首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 423 毫秒
1.
The effect of chemical treatment i.e. bleaching, alkalization and graft copolymerization on the morphology changes of okra bast fiber has been investigated by means of infrared spectroscopy (IR), scanning electron microscopy (SEM), water absorption and tensile properties measurements. The graft copolymerization reaction of bleached fiber with acrylonitrile monomer (AN) has been carried out under the catalytic influence of K2S2O8 and FeSO4 redox system. The maximum graft yield (11.43 %) has been found at 70°C temperature, 3×10−2 mol/l acrylonitrile, 5×10−3 mol/l K2S2O8, 5×10−3 mol/l FeSO4 and for 90 min. On the contrary, the fiber has been treated with 10 % NaOH solution, which is much effective to remove the impurities. Based on findings of water absorption, tensile properties and SEM micrograph, the AN-grafted fiber has been showed better properties than bleached and alkali treated fibers. The degree of modification of okra bast fiber by chemical treatment has been evaluated by IR measurement.  相似文献   

2.
In this study, N-Carbazole and its derivatives (N-Vinylcarbazole, N-Ethylcarbazole, N-Vinylbenzylcarbazole, and N-Benzylcarbazole) were electrochemically polymerized on carbon fiber microelectrodes (diameter ∼7 μm) by cyclic voltammetry within a potential range from 0.0 to 1.4 V. Redox parameters, Scanning electron microscopic (SEM) images were determined and also capacitance behaviors of polymers were examined via electrochemical impedance spectroscopy (EIS). EIS measurements of polycarbazole derivatives were given comparatively. The existence of a capacitance behavior is shown by Nyquist, Bode magnitude, Bode-phase, Admittance plots relationship. Although the highest low frequency capacitance (CLF=12901 μA cm−2) and maximum phase angle of 81.9 ° at a frequency of 1 Hz were obtained for N-Vinylbenzylcarbazole, the lowest anodic and cathodic potential difference (ΔE=0.04 V) and double layer capacitance (C dl =0.11 μA cm−2) were indicated in 0.1 M LiClO4/PC.  相似文献   

3.
Enhancing the performance of transplanted coarse rice by seed priming   总被引:1,自引:0,他引:1  
Raising the rice seedlings in the nursery and its transplantation into the flooded fields is principal method of rice cultivation in the world. Traditional nursery raising method in Pakistan is tedious and produces week seedlings, which reduces the final yield due to high mortality. The potential of seed priming to improve the nursery seedlings and thus the transplanted rice was evaluated in the present study. Seed priming tools employed during the investigation included traditional soaking (pre-germination), hydropriming for 48 h, osmohardening (KCl or CaCl2) (ψs-1.25 MPa) for 24 h (1 cycle), ascorbate priming (with 10 ppm ascorbate) for 48 h or seed hardening for 24 h. Priming improved nursery seedling vigor and resulted in improved growth, yield and quality of transplanted rice. Osmohardening (KCl) consequently resulted in the best performance, followed by osmohardening (CaCl2), hardening and ascorbate priming. Osmohardening (KCl) produced 4.28 t ha−1 (vs. 3.51 t ha−1 from untreated control) kernel yield, 10.27 t ha−1 (vs. 9.34 t ha−1 from untreated control) straw yield and 29.41% (vs. 27.31% from untreated control) harvest index. The improved yield was attributed to increase in number of fertile tillers.  相似文献   

4.
In this research, a novel cotton fiber with a silk fibroin (SF) coating was prepared by the oxidation of a cotton thread with sodium periodate and subsequent treatment in a solution of silk fibroin. The structures of both the oxidized cotton samples and the SF modified cotton samples were investigated by Fourier transform infrared (FT-IR) in combination with X-ray photoelectron spectroscopy (XPS) analysis. Other performances such as surface morphology and breaking strength were also studied. The results indicated that the weight of the oxidized cotton samples increased during SF treatment, while that of the un-oxidized cotton (pure cotton) samples reduced after SF treatment. Compared with the pure cotton samples, the oxidized cotton clearly showed a characteristic absorption band at 1730 cm−1 due to the stretching vibration of the C=O double bond of the aldehyde group. After being treated with the SF solution, the oxidized cotton fiber showed a weakened characteristic absorption band at 1730 cm−1 and a new absorption band at round 1540 cm−1, suggesting the formation of C-N bond between aldehyde groups in the oxidized cotton and primary amines in the silk fibroin. The results were also confirmed by XPS analysis. Compared with the oxidized cotton samples, the SF treated cottons had relatively smooth surfaces, similar breaking strength, and the improved wrinkle recovery angles. The results in this research suggest that cotton based materials with protein coating can be achieved without using any other crosslinking agents by the method introduced.  相似文献   

5.
Structural transformations taking place during the thermal stabilization of polyacrylonitrile (PAN) fiber used for the production of carbon fiber were characterized using a combination of polarized infrared spectroscopy, thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and density measurements. Direct relationship between the increasing oxygen content and the density values was confirmed with increasing stabilization time. Linear density values were found to be directly influenced by the stabilization time. Thermal stability of stabilized precursor fibers was evaluated in terms of weight loss and residual weight fraction. The results showed that a residual weight fraction of 65 % at 1000 °C can be obtained but longer stabilization time resulted in a loss of residual weight fraction due to excessive thermal degradation. SEM was used for the observation of surface morphological features of stabilized precursor fibers. Polarized infrared spectroscopy showed the loss of molecular orientation of methylene (CH2), nitrile (Ct=N), and carbonyl (C=O) groups in direct response to the effects of cyclization, dehydrogenation, and amorphization (i.e. decrystallization) processes taking place during the stabilization stage.  相似文献   

6.
It is well known residual gum exists in degummed or retted hemp fibres. Gum removal results in improvement in fibre fineness and the properties of the resultant hemp yarns. However, it is not known what correlation if any exists between the residual gum content in retted hemp fibres and the fibre fineness, described in terms of fibre width in this paper. This study examined the mean width and coefficient of variation (CV) of fibre width of seventeen chemically retted hemp samples with reference to residual gum content. The mean and CV of fibre width were obtained from an Optical fibre diameter analyser (OFDA 100). The linear regression analysis results show that the mean fibre width is directly proportional to the residual gum content. A slightly weaker linear correlation also exists between the coefficient of variation of fibre width and the residual gum content. The strong linear co-relation between the mean of fibre width and the residual gum content is a significant outcome, since testing for fibre width using the OFDA is a much simpler and quicker process than testing the residual gum content. Scanning Electron Microscopy (SEM) reinforces the OFDA findings. SEM micrographs show a flat ribbon like fibre cross-section hence the term “fibre width” is used instead of fibre diameter. Spectral differences in the untreated dry decorticated skin samples and chemically treated and subsequently carded samples indicate delignification. The peaks at 1370 cm−1, 1325 cm−1, 1733 cm−1, and 1600 cm−1 attributed to lignin in the untreated samples are missing from the spectra of the treated samples. The spectra of the treated samples are more amine-dominated with some of the OH character lost.  相似文献   

7.
Summary Diffusion into the potato tuber of oxygen for respiration takes place only through lenticels, and not through the rest of the periderm. The number of lenticels which were capable of injection with methylene blue solution was observed to be about 100 per tuber. Rates of oxygen diffusion per lenticel varied from 0.024 to 0.296 cm3 h−1 atm−1 with a mean of 0.1105±0.013 cm3 h−1 atm−1.  相似文献   

8.
In this work, 9-benzyl-9H-carbazole (BzCz) monomer was chemically synthesized by a new process. It was electrocoated on carbon fiber microelectrode (CFME) as an active electrode material in 0.1 M sodium perchlorate (NaClO4)/acetonitrile (ACN) solution. The electropolymerization process was successfully performed less amount of 3 mM. The characterization of Poly(BzCz)/CFME thin films was performed by Fourier transform infrared reflectance-attenuated total reflection spectroscopy (FTIR-ATR) and Electrochemical impedance spectroscopy (EIS). The effects of monomer concentrations (1, 2, and 3 mM) during the preparation of modified electrodes were examined by EIS. Capacitive behaviors of modified CFMEs were defined via Nyquist, Bode-magnitude and Bode-phase plots. Variation of capacitance values by initial monomer concentration and specific capacitance values are presented. The highest specific capacitance value for a potensiodynamically prepared polymer thin film in the initial monomer concentration of 1 mM with a charge of 4.54 mC cm−2 was obtained about 221.4 μF cm−2. An equivalent circuit model, R(C(R(QR)))(CR), for different concentrations of Poly(BzCz). CFME was proposed and experimental data were simulated to obtain the numerical values of circuit components.  相似文献   

9.
Percolation loss of water in rice fields is a major cause of low water use efficiency. Variation of infiltration rate and soil compactness in four paddy fields (with clay, silty clay, clay loam, and loam textures) was investigated in northern Iran. In each field, in longitudinal and transverse directions, points located 0.5, 2.5, 6.5, 12.5, … m from the bunds were selected and water infiltration rate and resistance to penetration of a pocket penetrometer were measured. The results showed that in clay soil, average final infiltration rate (f c) in longitudinal direction, transverse direction, and center of the field was 0.216, 0.136, and 0.08 cm day−1, respectively. The f c for loamy soil was 2.77, 2.32, and 0.409 cm day−1, respectively. Similar differences were observed in the other two soil textures. In general, effect of direction of the field for measuring infiltration rate was not statistically significant. Loam and clay loam soils, with resistance to penetration of 0.37 and 0.33 kg cm−2, were not significantly different. But, clay and silty clay soils with resistance to penetration of 0.25 and 0.14 kg cm−2 were significantly different (P < 0.05). Resistance to penetration of the penetrometer was not affected significantly (P < 0.05) by direction of measuring this parameter in the field. The conclusion is that if measured soil physical properties in a paddy field are going to be representative of the whole field, they should be measured at different locations, especially near the bunds. Another strategy for obtaining a representative infiltration rate or compactness for a paddy field is uniform puddling of the field.  相似文献   

10.
Insufficient puddling with inappropriate implements or imprecise time/intensity may alter saturated water flow in paddy soil spatially or temporary due to change in aggregate size distribution, dry bulk density, saturated hydraulic conductivity, and percolation rate of the soil. In this study, spatial variability of saturated hydraulic conductivity (K s), a key parameter of the saturated water flow, in Fuchu Honmachi paddy plot (100 m × 28 m) was characterized based on dielectric or ADR dry bulk density (ρb-ADR) with help of non-similar media concept (NSMC) and geostatistics model to meet its correlation to subsurface percolation. A 100 cc core and an ADR data were sampled from each sub-plot (7 m × 7.5 m), and then were used for measuring and predicting ρb and K s. The predicted data agreed with the measured ones, in which they fitted well the x = y line with RMSE of 0.029 cm3 cm−3 (R 2 = 0.68), 0.027 g cm−3 (R 2 = 0.71) (ρb), and 0.098 cm d−1 (R 2 = 0.45) for θ, ρb, and K s, respectively. The predicted ρb and K s had similar trend in spatial variability to the measured ones particularly within the distance of 46.3–51.9 m and 26.2–27.9 m, respectively. The spatial variability of the predicted K s coincided to that of the subsurface percolation rate, in which they had similar distance of dependence. The results indicated that the presenting method can be reasonably accepted.  相似文献   

11.
Silk grafting with chitosan and crosslinking agents   总被引:2,自引:0,他引:2  
Chitosan grafting onto silk was tested with three crosslinking agents: trifunctional epoxy resin Araldite DY-T, PEG400 dimethacrylate, and glutaraldehyde in acetic as well as in tartaric acid solutions. Operating conditions were studied to obtain a significant silk weighting with satisfactory graft yields. With the epoxy crosslinker the weight gain was in the range from 1.8 to 8.8 % with graft yield from 8 to 23 %. In the case of PEG400DMA weight gain was 8–12 % with 22–24 % graft yield. With glutaraldehyde in tartaric acid solution a maximum weight gain of 8.4 % with 27.6 % graft yield was obtained. Results of determination of primary amino groups on the grafted silk showed that with epoxy and glutaraldehyde, unlike PEG400DMA, the amino groups of chitosan were only partially involved in crosslinking. Results of DSC analyses suggested that the modification of fibroin structure in chitosan-grafted silk was stronger with glutaraldehyde than with epoxy or dimethacrylate. FTIR-ATR spectra of grafted fibers were found very similar to that of control silk with an additional weak peak ascribable to chitosan in 1180–1080 cm−1 range. Surface investigation through AFM showed clear morphology differences between chitosan-grafted silk with epoxy or dimethacrylate and that crosslinked with glutaraldehyde; the latter appears uneven and scale-like, the others slightly rougher than the original silk.  相似文献   

12.
In this study, poly(acrylonitrile-co-vinyl acetate) (P(AN-co-VAc)) composite films were prepared by chemical polymerization of pyrrole(Py), N-methyl pyrrole (NMPy) and N-phenyl pyrrole (NPhPy) with cerium(IV) [Ce(IV)] on P(AN-co-VAc) matrix. An increase was observed in the absorbances of CN ring stretching vibration (1451 cm−1) by introducing pyrrole (Py) derivatives on P(AN-co-VAc) matrix. The nitrile (CN) and carbonyl (C=O) groups played a significant role on the interactions with cationic sites of Py derivatives. Conductivity was increased in the presence of carbonyl (C=O) groups due to their additional negative charges on P(AN-co-VAc) matrix compared to PAN. Poly(N-Phenyl Pyrrole) (PNPhPy) exhibited higher dielectric constant and AC conductivity in the frequency range between the 10−2–107 Hz. The TGA results exhibited shifts of peak to higher temperatures by the presence of Py derivatives by increasing the weight loss %.  相似文献   

13.
A pilot study of microorganism repair after UV disinfection was performed for agricultural reuse of secondary-level effluent in paddy rice fields in Korea. Effluent from the bio-filter of a 16-unit apartment was used in a flow-through type UV-disinfection system. The average concentration of suspended solids (SS) and biochemical oxygen demand (BOD) were 3.4 and 5.9 mg L−1, respectively. The mean total coliform level was in the range of 1.5 × 104 MPN 100 mL−1. Photoreactivation and dark repair were apparent at a low UV dose (6 mW s cm−2). In low-dose UV disinfection, microorganisms increased within 12 h by approximately 5 and 1% due to photoreactivation and dark repair, respectively. This increase was not significant at a high UV dose (16 mW s cm−2). The repaired microorganisms were further inactivated, rather than reactivated, by solar irradiation, and numbers decreased to non-detectible levels after 4 h of exposure to solar irradiation. Based on UV disinfection and repair studies, a UV dose of 30 mW s cm−2 is recommended as sufficient to produce reclaimed water virtually free of pathogens and may be adequate for disinfection of secondary effluent for agricultural irrigation in paddy rice culture.  相似文献   

14.
Present paper reports a method of preparing polymer composite electrolyte nanofiber mat using polyvinyl alcohol (PVA), ammonium thiocynate (NH4SCN) salt, and aluminium oxide (Al2O3) nano particles based on electrospinning technique. Two-stage process of preparation of nanofibers, namely, preparation of nano particles filled PVA electrolyte gel solution followed by its electrospinning has been used. The so obtained nanofibers have been characterized by XRD, DSC, SEM, and Conductivity measurements. XRD patterns affirm the formation of nanocomposite while SEM pictures reveal formation of fibers on a nano scale format (300–800 nm). Fibers of the electrolytes are seen to be thermally stable. Ionic conductivity of electrolyte fiber is seen to improve in the presence of nano filler at room temperature with a maximum at 5.31×10−3 Scm−1 for 4 wt% filler concentration, which is comparable to that for corresponding dried gel electrolyte films.  相似文献   

15.
This study aims to assess the nitrogen contamination of groundwater in paddy and upland fields. A reactive chemical transport model PHREEQC and a variable saturated groundwater flow and transport model FEMWATER were used to evaluate the vertical transport of nitrogen compound in various soil types of paddy and upland. The shallow groundwater quality monitoring data of 2003, 2006, 2009 in the Choushui river alluvial fan, the major agriculture production area in Taiwan, were applied to support the validity of the numerical simulation findings. Results from PHREEQC and FEMWATER simulations showed that the organic-rich impermeable plow sole layer underneath the muddy layer of rice paddy can effectively reduce NO3 and N2 to NH4 + and retard the movement of NH4 +. However, in the upland field which has no plow sole layer, the NH4 + can move easily to the shallow aquifer and contaminate the groundwater. The spatiotemporal distribution of NO3 –N and NH4 +–N in the Choushui river alluvial fan revealed that high nitrate–N contamination areas were located mainly in the upland field of the proximal fan, where the granular unconfined aquifer was vulnerable to surface contaminants. Moreover, the unconfined nature of the aquifer allows the oxidization of NH4 + to NO3 and accelerates the plume movement. High ammonium–N concentration areas were mostly dispersed in the distal-fan area where upland planting and aquacultural farming were prevailed. The high NH4 +–N found in the northern Choushui river alluvial fan was attributed to the alternative planting of rice and upland crops, and the plow sole layer was broken to maintain the quick drainage upland crop needs.  相似文献   

16.
The present study was carried out to evaluate nutrient losses that occur during the course of agricultural activity from rice paddy fields of reclaimed tidal flat. For this study, we chose a salt-affected rice paddy field located in the Saemangeum reclaimed tidal area, which is located on the western South Korean coasts. The plot size was 1,000 m2 (40 m × 25 m) with three replicates. The soil belonged to the Gwanghwal series, i.e., it was of the coarse silty, mixed, mesic type of Typic Haplaquents (saline alluvial soil). The input quantities of nitrogen and phosphorus (as chemical fertilizer) into the experimental rice paddy field were 200 kg N ha−1 and 51 kg P2O5 ha−1 per annum, and the respective input quantities of each due to precipitation were 9.3–12.9 kg N ha−1 and 0.4–0.7 kg P ha−1 per annum. In terms of irrigation water, these input quantities were 4.5–8.2 kg N ha−1 and 0.3–0.9 kg P ha−1 per annum, respectively. Losses of these nutrients due to surface runoff were 22.5–38.1 kg N ha−1 and 0.7–2.2 kg P ha−1 for the year 2003, and 26.8–29.6 kg N ha−1 and 1.6–1.9 kg P ha−1 for the year 2004, respectively. Losses of these nutrients due to subsurface infiltration during the irrigation period were 0.44–0.67 kg N ha−1 and 0.03–0.04 kg P ha−1 for the year 2003, and 0.15–0.16 kg N ha−1 and 0.05–0.06 kg P ha−1 for 2004. When losses of nitrogen and phosphorus were compared to the amount of nutrients supplied by chemical fertilizers, it was found that 11.3–19.1% of nitrogen and 0.5–1.7% of phosphorus were lost via surface runoff, whereas subsurface losses accounted to 0.2–0.8% for nitrogen and only 0.02–0.04% for phosphorus during the 2-year study period.  相似文献   

17.
The miscibility and crystallization behavior of the blends of poly(vinylidene fluoride) (PVDF) and ethylene/vinyl acetate(20/80) copolymer (EVAc80) have been studied using a differential scanning calorimeter and a polarizing microscope equipped with a heating stage. From the melting point depression, the values of interaction energy densityB were calculated to be −1.3004 (cal/cm3) and the Flory-Huggins interaction parameterχ 12 was found to be −0.0818 at 445.6 K. With increasing concentration of EVAc80, the radial growth rate of spherulite was reduced drastically. The FT-IR analysis of samples quenched from the melt to various temperatures showed increasing content ofβ-phase with increasing amount of blended EVA80 along with lower quenching temperature.  相似文献   

18.
Future space exploration by humans will require reliable supplies of food, oxygen and clean water to sustain the expeditions. Potato is one of several crops being studied for such a “life support” role. Tests sponsored by the US National Aeronautics and Space Administration (NASA) confirmed the well-known short day tendencies for tuberisation, but also revealed that some cvs. (e.g., Norland, Denali and Russet Burbank) could tuberise well under continuous high light. Horticultural tests showed that plants grew well and tuberised readily using a nutrient film technique (NFT). CO2 enrichment studies with potato showed typical C3 responses in photosynthesis and yield, with maximum rates occurring near 1000 μmol mol−1. The highest tuber yields from these controlled environment studies reached 19.7 kg FM m−2 or equivalent to nearly 200 t ha−1. This equated to a productivity of 38 g m−2 DM m−2 day−1. Stand evapotranspiration (ET) rates ranged from 3.4 to 5.2 l m−2 day−1 throughout growth, while maximum ET rates for canopies could approach 10 l m−2 day−1. Harvest indices (tuber DM/total DM) typically ranged from 0.7 to 0.8, indicating that waste (inedible) biomass from potato would be less than that from many other crops. An experiment was conducted in 1995 on NASA’s Space Shuttle using excised potato leaves to study tuber formation at axillary buds during spaceflight. The results showed that tubers formed equally well in space as in the ground controls, indicating that reduced gravity should not be an impediment to tuberisation.  相似文献   

19.
A highly selective colorimetric displacement assay for anions, F and H2PO4 , based on calix[4]arene-Reichardt’s dye was studied in DMSO. When calix[4]arene forms a complex with Reichardt’s, the absorption peak at 386, 419 and 632 nm disappeared. Addition of anions to solution of calix[4]arene-Reichardt’s dye causes the blue color of Reichardt’s dye to return as it is displaced from the calix[4]arene. These results demonstrate that this displacement assay can be favorably utilized for the development of potential sensors for the detection of anion such as F and H2PO4 in relation to the other anions.  相似文献   

20.
An investigation on the role of cupric (Cu2+) ion incorporation during the thermal stabilization of polyamide 6 fibers was carried out using a combination of differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and X-ray diffraction (XRD) measurements. Cupric chloride pretreated and thermally stabilized polyamide 6 (PA6) fibers was characterized by a reduction in fiber diameter and linear density values together with color changes from light brown to black with increasing stabilization time. PA6 fibers were properly stabilized after 8 h of stabilization time prior to carbonization. The results obtained from DSC and TGA measurements indicated that there was an improvement in the thermal stability when cupric (Cu2+) ions were incorporated into the polymer structure. TGA thermograms showed the relative improvement in thermal stability as indicated by increasing char yield with progressing time. Char yield reached a maximum value of 33.6 % at 1000 °C for the cupric chloride pretreated PA6 fibers stabilized for 12 h at 180 °C. Experimental results obtained from DSC and X-ray diffraction methods suggested the loss of crystallinity as a result of perturbation of hydrogen bonds with progressing time. The formation of cupric ion-amide coordination bonds improved the thermal stabilization by encouraging the development of ladder-like structures. The investigation resulted in a new method of evaluation of X-ray stabilization index specifically intended for the thermally stabilized PA6 fiber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号