首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nicotinic acetylcholine receptor (nAChR), a member of pentameric ligand-gated ion channel transmembrane protein composed of five subunits, is widely distributed in the central and peripheral nervous system. The nAChRs are associated with various neurological diseases, including schizophrenia, Alzheimer’s disease, Parkinson’s disease, epilepsy and neuralgia. Receptors containing the α3 subunit are associated with analgesia, generating our interest in their role in pharmacological studies. In this study, α-conotoxin (α-CTx) LvIF was identified as a 16 amino acid peptide using a genomic DNA clone of Conus lividus (C. lividus). The mature LvIF with natural structure was synthesized by a two-step oxidation method. The blocking potency of α-CTx lvIF on nAChR was detected by a two-electrode voltage clamp. Our results showed that α-CTx LvIF was highly potent against rα3β2 and rα6/α3β2β3 nAChR subtypes, The half-maximal inhibitory concentration (IC50) values of α-CTx LvIF against rα3β2 and rα6/α3β2β3 nAChRs expressed in Xenopus oocytes were 8.9 nM and 14.4 nM, respectively. Furthermore, α-CTx LvIF exhibited no obvious inhibition on other nAChR subtypes. Meanwhile, we also conducted a competitive binding experiment between α-CTxs MII and LvIF, which showed that α-CTxs LvIF and MII bind with rα3β2 nAChR at the partial overlapping domain. These results indicate that the α-CTx LvIF has high potential as a new candidate tool for the studying of rα3β2 nAChR related neurophysiology and pharmacology.  相似文献   

2.
The α4β2 nAChR is implicated in a range of diseases and disorders including nicotine addiction, epilepsy and Parkinson’s and Alzheimer’s diseases. Designing α4β2 nAChR selective inhibitors could help define the role of the α4β2 nAChR in such disease states. In this study, we aimed to modify globular and ribbon α-conotoxin GID to selectively target the α4β2 nAChR through competitive inhibition of the α4(+)β2(−) or α4(+)α4(−) interfaces. The binding modes of the globular α-conotoxin [γ4E]GID with rat α3β2, α4β2 and α7 nAChRs were deduced using computational methods and were validated using published experimental data. The binding mode of globular [γ4E]GID at α4β2 nAChR can explain the experimental mutagenesis data, suggesting that it could be used to design GID variants. The predicted mutational energy results showed that globular [γ4E]GID is optimal for binding to α4β2 nAChR and its activity could not likely be further improved through amino-acid substitutions. The binding mode of ribbon GID with the (α4)3(β2)2 nAChR was deduced using the information from the cryo-electron structure of (α4)3(β2)2 nAChR and the binding mode of ribbon AuIB. The program FoldX predicted the mutational energies of ribbon [γ4E]GID at the α4(+)α4(−) interface, and several ribbon[γ4E]GID mutants were suggested to have desirable properties to inhibit (α4)3(β2)2 nAChR.  相似文献   

3.
Tobacco smoking has become a prominent health problem faced around the world. The α3β4 nicotinic acetylcholine receptor (nAChR) is strongly associated with nicotine reward and withdrawal symptom. α-Conotoxin TxID, cloned from Conus textile, is a strong α3β4 nAChR antagonist, which has weak inhibition activity of α6/α3β4 nAChR. Meanwhile, its analogue [S9K]TxID only inhibits α3β4 nAChR (IC50 = 6.9 nM), and has no inhibitory activity to other nAChRs. The present experiment investigates the effect of α3β4 nAChR antagonists (TxID and [S9K]TxID) on the expression and reinstatement of nicotine-induced conditioned place preference (CPP) and explores the behaviors of acute nicotine in mice. The animal experimental results showed that TxID and [S9K] TxID could inhibit the expression and reinstatement of CPP, respectively. Moreover, both had no effect in acute nicotine experiment and the locomotor activity in mice. Therefore, these findings reveal that the α3β4 nAChR may be a potential target for anti-nicotine addiction treatment. [S9K]TxID, α3β4 nAChR antagonist, exhibit a superior effect for anti-nicotine addiction, which is promising to develop a novel smoking cessation drug.  相似文献   

4.
α-Conotoxins GI and MI belong to the 3/5 subfamily of α-conotoxins and potently inhibit muscular nicotinic acetylcholine receptors (nAChRs). To date, no 3/4- or 3/6-subfamily α-conotoxins have been reported to inhibit muscular nAChRs. In the present study, a series of new 3/4-, 3/6-, and 3/7-subfamily GI and MI variants were synthesized and functionally characterized by modifications of loop2. The results show that the 3/4-subfamily GI variant GI[∆8G]-II and the 3/6-subfamily variants GI[+13A], GI[+13R], and GI[+13K] displayed potent inhibition of muscular nAChRs expressed in Xenopus oocytes, with an IC50 of 45.4–73.4 nM, similar to or slightly lower than that of wild-type GI (42.0 nM). The toxicity of these GI variants in mice appeared to be about a half to a quarter of that of wild-type GI. At the same time, the 3/7-subfamily GI variants showed significantly lower in vitro potency and toxicity. On the other hand, similar to the 3/6-subfamily GI variants, the 3/6-subfamily MI variants MI[+14R] and MI[+14K] were also active after the addition of a basic amino acid, Arg or Lys, in loop2, but the activity was not maintained for the 3/4-subfamily MI variant MI[∆9G]. Interestingly, the disulfide bond connectivity “C1–C4, C2–C3” in the 3/4-subfamily variant GI[∆8G]-II was significantly more potent than the “C1–C3, C2–C4” connectivity found in wild-type GI and MI, suggesting that disulfide bond connectivity is easily affected in the rigid 3/4-subfamily α-conotoxins and that the disulfide bonds significantly impact the variants’ function. This work is the first to demonstrate that 3/4- and 3/6-subfamily α-conotoxins potently inhibit muscular nAChRs, expanding our knowledge of α-conotoxins and providing new motifs for their further modifications.  相似文献   

5.
Nicotinic acetylcholine receptors (nAChRs) are targets for developing new drugs to treat severe pain, nicotine addiction, Alzheimer disease, epilepsy, etc. α-Conotoxins are biologically and chemically diverse. With 12–19 residues and two disulfides, they can be specifically selected for different nAChRs. Acetylcholine-binding proteins from Aplysia californica (Ac-AChBP) are homologous to the ligand-binding domains of nAChRs and pharmacologically similar. X-ray structures of the α-conotoxin in complex with Ac-AChBP in addition to computer modeling have helped to determine the binding site of the important residues of α-conotoxin and its affinity for nAChR subtypes. Here, we present the various α-conotoxin residues that are selective for Ac-AChBP or nAChRs by comparing the structures of α-conotoxins in complex with Ac-AChBP and by modeling α-conotoxins in complex with nAChRs. The knowledge of these binding sites will assist in the discovery and design of more potent and selective α-conotoxins as drug leads.  相似文献   

6.
α-Conotoxin TxIB, a selective antagonist of α6/α3β2β3 nicotinic acetylcholine receptor, could be a potential therapeutic agent for addiction and Parkinson’s disease. As a peptide with a complex pharmacophoric conformation, it is important and difficult to find a modifiable site which can be modified effectively and efficiently without activity loss. In this study, three xylene scaffolds were individually reacted with one pair of the cysteine residues ([1,3] or [2,4]), and iodine oxidation was used to form a disulfide bond between the other pair. Overall, six analogs were synthesized with moderate isolated yields from 55% to 65%, which is four times higher than the traditional two-step oxidation with orthogonal protection on cysteines. The cysteine [2,4] modified analogs, with higher stability in human serum than native TxIB, showed obvious inhibitory effect and selectivity on α6/α3β2β3 nicotinic acetylcholine receptors (nAChRs), which was 100 times more than the cysteine [1,3] modified ones. This result demonstrated that the cysteine [2,4] disulfide bond is a new modifiable site of TxIB, and further modification can be a simple and feasible strategy for the exploitation and utilization of α-Conotoxin TxIB in drug discovery.  相似文献   

7.
α-Conotoxin GeXIVA[1,2] is a highly potent and selective antagonist of the α9α10 nicotinic acetylcholine receptor (nAChR) subtype. It has the advantages of strong efficacy, no tolerance, and no effect on motor function, which has been expected help patients with neuropathic pain. However, drug development for clinical use is severely limited owing to its instability. Lyophilization is applied as the most preferred method to solve this problem. The prepared lyophilized powder is characterized by differential scanning calorimetry (DSC), powder X-ray diffractometry (PXRD), and Fourier transform infrared spectroscopy (FTIR). Molecular simulation is also used to explore the internal distribution and forces formed in the system. The analgesic effect on paclitaxel-induced neuropathic pain following single and 14-day repeated administrations are evaluated by the von Frey test and the tail-flick test. Trehalose combined with mannitol in a ratio of 1:1 is employed as the excipients in the determined formulation, where trehalose acts as the stabilizer and mannitol acts as the bulking agent, according to the results of DSC, PXRD, and FTIR. Both GeXIVA[1,2] (API) and GeXIVA[1,2] lyophilized powder (formulation) could produce stable analgesic effect. These results indicated that GeXIVA[1,2] lyophilized powder could improve the stability and provide an effective strategy to push it into clinical use as a new analgesic drug.  相似文献   

8.
Three new acylated aminooligosaccharide (1–3), along with five known congeners (4–8), were isolated from the marine-derived Streptomyces sp. HO1518. Their structures were fully elucidated by extensive spectroscopic analysis, mainly based on 1D-selective and 2D TOCSY, HSQC-TOCSY, and HRESIMS spectrometry measurements, and by chemical transformations. All of the compounds were evaluated for their α-glucosidase and pancreatic lipase inhibitory activities. Among the isolates, D6-O-isobutyryl-acarviostatin II03 (3) and D6-O-acetyl-acarviostatin II03 (8), sharing acarviostatin II03-type structure, showed the most potent α-glucosidase and lipase inhibitory effects, far stronger than the antidiabetic acarbose towards α-glucosidase and almost equal to the anti-obesity orlistat towards lipase in vitro. This is the first report on inhibitory activities against the two major digestive enzymes for acylated aminooligosaccharides. The results from our investigation highlight the potential of acylated aminooligosaccharides for the future development of multi-target anti-diabetic drug.  相似文献   

9.
Eight new compounds, including two sambutoxin derivatives (1–2), two highly oxygenated cyclopentenones (7–8), four highly oxygenated cyclohexenones (9–12), together with four known sambutoxin derivatives (3–6), were isolated from semimangrove endophytic fungus Talaromyces sp. CY-3, under the guidance of molecular networking. The structures of new isolates were elucidated by analysis of detailed spectroscopic data, ECD spectra, chemical hydrolysis, 13C NMR calculation, and DP4+ analysis. In bioassays, compounds 1–5 displayed better α-glucosidase inhibitory activity than the positive control 1-deoxynojirimycin (IC50 = 80.8 ± 0.3 μM), and the IC50 value was in the range of 12.6 ± 0.9 to 57.3 ± 1.3 μM.  相似文献   

10.
Glycogen synthase kinase 3β (GSK-3β) is a widely investigated molecular target for numerous diseases, and inhibition of GSK-3β activity has become an attractive approach for the treatment of diabetes. Meridianin C, an indole-based natural product isolated from marine Aplidium meridianum, has been reported as a potent GSK-3β inhibitor. In the present study, applying the structural-based optimization strategy, the pyrimidine group of meridianin C was modified by introducing different substituents based on the 2-aminopyrimidines-substituted pyrazolo pyridazine scaffold. Among them, compounds B29 and B30 showed a much higher glucose uptake than meridianin C (<5%) and the positive compound 4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-dione (TDZD-8, 16%), with no significant toxicity against HepG2 cells at the same time. Furthermore, they displayed good GSK-3β inhibitory activities (IC50 = 5.85; 24.4 μM). These results suggest that these meridianin C analogues represent novel lead compounds with therapeutic potential for diabetes.  相似文献   

11.
Cone snails are venomous marine predators that rely on fast-acting venom to subdue their prey and defend against aggressors. The conotoxins produced in the venom gland are small disulfide-rich peptides with high affinity and selectivity for their pharmacological targets. A dominant group comprises α-conotoxins, targeting nicotinic acetylcholine receptors. Here, we report on the synthesis, structure determination and biological activity of a novel α-conotoxin, CIC, found in the predatory venom of the piscivorous species Conus catus and its truncated mutant Δ-CIC. CIC is a 4/7 α-conotoxin with an unusual extended N-terminal tail. High-resolution NMR spectroscopy shows a major influence of the N-terminal tail on the apparent rigidity of the three-dimensional structure of CIC compared to the more flexible Δ-CIC. Surprisingly, this effect on the structure does not alter the biological activity, since both peptides selectively inhibit α3β2 and α6/α3β2β3 nAChRs with almost identical sub- to low micromolar inhibition constants. Our results suggest that the N-terminal part of α-conotoxins can accommodate chemical modifications without affecting their pharmacology.  相似文献   

12.
Alpha6beta2 nicotinic acetylcholine receptors (nAChRs) are potential therapeutic targets for the treatment of several neuropsychiatric diseases, including addiction and Parkinson’s disease. Alpha-conotoxin (α-CTx) TxIB is a uniquely selective ligand, which blocks α6/α3β2β3 nAChRs only, but does not block the other subtypes. Therefore, α-CTx TxIB is a valuable therapeutic candidate peptide. Synthesizing enough α-CTx TxIB with high yield production is required for conducting wide-range testing of its potential medicinal applications. The current study optimized the cleavage of synthesized α-CTx TxIB resin-bounded peptide and folding of the cleaved linear peptide. Key parameters influencing cleavage and oxidative folding of α-CTx TxIB were examined, such as buffer, redox agents, pH, salt, co-solvent and temperature. Twelve conditions were used for cleavage optimization. Fifty-four kinds of one-step oxidative solution were used to assess their effects on each α-CTx TxIB isomers’ yield. The result indicated that co-solvent choices were particularly important. Completely oxidative folding of globular isomer was achieved when the NH4HCO3 or Tris-HCl folding buffer at 4 °C contained 40% of co-solvent DMSO, and GSH:GSSG (2:1) or GSH only with pH 8~8.7.  相似文献   

13.
The proteolytic processing of amyloid precursor protein (APP) by β-secretase (BACE1) and γ-secretase releases amyloid-β peptide (Aβ), which deposits in amyloid plaques and contributes to the initial causative events of Alzheimer’s disease (AD). In the present study, the regulatory mechanism of APP processing of three phlorotannins was elucidated in Swedish mutant APP overexpressed N2a (SweAPP N2a) cells. Among the tested compounds, dieckol exhibited the highest inhibitory effect on both intra- and extracellular Aβ accumulation. In addition, dieckol regulated the APP processing enzymes, such as α-secretase (ADAM10), β-secretase, and γ-secretase, presenilin-1 (PS1), and their proteolytic products, sAPPα and sAPPβ, implying that the compound acts on both the amyloidogenic and non-amyloidogenic pathways. In addition, dieckol increased the phosphorylation of protein kinase B (Akt) at Ser473 and GSK-3β at Ser9, suggesting dieckol induced the activation of Akt, which phosphorylated GSK-3β. The specific phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 triggered GSK-3β activation and Aβ expression. In addition, co-treatment with LY294002 noticeably blocked the effect of dieckol on Aβ production, demonstrating that dieckol promoted the PI3K/Akt signaling pathway, which in turn inactivated GSK-3β, resulting in the reduction in Aβ levels.  相似文献   

14.
α-Conotoxin LvIA is derived from Conus lividus, native to Hainan, and is the most selective inhibitor of α3β2 nicotinic acetylcholine receptors (nAChRs) known to date. In this study, an efficient approach for the production of recombinant α-Conotoxin LvIA is described. Tandem repeats of a LvIA gene fragment were constructed and fused with a KSI gene and a His6 tag in a Escherichia coli (E. coli) expression vector pET-31b(+). The recombinant plasmids were transformed into E. coli and were found to express well. The KSI-(LvIA)n-His6 fusion protein was purified by metal affinity chromatography and then cleaved with CNBr to release recombinant LvIA (rLvIA). High yields of fusion protein ranging from 100 to 500 mg/L culture were obtained. The pharmacological profile of rLvIA was determined by two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes expressing rat nAChR subtypes. The rLvIA antagonized the α3β2 nAChR subtype selectively with a nano-molar IC50. The rLvIA was analgesic in a mouse hot-plate test model of pain. Overall, this study provides an effective method to synthesize α-conotoxin LvIA in an E. coli recombinant expression system, and this approach could be useful to obtain active conopeptides in large quantity and at low cost.  相似文献   

15.
In the present study, we synthesized and, structurally and functionally characterized a novel α4/7-conotoxin Mr1.7 (PECCTHPACHVSHPELC-NH2), which was previously identified by cDNA libraries from Conus marmoreus in our lab. The NMR solution structure showed that Mr1.7 contained a 310-helix from residues Pro7 to His10 and a type I β-turn from residues Pro14 to Cys17. Electrophysiological results showed that Mr1.7 selectively inhibited the α3β2, α9α10 and α6/α3β2β3 neuronal nicotinic acetylcholine receptors (nAChRs) with an IC50 of 53.1 nM, 185.7 nM and 284.2 nM, respectively, but showed no inhibitory activity on other nAChR subtypes. Further structure-activity studies of Mr1.7 demonstrated that the PE residues at the N-terminal sequence of Mr1.7 were important for modulating its selectivity, and the replacement of Glu2 by Ala resulted in a significant increase in potency and selectivity to the α3β2 nAChR. Furthermore, the substitution of Ser12 with Asn in the loop2 significantly increased the binding of Mr1.7 to α3β2, α3β4, α2β4 and α7 nAChR subtypes. Taken together, this work expanded our knowledge of selectivity and provided a new way to improve the potency and selectivity of inhibitors for nAChR subtypes.  相似文献   

16.
β-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of β-chitin. The SEM, TEM, and XRD characterization results verified that β-chitin crystalline structure were maintained after mechanical treatment. The mean particle size of β-chitin nanofibers was in the range between 10 and 15 nm, according to the TEM analysis. In addition, the β-chitin nanofibers were converted into films by the simple solvent-casting and drying process at 60 °C. The obtained films had high lightness, which was evidenced by the CIELAB color test. Moreover, the films showed the medium swelling degree (250–290%) in aqueous solutions of different pH and good mechanical resistance in the range between 4 and 17 MPa, depending on film thickness. The results obtained in this work show that marine waste can be efficiently converted to biomaterial by use of mild extractive conditions and simple mechanical treatment, offering great potential for the future development of sustainable multifunctional materials for various industrial applications such as food packaging, agriculture, and/or wound dressing.  相似文献   

17.
Only palliative therapeutic options exist for the treatment of Alzheimer’s Disease; no new successful drug candidates have been developed in over 15 years. The widely used clinical anticoagulant heparin has been reported to exert beneficial effects through multiple pathophysiological pathways involved in the aetiology of Alzheimer’s Disease, for example, amyloid peptide production and clearance, tau phosphorylation, inflammation and oxidative stress. Despite the therapeutic potential of heparin as a multi-target drug for Alzheimer’s disease, the repurposing of pharmaceutical heparin is proscribed owing to the potent anticoagulant activity of this drug. Here, a heterogenous non-anticoagulant glycosaminoglycan extract, obtained from the shrimp Litopenaeus vannamei, was found to inhibit the key neuronal β-secretase, BACE1, displaying a more favorable therapeutic ratio compared to pharmaceutical heparin when anticoagulant activity is considered.  相似文献   

18.
Marine fungi-derived natural products represent an excellent reservoir for the discovery of novel lead compounds with biological activities. Here, we report the identification of two new drimane sesquiterpenes (1 and 2) and six new polyketides (3–8), together with 10 known compounds (9–18), from a marine-derived fungus Penicillium sp. TW58-16. The planar structures of these compounds were elucidated by extensive 1D and 2D NMR, which was supported by HR-ESI-MS data. The absolute configurations of these compounds were determined by experimental and calculated electronic circular dichroism (ECD), and their optical rotations compared with those reported. Evaluation of the anti-inflammatory activity of compounds 1–18 revealed that compound 5 significantly inhibited the release of nitric oxide (NO) induced by lipopolysaccharide (LPS) in RAW264.7 cells, correlating with the inhibition of expression of inducible nitric oxide synthase (iNOS). In addition, we revealed that compounds 1, 3–6, 14, 16, and 18 showed strong α-glucosidase inhibitory effects with inhibition rates of 35.4%, 73.2%, 55.6%, 74.4%, 32.0%, 36.9%, 88.0%, and 91.1%, respectively, which were comparable with or even better than that of the positive control, acarbose. Together, our results illustrate the potential of discovering new marine-based therapeutic agents against inflammation and diabetes mellitus.  相似文献   

19.
Biocompatible extraction emerges recently as a means to reduce costs of biotechnology processing of microalgae. In this frame, this study aimed at determining how specific culture conditions and the associated cell morphology impact the biocompatibility and the extraction yield of β-carotene from the green microalga Dunaliella salina using n-decane. The results highlight the relationship between the cell disruption yield and cell volume, the circularity and the relative abundance of naturally permeabilized cells. The disruption rate increased with both the cell volume and circularity. This was particularly obvious for volume and circularity exceeding 1500 µm3 and 0.7, respectively. The extraction of β-carotene was the most biocompatible with small (600 µm3) and circular cells (0.7) stressed in photobioreactor (30% of carotenoids recovery with 15% cell disruption). The naturally permeabilized cells were disrupted first; the remaining cells seems to follow a gradual permeabilization process: reversibility (up to 20 s) then irreversibility and cell disruption. This opens new carotenoid production schemes based on growing robust β-carotene enriched cells to ensure biocompatible extraction.  相似文献   

20.
This work aimed to evaluate the effects of dietary supplementation with β-glucans extracted from yeast (Saccharomyces cerevisiae) and microalga (Phaeodactylum tricornutum) on gene expression, oxidative stress biomarkers and plasma immune parameters in gilthead seabream (Sparus aurata) juveniles. A practical commercial diet was used as the control (CTRL), and three others based on CTRL were further supplemented with different β-glucan extracts. One was derived from S. cerevisiae (diet MG) and two different extracts of 21% and 37% P. tricornutum-derived β-glucans (defined as Phaeo21 and Phaeo37), to give a final 0.06% β-glucan dietary concentration. Quadruplicate groups of 95 gilthead seabream (initial body weight: 4.1 ± 0.1 g) were fed to satiation three times a day for 8 weeks in a pulse-feeding regimen, with experimental diets intercalated with the CTRL dietary treatment every 2 weeks. After 8 weeks of feeding, all groups showed equal growth performance and no changes were found in plasma innate immune status. Nonetheless, fish groups fed β-glucans supplemented diets showed an improved anti-oxidant status compared to those fed CTRL at both sampling points (i.e., 2 and 8 weeks). The intestinal gene expression analysis highlighted the immunomodulatory role of Phaeo37 diet after 8 weeks, inducing an immune tolerance effect in gilthead seabream intestine, and a general down-regulation of immune-related gene expression. In conclusion, the results suggest that the dietary pulse administration of a P. tricornutum 37% enriched-β-glucans extract might be used as a counter-measure in a context of gut inflammation, due to its immune-tolerant and anti-oxidative effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号