首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Gluten-free bread was prepared from commercial zein (20 g), maize starch (80 g), water (75 g), saccharose, NaCl and dry yeast by mixing above zein's glass transition temperature (Tg) at 40°C. Addition of hydroxypropyl methylcellulose (HPMC, 2 g) significantly improved quality, and the resulting bread resembled wheat bread having a regular, fine crumb grain, a round top and good aeration (specific volume 3.2 ml/g). In model studies, HPMC stabilized gas bubbles well. Additionally, laser scanning confocal microscopy (LSCM) revealed finer zein strands in the dough when HPMC was present, while dynamic oscillatory tests showed that HPMC rendered gluten-like hydrated zein above its Tg softer (i.e. |G*| was significantly lower). LSCM revealed that cooling below Tg alone did not destroy the zein strands; however, upon mechanical impact below Tg, they shattered into small pieces. When such dough was heated above Tg and then remixed, zein strands did not reform, and this dough lacked resistance in uniaxial extension tests. When within the breadmaking process, dough was cooled below Tg and subsequently reheated, breads had large void spaces under the crust. Likely, expanding gas bubbles broke zein strands below Tg resulting in structural weakness.  相似文献   

2.
The aim of this study was to determine whether protein body-free kafirins in high digestibility, high-lysine (HDHL) sorghum flour can participate as viscoelastic proteins in sorghum-wheat composite dough and bread. Dough extensibility tests revealed that maximum resistance to extension (g) and time to dough breakage (sec) at 35 °C for HDHL sorghum-wheat composite doughs were substantially greater (p < 0.01) than for normal sorghum-wheat composite doughs at 30 and 60% substitution levels. Functional changes in HDHL kafirin occurred upon exceeding its Tg. Normal sorghum showed a clear decrease in strain hardening at 60% substitution, whereas HDHL sorghum maintained a level similar to wheat dough. Significantly higher loaf volumes resulted for HDHL sorghum-wheat composites compared to normal sorghum-wheat composites at substitution levels above 30% and up to 56%, with the largest difference at 42%. HDHL sorghum-wheat composite bread exhibited lower hardness values, lower compressibility and higher springiness than normal sorghum-wheat composite bread. Finally, HDHL sorghum flour mixed with 18% vital wheat gluten produced viscoelastic dough while normal sorghum did not. These results clearly show that kafirin in HDHL sorghum flour contributes to the formation of an improved protein network with viscoelastic properties that leads to better quality composite doughs and breads.  相似文献   

3.
Thermodynamic properties of bread dough (fusion enthalpy, apparent specific heat, initial freezing point and unfreezable water) were measured at temperatures from −40 °C to 35 °C using differential scanning calorimetry. The initial freezing point was also calculated based on the water activity of dough. The apparent specific heat varied as a function of temperature: specific heat in the freezing region varied from (1.7–23.1) J g−1 °C−1, and was constant at temperatures above freezing (2.7 J g−1 °C−1). Unfreezable water content varied from (0.174–0.182) g/g of total product. Values of heat capacity as a function of temperature were correlated using thermodynamic models. A modification for low-moisture foodstuffs (such as bread dough) was successfully applied to the experimental data.  相似文献   

4.
The influence of guar and xanthan gum and their combined use on dough proofing rate and its calorimetric properties was investigated. Fusion enthalpy, which is related to the amount of frozen water, was influenced by frozen dough formulation and storage time; specifically gum addition reduced the fusion enthalpy in comparison to control formulation, 76.9 J/g for formulation with both gums and 81.2 J/g for control, at 28th day. Other calorimetric parameters, such as Tg and freezable water amount, were also influenced by frozen storage time. For all formulations, proofing rate of dough after freezing, frozen storage time and thawing, decreased in comparison to non-frozen dough, indicating that the freezing process itself was more detrimental to the proofing rate than storage time. For all formulations, the mean value of proofing rate was 2.97 ± 0.24 cm3 min−1 per 100 g of non-frozen dough and 2.22 ± 0.12 cm3 min1 per 100 g of frozen dough. Also the proofing rate of non-frozen dough with xanthan gum decreased significantly in relation to dough without gums and dough with only guar gum. Optical microscopy analyses showed that the gas cell production after frozen storage period was reduced, which is in agreement with the proofing rate results.  相似文献   

5.
Hydrocolloids have traditionally been investigated as an alternative to gluten for making good quality products for coeliac patients. This study investigated the interactions between hydroxypropylmethylcellulose (HPMC) (2–4 g/100 g of flour), psyllium (0–4 g/100 g of flour) and water level (90–110 g/100 g of flour) in gluten-free breadmaking. Psyllium incorporation reduced the pasting temperature and compliance values, and increased elastic (G′) and viscous (G″) moduli values. In contrast, HPMC addition had no important effects on pasting properties and compliance values, but also increased G′ and G″ values. Psyllium inclusion reduced bread specific volume and increased bread hardness, while there were hardly differences in the bread specific volume and hardness between the percentages of HPMC studied. In addition, when the dough hydration level was increased, there was a decrease in the influence of hydrocolloids on dough rheology and specific volume and hardness of breads.  相似文献   

6.
Response surface methodology described the effects of salt, lactic acid, shortening, and exogenous trehalose and dough mixing temperature (DMT) and their interactions on the three rheological and fermentation parameters. These included maximum dough height (Hm), maximum height of gas release (Hm′) and CO2 production, measured by the Rheofermentometer F3, and bread specific volume (Sp. Vol.) of frozen sweet dough. The models could estimate the four parameters with R2 values of 0.76, 0.69, 0.93, and 0.59, respectively. Salt significantly influenced all four parameters in a negative way. DMT affected positively the Hm and Sp. Vol. of bread. Lactic acid affected Hm only, but its interactions with other variables influenced all four parameters. Shortening level affected Hm′ and CO2 production positively and Sp. Vol. negatively. The added exogenous trehalose improved Hm, Hm′, and CO2 production significantly, but not the Sp. Vol. of bread. Among the three Rheofermentometer parameters, Hm showed the highest correlation with Sp. Vol. (R2 = 0.75). DMT for the maximum Hm and Sp. Vol. varied with the level of other ingredients. Trehalose alone could not overcome the challenges in a sweet frozen dough system to improve the Sp. Vol., and its combined effects with other ingredients will need to be evaluated to restore the impaired gas retention of the frozen sweet dough.  相似文献   

7.
Maize prolamin (zein), together with starch, hydroxypropyl methylcellulose, sugar, salt, yeast and water can form wheat-like cohesive, extensible, viscoelastic dough when mixed above room temperature (e.g. 40 °C). This dough is capable of holding gas. However, it is excessively extensible, and when used for hearth-type rolls, it tends to become flat. Bench-scale defatting of zein with chloroform at room temperature significantly (P < 0.05) improved specific volume (4.5 ml/g vs. 3.3 ml/g) and shape of the rolls (width-to-height 2.0 vs. 3.9). The total lipid content determined by accelerated solvent extraction (100 °C, 69 bar, chloroform), however, only decreased from 8.0 to 6.6% due to this bench-scale defatting. Staining experiments with Naphthol Blue Black suggested that bench-scale defatting removed surface lipids from the zein particles, and thus facilitated their aggregation. Aggregation experiments with zein and water at 40 °C, and laser scanning confocal microscopy with zein-starch dough confirmed that zein particles aggregated more easily when surface-defatted. Dynamic oscillatory temperature sweeps demonstrated that surface-defatting lowered the temperature at which protein cross-linking occurred by 2 °C. This research can help to produce superior gluten-free bread and could also possibly contribute to the better understanding of wheat dough.  相似文献   

8.
The secondary structure of a dough-like zein polymer was compared to the structure present in a wheat viscoelastic system using FT-IR spectroscopy. When zein was mixed at 35 °C, which is above its glass transition temperature (Tg), changes in its secondary structure suggested that the protein loses its native structure, mainly composed of α-helices (68%), and a viscoelastic system is formed by a structural rearrangement that favors β-sheet structures. This rearrangement is very similar to the structural changes observed in gluten viscoelastic polymers. Upon removal of shear stress, the zein polymer showed a rapid decrease in the proportion of β-sheet structures (from 48% to 28% after the first 3 min) in favor of unordered structures. At the same time, the viscoelasticity of the polymer decreased rapidly. In contrast, gluten, in a similar viscoelastic system and held at the same temperature, showed a fairly constant high content of β-sheet structures (49%) coinciding with the slow relaxation time typical of gluten networks after the removal of shear. We speculate that the addition of a protein capable of causing extensive and stable β-sheet formation in the zein–starch viscoelastic polymer could increase the stability and relaxation time of the zein system and, thereby, create the possibility of a zein dough with similar functionality to a wheat viscoelastic system.  相似文献   

9.
The possibility of forming dough from kafirin was investigated and laboratory prepared kafirin was formed into a viscoelastic dough system. Measurements with Contraction Flow showed that dough systems prepared from kafirin and from commercial zein had the required extensional rheological properties for baking of leavened bread. The extensional viscosity and strain hardening of the kafirin and zein dough systems were similar to those of gluten and wheat flour doughs. The kafirin dough system, however, unlike the zein dough system rapidly became very stiff. The stiffening behaviour of the kafirin dough system was presumed to be caused by cross-linking of kafirin monomers. SDS-PAGE showed that the kafirin essentially only contained α- and γ-kafirin, whereas the zein essentially only contained α-zein. Since γ-kafirin contains more cysteine residues than the α-prolamin it is more likely to form disulphide cross-links, which probably caused the differences in stiffening behaviour between kafirin and zein dough systems. Overall the kafirin dough system displayed rheological properties sufficient for baking of porous bread. Kafirin like zein appears to have promising properties for making non-gluten leavened doughs.  相似文献   

10.
The influence of guar and xanthan gum and their combined use on dough proofing rate and its calorimetric properties was investigated. Fusion enthalpy, which is related to the amount of frozen water, was influenced by frozen dough formulation and storage time; specifically gum addition reduced the fusion enthalpy in comparison to control formulation, 76.9 J/g for formulation with both gums and 81.2 J/g for control, at 28th day. Other calorimetric parameters, such as Tg and freezable water amount, were also influenced by frozen storage time. For all formulations, proofing rate of dough after freezing, frozen storage time and thawing, decreased in comparison to non-frozen dough, indicating that the freezing process itself was more detrimental to the proofing rate than storage time. For all formulations, the mean value of proofing rate was 2.97 ± 0.24 cm3 min−1 per 100 g of non-frozen dough and 2.22 ± 0.12 cm3 min1 per 100 g of frozen dough. Also the proofing rate of non-frozen dough with xanthan gum decreased significantly in relation to dough without gums and dough with only guar gum. Optical microscopy analyses showed that the gas cell production after frozen storage period was reduced, which is in agreement with the proofing rate results.  相似文献   

11.
When used in bread dough systems, glucose oxidase (GO) and pyranose oxidase (P2O) generate H2O2 from O2. We here studied their potential to improve dough and bread characteristics. Neither GO nor P2O significantly affected the volume of straight dough bread produced with fermentation and proofing times of respectively 90 and 36 min at dosages up to 0.50 nkat/g flour. Supplementation with 1.00 nkat/g flour of GO or P2O significantly decreased bread loaf volume. The resistance of dough (fermented for 20 min and proofed for 56 min) to an applied shock was substantially improved by inclusion of 0.08, 0.25, 0.50 or 1.00 nkat/g flour of GO or P2O in the dough recipe. Thus, the proofed doughs showed significantly less collapse and the resultant breads had higher loaf volumes than did the reference breads. Yeast probably exerts an oxidizing effect on dough, which, depending on the exact breadmaking protocol used, might veil the positive oxidizing effect of the enzymes on dough properties during prolonged fermentation.  相似文献   

12.
This study investigates the influence of in situ exopolysaccharides (EPS) and organic acids on dough rheology and wheat bread quality. Dextran forming Weissella cibaria MG1 was compared to reuteran forming Lactobacillus reuteri VIP. For in situ production of EPS, sourdoughs were supplemented with 15% sucrose. Control sourdoughs were prepared with the same strain but without sucrose. W. cibaria MG1 and L. reuteri VIP formed 5.1 and 5.8 g kg−1 dextran and reuteran, respectively. Formation of EPS from sucrose led to production of high amounts of acetate by L. reuteri VIP, but only small amounts were detected in W. cibaria MG1 sourdough. EPS containing sourdough or control sourdough was incorporated at 10% and 20% in wheat dough. EPS significantly influenced the rheological properties of the dough, with dextran exhibiting the strongest impact. The addition of dextran enriched W. cibaria MG1 sourdough significantly increased CO2 production, whereas increased acidity in reuteran containing dough reduced gas production. The quality of wheat bread was enhanced when 10% of L. reuteri-sucrose sourdough was added. The positive effect of reuteran was masked by increased acidification after 20% sourdough addition. Incorporation of dextran enriched sourdough (10% and 20%) provided mildly acidic wheat bread with improved bread quality.  相似文献   

13.
The quality of bread made from frozen dough is diminished, and staling rate is increased by changes that occur during freezing and storage. New cultivars of waxy wheat flour (WWF), containing higher levels of amylopectin, may help improve the quality of baked products. Bread quality and staling were investigated for bread containing 0–45% WWF and 55–65% water after freezing and 90-day frozen storage. The specific volume was highest with 15% WWF substitution and 60% water in bread made from both unfrozen and frozen dough. With higher levels of WWF and lower water content, bread staling rates decreased. Bread with higher levels of WWF were darker and had greater color variation. 1H NMR studies showed that bread with greater WWF and water had higher transverse relaxation (T2) times (9–11 ms), but less change in T2 during storage. This research demonstrated that specific combinations of WWF and water produced a better quality of bread after dough freezing.  相似文献   

14.
Freezing deteriorates the baking quality of frozen bread dough. This study revealed the protective effects of zein-based ice nucleation films (INFs) on the baking quality of frozen dough. INFs were prepared by immobilizing biogenic ice nucleators on the surface of zein films, which consequently revealed ice nucleation activity and increased the ice nucleation temperature of water from −15 °C to −6.7 °C. By using these films to wrap frozen dough during five freeze/thaw cycles, the specific volume of bread was increased by up to 25% compared to the bread from control frozen dough. The reason was attributed to 40% more viable yeast cells preserved by INFs. In addition, zein-based INFs also reduced the water loss by frozen dough resulting in higher water content in bread crumb. Combining the protective effects on both specific volume and water content from zein-based INFs, the obtained bread showed 68% lower firmness and fracturability and 2.4 times higher resilience compared to the control. The INFs were also superior in that for zein-based INFs, biogenic ice nucleators showed desirable affinity with the surface to sustain at least fifteen repetitive uses on freezing water.  相似文献   

15.
Dielectric relaxations of wheat doughs with different water contents and effects of sucrose, NaCl, and their mixture on relaxation temperatures were investigated using dielectric analysis (DEA). All ingredients were dissolved in distilled water used to prepare wheat flour doughs to optimum consistency. Before analysis, samples were stored at room temperature in vacuum desiccators over aw range of 0·225–0·753. Dynamic DEA measurements were made at a heating rate of 2 °C/min from 40 °C below and above the observed relaxation zone. The frequencies used were 0·1, 0·5, 1, and 5 Hz. Steady state water contents varied from 3·21 to 10·89 g H2O/100 g dm over aw range used for the plain dough (flour+water). Added ingredients increased sorption of doughs. The tan δ of DEA showed an α-relaxation (glass transition) in all doughs at all frequencies used. The relaxation peak temperature, taken as Tg, increased with increasing frequency. Added sucrose decreased the Tg of doughs, as well as added NaCl. A dramatic depressing effect of NaCl on Tg was probably due to an increase in conductivity of doughs.  相似文献   

16.
Response surface methodology described the effects of salt, lactic acid, shortening, and exogenous trehalose and dough mixing temperature (DMT) and their interactions on the three rheological and fermentation parameters. These included maximum dough height (Hm), maximum height of gas release (Hm′) and CO2 production, measured by the Rheofermentometer F3, and bread specific volume (Sp. Vol.) of frozen sweet dough. The models could estimate the four parameters with R2 values of 0.76, 0.69, 0.93, and 0.59, respectively. Salt significantly influenced all four parameters in a negative way. DMT affected positively the Hm and Sp. Vol. of bread. Lactic acid affected Hm only, but its interactions with other variables influenced all four parameters. Shortening level affected Hm′ and CO2 production positively and Sp. Vol. negatively. The added exogenous trehalose improved Hm, Hm′, and CO2 production significantly, but not the Sp. Vol. of bread. Among the three Rheofermentometer parameters, Hm showed the highest correlation with Sp. Vol. (R2 = 0.75). DMT for the maximum Hm and Sp. Vol. varied with the level of other ingredients. Trehalose alone could not overcome the challenges in a sweet frozen dough system to improve the Sp. Vol., and its combined effects with other ingredients will need to be evaluated to restore the impaired gas retention of the frozen sweet dough.  相似文献   

17.
The difficulty in finding gluten-free bread and its high price make it necessary to prolong its shelf life to facilitate its availability. Freezing is an interesting alternative. The storage of bread at over zero temperatures, 20 °C and 4 °C, showed faster staling at refrigerator temperatures. A good relationship between crumb firmness and the extent of starch recrystallization was obtained, although the effect of water loss was also detected. The study of freezing and frozen storage at −14 °C and −28 °C for 7 days showed a substantial effect of the storage temperature on gluten-free bread quality and shelf life. Breads stored at −28 °C retained a quality similar to that of fresh breads while a marked deterioration of the breads stored at −14 °C was observed. This effect, the strongest on bread texture, was a result of starch recrystallization. The glass transition, Tg’ and onset of ice melting, Tm’ of the maximally freeze-concentrated bread crumb were −37.1 ± 0.6 °C and −19.3 ± 0.2 °C respectively. The higher amount of unfrozen water at −14 °C could explain the acceleration of reactions responsible for bread staling during frozen storage. The use of storage temperatures below Tm’ is recommended to retain high quality of the gluten-free bread during frozen storage.  相似文献   

18.
The phase behavior of zein films has been investigated at nano-scale using atomic force microscopy (AFM) and compared to the phase behavior of the bulk using a thermal characterization technique. The local surface properties of the films were evaluated as a function of water activity using AFM. The glass transition temperature (Tg) of zein films decreased with increasing water activity. Adhesion forces measured by the AFM force curves increased with increasing water activity. Topography of zein and zein fractions were evaluated both qualitatively and quantitatively by the use of AFM and dedicated software to calculate the surface roughness. It has been found that processing technologies (solvent casting, drop deposition and spin casting) has influence on the surface structures of films. The films which were formed by the alpha zein rich fraction were found to have highest roughness values. Sectional surface profiles revealed that α-zein films have mean roughness (Ra) of 1.808 nm and root mean square roughness (RMS) of 2.239 nm while β-zein films have mean roughness (Ra) of 1.745 nm and root mean square roughness (RMS) of 3.623 nm. The discussions conducted on the differences/similarities in the observations were based on the hydrophobic/hydrophilic properties and interactions of these zein fractions.  相似文献   

19.
The aim of the present study was to describe the physicochemical events occurring during batter mixing at different water contents (51.8, 54.4, and 56.7 g of water/100 g of dough) using near infrared (NIR) spectroscopy. An FT-NIR spectrometer over the 1000–2500 nm range with a fibre optic probe was used to record NIR spectra in-line. The analysis of both one-dimensional statistical method (principal components analysis) and two-dimensional statistical methods (generalised two-dimensional correlation spectroscopy) was conducted to evaluate the possibilities of NIR spectroscopy to monitor physical and physicochemical modifications observed during mixing of batter. The NIR results were in agreement with the physical and physicochemical analysis traditionally used to study bread dough mixing (consistency and glutenin depolymerisation). PCA on raw NIR spectra demonstrated that PC1 describes the same traces as the dough consistency curves. PCA on raw NIR spectra can be used to monitor the batter mixing and to identify the NIR mixing time close to the tpeak.PCA on spectra after second derivative demonstrated that PC1 and PC2 traces described different traces compared to the dough consistency curves. The loading spectra associated to PC1 and PC2 suggested that almost the same physicochemical and chemical mechanisms occur during the dough mixing at 51.8 or 54.4% water contents, but with kinetic and intensity differences. The 2D COS method allowed a sequence of chemical events occurring during mixing for the batters at 51.8 and 54.4% water contents to be tentatively proposed. The 2D COS did not give clear physicochemical differences between the three batters during mixing. The NIR results for the highly hydrated batter (56.7%) were difficult to analyse due to its high water content.  相似文献   

20.
The research, evaluated the rheological properties of dough and final bread quality production, in function of time, made from wheat refined flour that was enriched with an oat dietary fiber in two dosages (WOF 6% and WOF 12%), spelt flour and two types of wholegrain flour: wholegrain (full milling) and wholemeal (one-step milling). The rheological measurements revealed that the highest instantaneous compliance (J0) was observed in the wholemeal sample and the lowest was in the WOF 6%. The lowest specific volume was observed in the wholegrain bread (0.82 cm3/g), while the highest was observed in the control white bread sample (1.60 cm3/g). The most rapid loss of moisture appeared in white bread. The moisture content was significantly influenced by the type of flour, day of storage and the interaction of these two variables (p ≤ 0.01). The hardest was the sample of wholegrain bread on the first and third day. The smallest pores were noticed in WOF 12% sample. In water extraction, white bread and WOF 12% were comparable and there were no significant differences between spelt bread and wholegrain bread. THE WOF 12% sample had the optimal ratio of health benefits and technological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号