首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The partitioning behavior of the glutenin proteins was evaluated in aqueous two-phase systems (ATPSs) formed by sulfate salts (lithium or sodium) and poly(ethylene glycol) (PEG) with average molar mass of 1500 g mol−1 or 4000 g mol−1. The partition coefficients for the glutenin proteins in each ATPS were investigated as a function of the temperature (278.2 K–318.2 K), tie line length (TLL) and electrolyte nature. In all ATPS, the majority of glutenin proteins spontaneously concentrate in the polymer-rich phase (Kp > 1). The partition coefficient is very dependent on the salt nature and the ATPS formed by PEG + lithium sulfate presents higher Kp values as compared with the ATPS formed PEG + sodium sulfate. An increase of molar mass of polymer promotes a decrease of Kp. Thermodynamic parameters of transfer (ΔtrG, ΔtrH and ΔtrS) were obtained by the application of the Van’t Hoff equation (VHE). The values obtained by VHE indicate that the transfer of glutenin proteins to the polymer-rich phase has an enthalpic origin.  相似文献   

2.
Milled rice from 11 varieties, with amylose levels from 1.2 to 35.6% dry base, were collected to study the impacts of amylose content on starch retrogradation and textural properties of cooked rice during storage. The relationship between amylose content and different properties was determined using Pearson correlation. Starch retrogradation enthalpy (ΔHr) of cooked rice was determined by differential scanning calorimetry. ΔHr values were found to be positively correlated with amylose content (0.603 ≤ r ≤ 0.822, P < 0.01) during storage. Textural properties were determined by a Texture Analyser. The hardness of cooked rice showed a positive correlation with amylose content (0.706 ≤ r ≤ 0.866, P < 0.01) and a positive correlation with ΔHr of cooked rice (r = 0.650, P < 0.01) during storage. The adhesiveness showed a negative correlation with amylose content (−0.929 ≤ r ≤ −0.678, P < 0.01) and a negative correlation with ΔHr of cooked rice (r = −0.833, P < 0.01) during storage. Hardness showed a negative correlation with adhesiveness (r = −0.820, P < 0.01). These results indicated that amylose content has significant effects on starch retrogradation and textural properties of cooked rice. The cooked rice with high amylose content is easy to retrograde, the cooked rice with low amylose content retrograded slowly. Sarch retrogradation contributes to the changes of textural properties of cooked rice during storage.  相似文献   

3.
Sugarcane bagasse cellulose was subjected to the extremely low acid (ELA) hydrolysis in 0.07% H2SO4 at 190, 210 and 225 °C for various times. The cellulose residues from this process were characterized by TGA, XRD, GPC, FTIR and SEM. A kinetic study of thermal decomposition of the residues was also carried out, using the ASTM and Kissinger methods. The thermal studies revealed that residues of cellulose hydrolyzed at 190, 210 and 225 °C for 80, 40 and 8 min have initial decomposition temperature and activation energy for the main decomposition step similar to those of Avicel PH-101. XRD studies confirmed this finding by showing that these cellulose residues are similar to Avicel in crystallinity index and crystallite size in relation to the 110 and 200 planes. FTIR spectra revealed no significant changes in the cellulose chemical structure and analysis of SEM micrographs demonstrated that the particle size of the cellulose residues hydrolyzed at 190 and 210 °C were similar to that of Avicel.  相似文献   

4.
This research work involves the dyeing of wool with indicaxanthin, a natural dye extracted from fruits of Opuntia ficus-indica. The optimal conditions for dye extraction were to mix 50 g of Juice from cactus pears with 100 mL of 80% aqueous ethanol as solvent for dye extraction. Liquid chromatography was applied for the separation. Two main dyes were obtained, which were identified as indicaxanthin (75 mg per 50 g) and betanin (5 mg per 50 g). The effect of dye bath pH, salt concentration, dyeing time and temperature were studied. The optimal conditions for wool dyeing with indicaxanthin dye were carried out at 70 °C for 90 min with the pre-treatment of various metal salts as mordant. The colour yields of the dye on the wool were found to be highly dependent of the pH, optimum results being obtained at pH 4. The K/S of wool increased in the order of the dyeing using KAl (SO4)2 > MnSO4 > CoSO4 > FeSO4 > none > ZnSO4 > CuSO4. Un-mordanted samples have good properties of water and washing fastness. Mordants KAl (SO4)2 and CoSO4 were found to give good light fastness (rating 5).  相似文献   

5.
Because CO2 is needed for plant photosynthesis, the increase in atmospheric CO2 concentration ([CO2]) has the potential to enhance the growth and yield of rice (Oryza sativa L.), but little is known regarding the impact of elevated [CO2] on grain quality of rice, especially under different N availability. In order to investigate the interactive effects of [CO2] and N supply on rice quality, we conducted a free-air CO2 enrichment (FACE) experiment at Wuxi, Jiangsu, China, in 2001–2003. A long-duration rice japonica with large panicle (cv. Wuxiangging 14) was grown at ambient or elevated (ca. 200 μmol mol−1 above ambient) [CO2] under three levels of N: low (LN, 15 g N m2), medium (MN, 25 g N m2) and high N (HN, 35 g N m2 (2002, 2003)). The MN level was similar to that recommended to local farmers. FACE significant increased rough (+12.8%), brown (+13.2%) and milled rice yield (+10.7%), while markedly reducing head rice yield (−13.3%); FACE caused serious deterioration of processing suitability (milled rice percentage −2.0%; head rice percentage −23.5%) and appearance quality (chalky grain percentage +16.9%; chalkiness degree +28.3%) drastically; the nutritive value of grains was also negatively influenced by FACE due to a reduction in protein (−6.0%) and Cu content (−20.0%) in milled rice. By contrast, FACE resulted in better eating/cooking quality (amylose content −3.8%; peak viscosity +4.5%, breakdown +2.9%, setback −27.5%). These changes in grain quality revealed that hardness of grain decreased with elevated [CO2] while cohesiveness and resilience increased when cooked. Overall, N supply had significant influence on rice yield with maximum value occurring at MN, whereas grain quality was less responsive to the N supply, showing trends of better appearance and eating/cooking quality for LN or MN-crops as compared with HN-crops. For most cases, no [CO2] × N interaction was detected for yield and quality parameters. These data suggested that the current recommended rates of N fertilization for rice production should not be modified under projected future [CO2] levels, at least for the similar conditions of this experiment.  相似文献   

6.
A set of 13 waxy rice genotypes prepared by chemical-induced mutation of rice variety TNG67 and 7 waxy rice varieties widely grown in Taiwan were compared for structural, rheological and retrogradation characteristics of starches. Wide differences in retrogradation enthalpy (ΔHret), gel firmness and storage modulus (Gret) were observed for 2-week stored gels of 20 starches. Ratio of short-to-long amylopectin chains was significantly higher (p < 0.05) in starches from mutant genotypes than in commercial varieties. ΔHret and Gret of starch pastes stored over 4 weeks showed stronger correlation with amylopectin chain-profile compared to those stored for 2 weeks. Amount of long amylopectin chains was correlated positively (p < 0.05) with ΔHret and gel firmness. Overall, ratio of short-to-long amylopectin chains affected almost all the rheological and retrogradation parameters. Results of this study can be useful to plant breeders and food industry for quality improvement and selection of waxy rice mutants for various applications.  相似文献   

7.
Weedy rice, specifically red rice (Oryza sativa L.), is a major weed in rice which causes up to 80% yield loss and reduction of grain quality. Red rice accessions from Arkansas, U.S.A., were characterized to classify red rice accessions into certain phenotypic groups relevant to weedy rice management. The red rice accessions were 70% strawhull, 22% blackhull, 7% brownhull and <1% goldhull. Generally, blackhull red rice was the tallest (139 cm) and strawhull the shortest (133 cm) among all accessions. Blackhull red rice had more tillers (102/plant), smaller flag leaves (13 cm wide, 34 cm long), and flowered later (1225 heat units) than strawhull red rice which had 85 tillers/plant, 15 cm-wide and 34 cm-long flag leaves, and flowered after accumulating 1195 heat units. Morphological differences between accessions within each hull type were highly significant, showing great diversity within a hull color group as indicated by large ranges in traits. For example, blackhulls were 75–190 cm tall with 18–69 cm long flag leaves, 21–188 tillers and produced 40–949 g seed. Strawhulls were 46–189 cm tall with 18–66 cm flag leaf length, 16–172 tillers and produced 100–608 g seed. Some traits, such as seed production, differed widely between accessions within each hull color group such that the average seed production/accession for blackhull did not differ from that of strawhull weedy rice (196 vs. 192 g/plant). The onset of flowering among all accessions ranged from 56 to 126 d after planting. Red rice accessions formed six phenotypic clusters generally segregated by plant size or flowering time. Each morphotype would have different competitive abilities; thus, weedy rice management could be geared toward plant types. Highly competitive plant types would require intensive control measures to minimize yield losses and reduce the soil seed bank. Flowering dates impact stewardship strategies for herbicide-resistant or any genetically modified rice.  相似文献   

8.
Spelt bran and hull were submitted to enzymatic treatment during 1 h, 4 h and 24 h to release arabinoxylans (AXs). Several enzymatic commercial preparations with mainly endo-xylanase activity from Trichoderma reesei (Rohalase WL), Thermomyces lanuginosus (Pentopan Mono conc. BG), Bacillus subtilis (Belfeed B MP and Grindamyl Powerbake 900), Humicola insolens (Ultraflo L), Aspergillus aculeatus (Shearzyme 2×), A. aculeatus plus T. reesei (Shearzyme Plus) were tested and combined with a commercial cellulolytic preparation from T. reesei (Celluclast 1.5L). The xylanolytic activity of the commercial enzyme preparations was heterogeneous. The production of monomers by the different enzymes was evaluated on oat spelt xylan. Spelt bran and hull hydrolysates were analysed in regard to their content of total and free sugars. Monomers of glucose were mainly released with Celluclast, Ultraflo L and Shearzyme 2×. The percentage of released AXs ranged from 18.1% to 69.7% for bran and 0.5% to 6.4% for hull (% of the AXs originally present in the substrate). The solution of AXs hydrolysed by endoxylanases from spelt bran contained polysaccharides with a degree of polymerisation (DP) of 2–71 while those hydrolysed with endoxylanases plus Celluclast had DPs were 1–1164. The hydrolysates from spelt hull had much lower DPs (between 2 and 17).  相似文献   

9.
One of the options to ameliorate the deleterious effects of sodic water irrigation is to apply gypsum to soil. We examined whether the application of organic manures or crop residue can reduce the need for gypsum in calcareous soils. A long-term field experiment with annual rice-wheat cropping rotation was conducted for 15 years (1991-2006) on a non-saline calcareous sandy loam soil (Typic Ustochrept) in northwestern, India. The irrigation water treatments included good quality canal water (CW) and sodic water (SW) with residual sodium carbonate (RSC) of 10 mmolc L−1 from 1991 to 1999 and of 12.5 mmolc L−1 from 2000 onwards. Gypsum was applied at 0, 12.5, 25, and 50% of the gypsum requirement (GR), to neutralize RSC of the SW. Three organic material treatments consisted of application of farmyard manure (FYM) at 20 Mg ha−1, Sesbania green manure (GM) at 20 Mg ha−1, and wheat straw (WS) at 6 Mg ha−1. The organic materials were applied every year to the rice crop. Continuous irrigation with sodic water for 15 years without gypsum or organic materials resulted in a gradual increase in soil pH and exchangeable sodium percentage (ESP), deterioration of soil physical properties, and decrease in yields of both rice and wheat. The cumulative yield loss in SW irrigated plots without gypsum and organic materials remained <1.5 Mg ha−1 for up to eight years in the case of rice and up to nine years in the case of wheat. Thereafter, marked increase in pH and ESP resulted in further depression in yields of rice by 1.6 Mg ha−1 year−1 and wheat by 1.2 Mg ha−1 year−1. Application of gypsum improved physical and chemical properties of the soil. The beneficial effects on crop yields were visible up to 12.5% GR in rice and up to 50% GR in wheat in most of the years. All the organic materials proved effective in mobilizing Ca2+ from inherent and precipitated CaCO3 resulting in decline in soil pH and ESP, increase in infiltration rate, and a increase in the yields of rice and wheat crops. Although the application of organic materials resulted in comparable reductions in pH and ESP, the increase in yield with SW was higher for both crops with FYM. Pooled over the last six years (2000-2006), application of FYM resulted in 38 and 26% increase in rice and wheat yields, respectively, over SW treatment; corresponding increases in 50% GR treatment (recommended level) was 18 and 19%. During these years, application of GM and WS increased wheat yields by 20%; for rice, GM resulted in 22% increase compared to 17% in WS amended SW irrigated plots. Combined application of gypsum and organic materials did not increase the yields further particularly in the case of FYM and GM treated plots. This long-term study proves that organic materials alone can be used to solubilize Ca from inherent and precipitated CaCO3 in calcareous soils for achieving sustainable yields in sodic water irrigated rice-wheat grown in annual rotation. The results can help reduce the dependency on gypsum in sodic water irrigated calcareous soils.  相似文献   

10.
In this research, we fabricated a series of PVA membranes loaded with 0 wt.%, 1 wt.%, 3 wt.%, 5 wt.% ZrC and 0 wt.%, 1 wt.%, 3 wt.%, 5 wt.% TiO2 using a spiral vane electrospun machine respectively. There were 2 sizes of TiO2 nano particles: 10 nm and 200 nm. We tested sound absorption properties of needle-punched nonwovens as well as the composite of nano membranes and needle-punched nonwovens by an impedance tube at the frequency range from 500 Hz to 6500 Hz. Besides, we tested morphological characterization of nano membranes by scanning electron microscope (SEM) and crystalline properties by X-ray diffraction (XRD). We investigated the sound absorption properties of composites as well as the effect of ZrC, TiO2, nano particle sizes and cavity depth on sound absorption properties. Results showed that sound absorption properties of composites increased at the whole range of frequency compared to those of needle-punched nonwovens. When loaded with ZrC nano particles, sound absorption properties of composite shifted to a higher frequency region, and with increasing content of ZrC, sound absorption properties were better above 2500 Hz. However, when loaded with TiO2, sound absorption properties were better at lower frequency. With 3 wt.% TiO2, sound absorption coefficient reached the best at the frequency range from 500 Hz to 1500 Hz. Besides, 200 nm TiO2 was more conductive to the increase of sound absorption properties at lower frequency region compared to 10 nm TiO2. Sound absorption properties of composites with air back cavity shifted to a lower frequency region, too. SEM showed that there was nano particle aggregation when loaded TiO2 nano particles. XRD showed that ZrC nano particles loaded in PVA nano fiber retained their crystalline structure while TiO2 didn’t. It appeared from the results that nano particles had an effect on sound absorption materials, with different kinds and different sizes, sound absorption properties will improve in different ranges of frequency  相似文献   

11.
Cellulose fibres and cellulose nanocrystals were extracted from rice husk. Fibres were obtained by submitting the industrial rice crop to alkali (NaOH) and bleaching treatments. Nanocrystals were extracted from these fibres using sulphuric acid (H2SO4) hydrolysis treatment. The material obtained after each stage of the treatments was carefully characterized and its chemical composition was determined. Morphological investigation was performed using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Fourier transform infrared (FTIR) spectroscopy showed the progressive removal of non-cellulosic constituents. X-ray diffraction (XRD) analysis revealed that the crystallinity increased with successive treatments. The thermal stability of the rice husk fibres and cellulose nanocrystals was also investigated using thermogravimetric analysis (TGA).  相似文献   

12.
Aeroz™ (9,10-anthraquinone (AQ)), a chemical rice seed treatment that effectively deters birds from depredating newly planted fields, could be an important management tool that enables rice producers to plant earlier in the season and increase yields. This bird repellent, while non-lethal to birds, has unknown toxicity to crayfish that often are closely integrated with rice production in southern regions of the USA. This study was conducted to assess if AQ, the active ingredient in Aeroz™, could be acutely toxic to the red swamp crayfish Procambarus clarkii (Girard), the crayfish species most often associated with rice cultivation, via seed ingestion and/or through their contact with chemical in pond water. Mortality data from a 96 h feeding study indicate that AQ-treated (1.76% by wt) rice seed was not acutely toxic to juvenile (∼3 mo.) crayfish through the ingestion exposure route. In addition, a 96 h aquatic acute toxicity test showed that the LC50 of AQ in juvenile crayfish is >85 μg L−1 and above the water solubility limit of AQ. These results indicate that very minimal, if any, acute toxicity would be observed in juvenile crayfish if exposed to AQ via ingestion or dissolved or suspended in the water column.  相似文献   

13.
Rheological, thermal and structural changes in high pressure (HP) treated Basmati rice flour dispersions were studied as function of pressure level (350–650 MPa), slurry concentration (with 1:5, 1:3 and 1:2 flour-to-water ratios) and holding time (7.5–15 min). Rice flour dispersions exhibited a gradual liquid–solid gel transformation as they gelatinized and/or denatured and behaved as viscoelastic fluid following HP treatment. Mechanical strength (G′) of pressurized gel increased with applied pressure and rice concentration. Differential scanning calorimeter (DSC) thermograms of rice slurry measured after pressure treatment indicated a reduction in peak enthalpy in proportion with the extent of gelatinization and/or denaturation of starch and proteins. Pressure-treated rice samples had a progressively lower gelatinization temperature. A 15 min pressure treatment at 550 MPa was found sufficient to complete gelatinization of protein free isolated rice starch while the slurry required 650 MPa. The presence of proteins might have been responsible for the slower starch gelatinization in the rice slurry during pressure treatment. The sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and Fourier-transform infrared (FTIR) spectroscopy results indicated some minor changes in protein subunits and secondary structure of rice protein. This study has provided complementary information on pressure-induced changes in physical (thermal stability, overall structure) and molecular level (secondary structure) of rice protein.  相似文献   

14.
The chemical composition of oleo-gum-resin from Ferula gummosa collected in the northern part of Iran has been studied. The fraction of oleo-gum-resin soluble in ethanol (ca 67 wt.%) is composed by three major fractions: (i) monoterpenes and monoterpenoids (ca 15 wt.% fraction), (ii) sesquiterpenes and sesquiterpenoids (ca 30 wt.%) and (iii) triterpenes and triterpenoids (ca 55 wt.%). The major families of terpenes and terpenoids were identified employing gas chromatography coupled with mass spectrometry detector (GC-MS). Almost 25 wt.% of oleo-gum-resin was insoluble in ethanol and, according to wet chemistry analyses, assigned to arabinogalactane structurally associated with protein complex (AGP). This arabinogalactan possessed the molecular weight of ca 30 kDa, as revealed by size exclusion chromatography, and the main backbone was constituted by β-(1 → 3)/β-(1 → 3,6)-linked d-galactopyranosyl residues ramified predominantly by terminal α-l-arabinofuranosyl and β-d-glucuronopyranosyl residues, as assessed by 1D/2D 1H NMR.  相似文献   

15.
Starch gelatinization and formation of crystalline amylose–lipid complexes during the heat/moisture treatment step in rice parboiling were studied with temperature resolved wide angle X-ray scattering (WAXS) and differential scanning calorimetry (DSC) using flour from Puntal (24% apparent amylose) and Jacinto (12% apparent amylose) rice samples [66, 40 or 25% moisture content (mc)]. Temperature resolved WAXS showed that the crystallinity index (CI, i.e. the relative amount of A-type crystals) of non-parboiled rice flours at 66% mc, monotonically decreased between 65 °C (Puntal) and 70 °C (Jacinto) and 90 °C (both Puntal and Jacinto). These temperatures were in agreement with the respective onset and conclusion temperatures of the M1 endotherm measured by DSC. At 40% mc, the CI decreased monotonically from 65 °C (Puntal) and 70 °C (Jacinto) until 105 °C. In DSC both M1 and M2 endotherms were present. The conclusion temperature of the M2 endotherm was higher than 105 °C. At 25% mc, the CI decreased very gradually and A-type crystals were no longer present at 145 °C. Under these conditions, no DSC endotherms were detected. No type II amylose–lipid complexes were formed during heating at 66% mc. In contrast, at 40 and 25% mc, Vh-type crystals were formed from 100 and 130 °C, respectively. Non-parboiled white rice flour had a strong A-type pattern. Mildly parboiled rice had a clear A-type, with a weak Vh-type and B-type pattern. Severe parboiling resulted in partially crystalline systems with superimposed A-type, Vh-type and B-type crystals. It was concluded that the rice variety, the combination of mc and the moisture distribution in the rice kernel and the temperature during parboiling all impact the level and the types of crystals in the parboiled rice.  相似文献   

16.
The objective of this study was to find alternative methods for the control of pericarp browning in longan fruits (Dimocarpus longan Lour.) cv. Daw in order to replace the use of sulfur dioxide (SO2). Experiments were conducted by dipping fruits in 1.5 N HCl solution (pH 0.21) for 20 min followed by draining. The effects of subsequent rinsing in water were also investigated. Untreated fruits and SO2 fumigated fruits were used as controls. Fruits from each treatment were then packaged in commercial perforated plastic baskets and stored at 3 ± 1 °C, 85% RH for 60 days. It was found that dipping the fruits in HCl controlled disease development compared with the untreated fruits. In addition, dipping the fruits in HCl as well as fumigating with SO2 gave the best control of pericarp browning. After 5 days, the pericarp of untreated fruits became brown. Dipping fruits in HCl without rinsing reduced pericarp and juice pH and increased titratable acidity which lowered eating quality. Sensory analysis was carried out to determine aril color as well as appearance, firmness, flavor and taste. Dipping in 1.5 N HCl for 20 min and rinsing exhibited higher efficacy than dipping for 0, 10 or 15 min in controlling fruit decay and maintaining fruit color and eating qualities during 7 days storage at 25 °C following 45 days storage at 5 ± 1 °C. Therefore, dipping in 1.5 N HCl for 20 min, followed by rinsing in water can be considered for commercial application in extending shelf life, decreasing fruit decay and maintaining fruit quality of longan fruits.  相似文献   

17.
The ability of activated carbon to remove pollutants from water in packed column systems is dependent on granular material with mechanical strength sufficient to avoid attrition caused by stream flow. Therefore, an appropriate balance between surface area and hardness is essential when using activated carbon in real systems. The purpose of this research is to determine the optimal production conditions that generate activated carbon with adequate physical properties to be used in packed systems from agave bagasse, a waste product from the mezcal industries in Mexico. Activated carbons were produced by chemical activation (ZnCl2 or H3PO4). Response surface methodology (RSM) was used to evaluate the effect of the activation temperature (250-550 °C), activation time (0-50 min), and the concentration of activating agent (0.2-1.4; g activating agent/g bagasse) on both surface area and hardness. The production conditions that generated optimal characteristics in the activated carbon were 392 °C, 1.02 g activating agent/g bagasse and 23.8 min for H3PO4 activated samples and 456 °C, 1.08 g activating agent/g bagasse and 23.8 min for ZnCl2 activated samples. The surface area and hardness of the activated carbon produced from bagasse under these conditions were similar to activated commercial carbons (surface area > 800 m2/g and hardness > 85%).  相似文献   

18.
When used in bread dough systems, glucose oxidase (GO) and pyranose oxidase (P2O) generate H2O2 from O2. We here studied their potential to improve dough and bread characteristics. Neither GO nor P2O significantly affected the volume of straight dough bread produced with fermentation and proofing times of respectively 90 and 36 min at dosages up to 0.50 nkat/g flour. Supplementation with 1.00 nkat/g flour of GO or P2O significantly decreased bread loaf volume. The resistance of dough (fermented for 20 min and proofed for 56 min) to an applied shock was substantially improved by inclusion of 0.08, 0.25, 0.50 or 1.00 nkat/g flour of GO or P2O in the dough recipe. Thus, the proofed doughs showed significantly less collapse and the resultant breads had higher loaf volumes than did the reference breads. Yeast probably exerts an oxidizing effect on dough, which, depending on the exact breadmaking protocol used, might veil the positive oxidizing effect of the enzymes on dough properties during prolonged fermentation.  相似文献   

19.
The objectives of this study were to (1) investigate the relationship between physicochemical characteristics (mean/median particle sizes, physical hull content) and hydrolyzed hydroxycinnamic acid profile (ferulic acid (FA), para-coumaric acid (pCA), and their ratio) of barley varieties and in situ rumen degradability in dairy cattle; and (2) investigate rumen degradation kinetics of FA and pCA of CDC barley varieties grown in western Canada. Barley variety had a significant effect (P < 0.05) on rumen undegradable fraction of DM, FA, pCA, neutral (NDF) and acid detergent fiber (ADF) at 12 and/or 24 h of rumen incubation. FA in barley grain was more degradable than the pCA (P < 0.05). There were no differences (P > 0.05) in effective degradability of DM (EDDM) and EDFA, but significant differences in EDpCA (P < 0.05). Barley hull was strongly correlated to NDF, ADF, ADL, hemicellulose and cellulose (R > 0.78, P < 0.001) and correlated to FA (R = 0.57, P < 0.05) but not to pCA (R = 0.42, P > 0.05) in original samples. FA and pCA were highly and positively correlated to NDF, ADF, ADL, hemicellulose, cellulose, mean/median particle sizes, and rumen indigestible DM, NDF and ADF at either 12 or 24 h (P < 0.05). Mean/median particle size of barley grain positively influenced the rumen indigestible DM, but not others (FA, pCA). The results implied that reduction of barley hull, FA and pCA contents could increase the degradability of barley grain in rumen. Multi-regression with best model variable selection analysis revealed that FA was the factor most inhibiting to DM degradability of barley in rumen, and was the most effective factor to predict DM degradability, while hull was the most effective factor to determine NDF degradability in rumen. Both hull and FA affected ADF degradability in the rumen. The results indicate that breeding or identifying barley varieties with lower hull and FA contents would result in higher degradability, higher energy density and higher quality barley and improve nutrient availability of barley.  相似文献   

20.
Labour and water scarcity in north west India are driving researchers and farmers to find alternative management strategies that will increase water productivity and reduce labour requirement while maintaining or increasing land productivity. A field experiment was done in Punjab, India, in 2008 and 2009 to compare water balance components and water productivity of dry seeded rice (DSR) and puddled transplanted rice (PTR). There were four irrigation schedules based on soil water tension (SWT) ranging from saturation (daily irrigation) to alternate wetting drying (AWD) with irrigation thresholds of 20, 40 and 70 kPa at 18–20 cm soil depth. There were large and significant declines in irrigation water input with AWD compared to daily irrigation in both establishment methods. The irrigation water savings were mainly due to reduced deep drainage, seepage and runoff, and to reduced ET in DSR. Within each irrigation treatment, deep drainage was much higher in DSR than in PTR, and more so in the second year (i.e. after 2 years without puddling). The irrigation input to daily irrigated DSR was similar to or higher than to daily irrigated PTR. However, within each AWD treatment, the irrigation input to DSR was less than to PTR, due to reduced seepage and runoff, mainly because all PTR treatments were continuously flooded for 2 weeks after transplanting. There was 30–50% irrigation water saving in DSR-20 kPa compared with PTR-20 kPa due to reduced seepage and runoff, which more than compensated for the increased deep drainage in DSR. Yields of PTR and DSR with daily irrigation and a 20 kPa irrigation threshold were similar each year. Thus irrigation and input water productivities (WPI and WPI+R) were highest with the 20 kPa irrigation threshold, and WPI of DSR-20 kPa was 30–50% higher than of PTR-20 kPa. There was a consistent trend for declining ET with decreasing frequency of irrigation, but there was no effect of establishment method on ET apart from higher ET in DSR than PTR with daily irrigation. Water productivity with respect to ET (WPET) was highest with a 20 kPa irrigation threshold, with similar values for DSR and PTR. An irrigation threshold of 20 kPa was the optimum in terms of maximising grain yield, WPI and WPI+R for both PTR and DSR. Dry seeded rice with the 20 kPa threshold outperformed PTR-20 kPa in terms of WPI through maintaining yield while reducing irrigation input by 30–50%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号