首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
The provision of grass for early spring grazing in Ireland is critical for spring calving grass‐based milk production systems. This experiment investigated the effect of a range of autumn closing dates (CD), on herbage mass (kg DM ha?1), leaf area index (LAI) and tiller density (m?2) during winter and early spring. Thirty‐six grazing paddocks, closed from 23 September to 1 December 2007, were grouped to create five mean CD treatments – 29 September, 13 October, 27 October, 10 November, 24 November. Herbage mass, tiller density and LAI were measured every 3 weeks from 28 November 2007 to 20 February 2008; additionally, herbage mass was measured prior to initial spring grazing and tiller density was measured intermittently until September 2008. Delaying CD until November significantly (P < 0·05) reduced herbage mass (by approximately 500 kg DM ha?1) and LAI (by approximately 0·86 units) in mid‐February. On average, 35% of herbage mass present on swards on 20 February was grown between 28 November and 30 January. LAI was positively correlated with herbage mass (R2 = 0·78). Herbage mass increased by approximately 1000 kg DM ha?1 as spring grazing was delayed from February to April. Tiller density increased from November to February, although it did fluctuate, and it was greatest in April (9930 m?2). This experiment concludes that in the south of Ireland adequate herbage mass for grazing in early spring can be achieved by delaying closing to early mid‐October; swards required for grazing after mid‐March can be closed during November.  相似文献   

2.
Under Irish conditions, the digestibility in May of grass managed for silage production is sometimes lower than expected. In each of two successive years, replicate field plots were established to examine the effects of three defoliation heights (uncut or cut to a stubble height of 10 or 5 cm) applied in winter and/or spring on herbage yields harvested in May and again in July, and on chemical composition and conservation characteristics associated with first‐cut silage. Swards that were not defoliated in December or March had a dry‐matter (DM) yield and in vitro DM digestibility (DMD) in mid‐May of 6597 kg ha?1 and 736 g kg?1, respectively, in Year 1, and corresponding values of 7338 kg ha?1 and 771 g kg?1 in Year 2. Defoliating swards to 5 cm in December reduced (P < 0·001) May DM yields compared to swards that were not defoliated in both December and March, while herbage DMD in May increased (P < 0·001) when defoliated in December or March. There were no clear effects of defoliation height or its timing on herbage ensilability or resultant conservation efficiency characteristics. The effects of defoliation on July yield were the reverse of those observed for May, while the total yield of the December and March defoliations plus the two silage harvests increased as defoliation height was lowered in Year 2 only. It is concluded that defoliation in winter and/or spring can increase herbage digestibility but will likely reduce DM yields in May.  相似文献   

3.
Abstract Reed canary grass (RCG) used for land treatment of waste water can serve as a substrate for biogas production. The aim of this experiment was to study the effects of two, three or four cuts per year to stubble heights of 5, 12·5 or 20 cm on the digestibility and yield of digestible organic matter (DOM) of RCG. Both dry‐matter yield and the yield of DOM decreased with more than two cuts per year. Height of cutting had no effect on the digestibility of the regrowth harvested from the different cutting regimes. Increased height of cutting resulted in increased dry‐matter production and therefore also of increased DOM yield in the regrowth harvested from the four‐cut regime. The total DOM yield from the four‐cut regime was, however, only 0·84 of the DOM yield from the two‐cut regime.  相似文献   

4.
To determine the impacts of climate change and defoliation on the community structure and plant diversity of a semi‐natural temperate grassland, monoliths of a permanent grassland were exposed to ambient or elevated atmospheric CO2 concentrations (ambient + 235 ppmv) and temperature (ambient + 3°C) from October 1998 to December 2000. The monoliths were subjected to two different cutting frequencies, either two or six cuts per year. The grassland community structure changed during the course of the experiment and was more responsive to changes in management than to changes in climate. Increased cutting frequency stimulated plant diversity by enhancing the number of forb species, but plant diversity was not significantly affected by climate change. The contribution of individual plant species to the vegetation cover revealed species‐specific responses to climate change and cutting frequency, but for most species significant interactions between climate change and cutting frequency were present. There were no clear‐cut effects of treatments on the total annual yield and the proportion of forbs present, as significant interactions between climate change and cutting frequency occurred. It is concluded that differential grassland management will modify plant species‐specific responses to climate change and resulting changes in the botanical composition of mixed‐species, temperate grasslands.  相似文献   

5.
Growth characteristics, dry‐matter (DM) yield, chemical components and in vitro dry‐matter digestibility (IVDMD) of Napier grass were studied in a randomized complete block design with three replications at Haramaya University, Ethiopia. The treatments were three defoliation frequencies (60, 90 and 120 d after Napier grass establishment) and five cutting heights (5, 10, 15, 20 and 25 cm above ground level). Except for leaf‐to‐stem ratio, all growth characteristics increased with decreasing frequency of defoliation. Similarly, DM yield of Napier grass increased as the frequency of defoliation decreased. Total ash, crude protein (CP), hemicellulose and IVDMD contents of Napier grass increased with increasing frequency of defoliation, whereas DM, acid detergent fibre, acid detergent lignin and cellulose contents increased with a decrease in defoliation frequency. In contrast, cutting heights had no significant effect on most chemical components and IVDMD contents, although total ash and CP decreased as the height of cutting increased. The CP yield per cut and per day was highest at an intermediate defoliation frequency. The results of this study indicated that Napier grass could be categorized under medium‐ to high‐quality herbage if defoliated at 90 d after establishment in the mid and highlands of Ethiopia.  相似文献   

6.
Management decisions should facilitate the dominance of C3 perennial grasses over annuals. This study examined the effects of defoliation frequencies and nitrogen fertilization on the productivity and potential for persistence of Dactylis glomerata L. (DG cocksfoot, perennial) in multispecies swards. Treatments were randomly applied to 24 mini‐swards of DG + Bromus willdenowii Kunth (BW prairie grass, annual/biennial) in a factorial design of four defoliation frequencies, based on number of leaves per tiller, by two nitrogen winter fertilization levels (N? or N+). Regardless of fertilization, very frequent and repeated defoliations were related to decreases of about 43% of aboveground biomass and frequent defoliations with decreases of about 44% of vegetative tillers associated with horizontal space occupation and potential for persistence. Nevertheless, differences in DG aerial productivity or reserves were not detected between frequent and optimal defoliation frequencies. Combined effects of N+ and optimal frequency were related to root biomass increment of about 200%, compared with frequent defoliation, associated with competitiveness and survival of DG. Optimal defoliation frequency would have ecological but not production advantages, compared with frequent defoliations. The results are discussed in terms of more objective decision‐making in the management of multispecies swards.  相似文献   

7.
There are potential agronomic and environmental benefits from incorporating warm‐season (C4) grasses into temperate pasture systems, usually dominated by cool‐season (C3) grasses, but there is a lack of information on how frequency and height of defoliation affects C4 grasses. Three greenhouse experiments were conducted under (i) spring, (ii) summer and (iii) spring + summer clipping regimes. In each experiment, the effects of clipping frequency (weekly and monthly) and clipping height (clipped to 5 and 10 cm) were determined on above‐ and below‐ground net primary production (ANPP and BNPP) and total and seasonal dry matter (DM) yield for Andropogon gerardii Vitman (big bluestem, C4 grass) and Bromus inermis Leyss (smooth brome, C3 grass). Six replicates per treatment were used. In all experiments, ANPP and BNPP of smooth brome was greater than that of big bluestem although during late summer months big bluestem had higher DM yields of herbage than smooth brome. There were different effects of frequency and height of clipping for both species on two similar measurements: total annual DM yield and ANPP, indicating that the ability to generalize about the effects of defoliation from ecological and agronomic grassland standpoints is questionable. Clipping effects on ANPP and BNPP were different for summer‐clipped pots than for spring, and spring + summer‐clipped pots, indicating that management could be tailored to meet specific agronomic or conservation goals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号