Unterwassergewichtm w reduziert wird, variiert stark von Muster zu Muster und macht so die Bestimmung vonm w unsicher. Wenn man die Luft durch Vakuumbehandlung aus den Kartoffeln entfernt und dann die Interzellularr?ume sich mit Wasser füllen l?sst, wird der Wert vanm w erh?ht undm w K wird fast gleich gross wiem t . Wird die Vakuumbehandlung unterlassen, so muss eine Konstantek zum t hinzugez?hlt werden. Bei 1911 Mustern, die zwischen 1937 und 1948 untersucht wurden, hat man festgestellt, dass die Luftm w im Mittel um 0,8 g herabsetzte, daher warm t (m w −0,8)−2,5 oderm t m w 2,5+2,00. Bei 2732 zwischen 1952 und 1964 geprüften Mustern betrug die Reduktion 0,6 g, alsom t −(m w +0,6)−2,5 oderm t −m w 2,5+1,50. Selbst wenn der Mittelwert für eine grosse Zahl von Mustern bestimmt wird, variiert der Wert vonk entsprechend der Sorte und den Wachstumbedingungen. Aus diesem Grunde sollte der Wertk mit gebührender Rücksicht auf die lokalen Bedingungen fixiert werden. Im Gegensatz zuk scheint es, als obK 2,50 mit einem hohen Grad an Genauigkeit, entsprechendd/(d−1)−K bestimmt worden sei. Durch Bestimmung vond bei 27 Kartoffeltrockensubstanzmustern im Jahre 1965 wurde festgestellt, dassd=1,6694 undK−2,494 ist. Wenn alle Interzellularr?ume mit Wasser gefüllt sind, wird der Trockensubstanzgehalt durch Multiplikation des Unterwassergewichtes der Knollen (m w ) mit 2,50 errechnet. Anderseits gibt es keine Methode zur Bestimmung des St?rkegehaltes (m s ) ausm w . Das Verh?ltnis zwischenm w undm s muss durch direkte St?rkebestimmungen gefunden werden. In Tylstrup wurden 266 St?rkebestimmungen mittels derEwers-Methode (1908) vorgenommen. Die Ergebnisse zeigten, dass der St?rkegehalt in Prozent (m s ) eventuell durchm s −(m w −2,39)–2,28 errechnet werden kann. Der 1948 bis 1951 ermittelte St?rkegehalt ist infolge Vorhandenseins von Pektin wahrscheinlich zu hoch. Wenn die Muster für die St?rkebestimmung durch Bleiacetat bei pH 8 gekl?rt werden, kann das Pektin beseitigt werden. Es scheint jedoch, dass zusammen mit und im Verh?ltnis zum Pektingehalt ausserdem etwas St?rke scheinbar verschwindet. Dies dürfte verhütet werden, wenn dem Muster HCl beigefügt wird, bis der pH ungef?hr 2 betr?gt, bevor das Bleiacetat dazugewird. Muster, die mit 0,116 N HCl fiitriert und ausgewaschen werden, ergeben nahezu gleiche Ergebnisse, ob Bleiacetat bei pH 2 oder 8 hinzugegeben wird. In Tylstrup wurden von 1962 bis 1964 an 165 Mustern St?rkebestimmungen vorgenommen. Diese Analysen zeigten, dassm s =(m w −2,42)−4,10 entspricht. Auf Grund der Unteruchungen in Tylstrup zwischen 1952 und 1964 wurde die Tabelle 4 vorbereitet, die erlaubt, den Trockensubstanz-und St?rkegehalt in Prozent vom Unterwassergewicht eines Kartoffelmusters zu ermitteln, und zwar in beiden F?llen, d.h. wenn die Luft aus den Knollen entfernt oder nicht entfernt worden ist.

Résumé On a recherché la relation entre le poids sous eau (m w ) et la teneur en matièrè sèche (m t ) de 100 g de pommes de terre. Durant la période 1937–1964, sur 5413 échantillons de différentes variétés de pommes de terre, chaque échantillon pesant 5 kg, on a trouvé que cette relation était:K=m t /m w =2,5 sur la base d'une augmentationm w avec une augmentation dem t (Tableau 1). Le poids spécifique (d) de la matière sèche est déterminé sur la base du déplacement d'eau et la relationd/(d−1) désignele facteur K de la matière sèche. En 1952 le poids spécifique moyen de 26 échantillons a été trouvé être 1,6689. De deci on peut déduire queK=m t /m w −1,6689/(1,6689−1)=2,5. Cette valeur deK s'accorde avec le chiffre obtenu à partir de 5413 échantil-Si la détermination est faite sans erreur nous obtenons:m t =m w K. Cependant, la détermination dem w sera, généralement, entachée d'une erreur systématique largement égale au volume des espaces intercellulaires remplis d'air. Ceux-ci accroissent le volume de pommes de terre et ainsi le déplacement d'eau, sans accro?tre le poids des pommes de terre etm w sera diminué. L'importance de la réduction varie grandement d'un échantillon à l'autre, rendant de la sorte la détermination dem w incertaine. En évacuant l'air des pommes de terre par traitement par le vide et permettant alors aux espaces intercellulaires de se remplir d'eau, la valeur dem w augmente etm w K devient plus étroitement égal àm t . Si le traitement par le vide est omis, une constantek doit être ajoutée àm t . Sur 1911 échantillons examinés entre 1937 et 1948 on a trouvé que l'air réduisaitm w de 0,8 g en moyenne et, par conséquent,m t −(m w +0,8) =2,5 ou m t −m w =2,5+2,00. Pour 2732 échantillons examinés entre 1952 et 1964, la diminution était de 0,6 g, par conséquent,m t −(m w +0,6)=2,5 oum t −m w =2,5+1,5. Même si la valeur moyenne pour un grand nombre d'échantillons est déterminée, la valeur dek variera suivant à la fois la variété et les conditions de croissance. Pour cette raison, la valeurk devrait être fixée en égard aux conditions locales. Au contraire dek il semblerait queK=2,5 a été déterminé avec un degré élevé de sécurité suivantd/(d−1)−K. En déterminantd sur 27 échantillons de matière sèche de pommes de terre en 1965 on a trouvé qued=1,6695 etK=2,494. Si tous les espaces intercellulaires sont remplis d'eau, la teneur en matière sèche est déterminée en multipliant le poids sous eau des tubercules (m w ) par 2,5. D'autre part, il n'existe aucune méthode pour déterminer la teneur en amidon (m s ) à partir dem w . La relation entrem w etm s doit être trouvée par des déterminations directes d'amidon. A Tylstrup, 266 déterminations d'amidon ont été faites par la méthodeEwers (1908). Les résultats montrent que le pourcentage d'amidon (m s ) peut être déterminé parm s =(m w +2,39)−2,28. Le pourcentage d'amidon trouvé de 1948 à 1951 est probablement trop élevé en égard à la présence de pectine. Si les échantillons pour détermination de l'amidon sont clarifiés au moyen d'acétate de plomb au pH d'environ 8, la pectine peut être enlevée. Il se révèle cependant qu'apparemment de l'amidon dispara?t aussi en même temps et proportionellement à la teneur en pectine. Ceci peut être évité en ajoutant HCl à l'échantillon jusqu' à ce que le pH soit d'environ 2, avant d'ajouter l'acétate de plomb. Les échantillons filtrés et lavés avec 0,116 N HCl donneront des résultats presque identiques, soit que l'acétate de plomb soit ajouté au pH 2 ou 8. Les déterminations d'amidon ont été faites sur 165 échantillons à Tylstrup de 1962 à 1964. Les analyses montraient quem s −(m w +2,42)−4,10. Sur la base des recherches à Tylstrup entre 1952 et 1964 on a établi le Tableau 4 qui permet de déterminer le pourcentage de matière sèche et le pourcentage d'amidon à partir du poids sous eau d'un échantillon de pommes de terre, à la fois quand l'air est ou n'est pas enlevé des tubercules.
  相似文献   

17.
The amount of photosynthetically active radiation (PAR) in the water column is of fundamental importance in determining the growth of aquatic plant and aquatic primary production. Light attenuation in aquatic ecosystems has important ecological implication and water quality applications. In the present study, the light attenuation through the water column in the Shihmen Reservoir, Taiwan was measured. A light attenuation coefficient (K e) can be derived from the PAR measurements at each stations. The linear regression analysis reveals that Secchi disk depth is a sample alternative measure of light transmitability and provides a reasonable estimate of the light attenuation coefficient in the Shihmen Reservoir. We conducted multiple-regression analysis for the K e, chlorophyll a, and total suspended solids (TSS). Because the concentration of chlorophyll a is roughly <5 μg/L in the Shihmen Reservoir, the chlorophyll contribution to the attenuation coefficient will be <0.1 m−1, which is negligible. K e correlated with TSS concentration yields a good correlation, indicating the TSS should be a good water quality variable for predicting water column light attenuation coefficient in the Shihmen Reservoir.  相似文献   

18.
The present study was carried out to evaluate nutrient losses that occur during the course of agricultural activity from rice paddy fields of reclaimed tidal flat. For this study, we chose a salt-affected rice paddy field located in the Saemangeum reclaimed tidal area, which is located on the western South Korean coasts. The plot size was 1,000 m2 (40 m × 25 m) with three replicates. The soil belonged to the Gwanghwal series, i.e., it was of the coarse silty, mixed, mesic type of Typic Haplaquents (saline alluvial soil). The input quantities of nitrogen and phosphorus (as chemical fertilizer) into the experimental rice paddy field were 200 kg N ha−1 and 51 kg P2O5 ha−1 per annum, and the respective input quantities of each due to precipitation were 9.3–12.9 kg N ha−1 and 0.4–0.7 kg P ha−1 per annum. In terms of irrigation water, these input quantities were 4.5–8.2 kg N ha−1 and 0.3–0.9 kg P ha−1 per annum, respectively. Losses of these nutrients due to surface runoff were 22.5–38.1 kg N ha−1 and 0.7–2.2 kg P ha−1 for the year 2003, and 26.8–29.6 kg N ha−1 and 1.6–1.9 kg P ha−1 for the year 2004, respectively. Losses of these nutrients due to subsurface infiltration during the irrigation period were 0.44–0.67 kg N ha−1 and 0.03–0.04 kg P ha−1 for the year 2003, and 0.15–0.16 kg N ha−1 and 0.05–0.06 kg P ha−1 for 2004. When losses of nitrogen and phosphorus were compared to the amount of nutrients supplied by chemical fertilizers, it was found that 11.3–19.1% of nitrogen and 0.5–1.7% of phosphorus were lost via surface runoff, whereas subsurface losses accounted to 0.2–0.8% for nitrogen and only 0.02–0.04% for phosphorus during the 2-year study period.  相似文献   

19.
A simple and rapid method for the determination of naturally occurring, potentially hazardous glycoalkaloids (GAs) in potatoes and their products has been developed. The procedure is based on the on-line solid-phase extraction of the acetic acid extracts from potato products and combined with liquid chromatography (LC)-mass spectrometry (MS) in a fully automated system (Symbiosis™, Spark Holland Instruments, Emmen, The Netherlands). As sorbent material HySphere™ 18HD was used for alkaloid enrichment. GAs were eluted with the LC gradient and directly analysed by MS. Detection of the analytes was achieved in the sensitive multiple reaction monitoring mode using two characteristic ions (m/z 98 as a qualifier for GAs and m/z 868.3 as a quantifier for α-solanine or m/z 852.4 for α-chaconine). Typical validation data for method precision (v k α-solanine = 5.3–6.5, v k α-chaconine = 3.4–15.4), accuracy (average recovery of α-solanine = 84%, average recovery of α-chaconine = 87%) and linearity over the range from 1 to 1,000 ng ml−1 (R 2 = 0.9915 for α-solanine, R 2 = 0.9939 for α-chaconine) with detection limits of 0.3 ng ml−1 for α-chaconine and 0.5 ng ml−1 for α-solanine were obtained. GA contents of commercial potato products were determined by the new on-line method and afterwards compared with those obtained with an established high-performance LC routine procedure. Better performance of the on-line procedure was obvious from the standard deviations of both methods. Other advantages included a strong reduction of overall analysis time, human intervention and solvent consumption as well as waste production. The time required for the on-line analysis was 5 min, which would allow processing of almost 100 samples in 8 h.  相似文献   

20.
Insufficient puddling with inappropriate implements or imprecise time/intensity may alter saturated water flow in paddy soil spatially or temporary due to change in aggregate size distribution, dry bulk density, saturated hydraulic conductivity, and percolation rate of the soil. In this study, spatial variability of saturated hydraulic conductivity (K s), a key parameter of the saturated water flow, in Fuchu Honmachi paddy plot (100 m × 28 m) was characterized based on dielectric or ADR dry bulk density (ρb-ADR) with help of non-similar media concept (NSMC) and geostatistics model to meet its correlation to subsurface percolation. A 100 cc core and an ADR data were sampled from each sub-plot (7 m × 7.5 m), and then were used for measuring and predicting ρb and K s. The predicted data agreed with the measured ones, in which they fitted well the x = y line with RMSE of 0.029 cm3 cm−3 (R 2 = 0.68), 0.027 g cm−3 (R 2 = 0.71) (ρb), and 0.098 cm d−1 (R 2 = 0.45) for θ, ρb, and K s, respectively. The predicted ρb and K s had similar trend in spatial variability to the measured ones particularly within the distance of 46.3–51.9 m and 26.2–27.9 m, respectively. The spatial variability of the predicted K s coincided to that of the subsurface percolation rate, in which they had similar distance of dependence. The results indicated that the presenting method can be reasonably accepted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号