首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The short life span, irregular forage production and susceptibility to weed colonization of cool‐season grass–legume pastures are serious problems in grazing dairy systems in warm‐temperate regions. The inclusion of warm‐season species has the potential to mitigate these problems. In this study, we evaluated the effect of the inclusion of two warm‐season grasses with different growth habits on seasonal forage biomass, soil cover and weed colonization. Three different pasture mixtures were evaluated under grazing: conventional pasture (CP) [tall fescue (Festuca arundinacea), white clover (Trifolium repens) and birdsfoot trefoil (Lotus corniculatus)], CP with Paspalum dilatatum and CP with Paspalum notatum (CP + Pn). Forage biomass and soil cover were sampled thirteen times during a 3‐year trial, and sampling times were grouped by season for the analyses. The mixtures with Paspalum showed higher soil cover in the autumn, while in the winter CP had higher soil cover than CP + Pn. Competition with tall fescue was similar between mixtures with Paspalum, when considering biomass, but it was higher in CP + Pn when considering soil cover. The inclusion of P. notatum increased biomass during the autumn but decreased the mixture performance during winter by reducing tall fescue soil cover. The addition of a warm‐season grass species with a moderate competing ability like P. dilatatum is likely to avoid a negative impact on the cool‐season component of the pasture.  相似文献   

2.
Tall fescue (Festuca arundinacea) is a Eurasian forage grass extensively planted in the United States. However, an endophytic fungus in tall fescue, Epichloë coenophiala, causes health problems in cattle. We predicted that cattle prefer to graze alternative forages when available. We also predicted that cattle use tall fescue more intensively in recently burned areas, as fire can increase forage quality. We tested these predictions in four diverse‐forage pastures in Iowa, comparing use by cattle of tall fescue and four alternative forages (non‐fescue cool‐season grasses, native warm‐season grasses, non‐leguminous forbs and legumes) to their availabilities at the pasture scale. We also examined how tall fescue influences the distribution of grazing at a fine scale (0.1‐m2 quadrats). Tall fescue was the most abundant forage (46% of plants), but composed only 26% of grazed vegetation. In contrast, legumes composed 12% of available forage but 25% of grazed vegetation. Other forages were used in proportion to availability. At a fine scale, total grazing frequency (proportion of plants grazed) was lower in quadrats containing abundant tall fescue, and higher in quadrats with abundant warm‐season grasses. Grazing frequency of tall fescue and other cool‐season grasses was greatest in recently burned quadrats, but total grazing frequency did not increase after burning. Our results show that although cattle graze tall fescue, particularly following burns, they limit their use of this grass. Given that tall fescue is underused, creates health risks for cattle, and degrades wildlife habitat quality, it may be advisable to reduce tall fescue in pastures.  相似文献   

3.
Yield profile characteristics of tall fescue (Festuca arundinacea Schreb.), cv. Retu, were compared with those of meadow fescue (Festuca pratensis Huds.). The study was conducted in Finland and was based on official variety trial data recorded between 1980 and 1998 at 17 trial sites between latitudes 60° and 66°N. The crops were managed according to silage‐cutting regimes. The pattern of yield formation of the tall fescue cv. Retu differed significantly from that of meadow fescue cultivars, both within a growing season as well as in sward age. Tall fescue cv. Retu established slowly, and the dry‐matter (DM) yield from the first cut, made in the first year of harvest, was significantly lower than that for meadow fescue. In the second and third years, the DM yield from the first cut did not differ between tall fescue and meadow fescue. Tall fescue produced significantly higher DM yield as regrowth (second and third cuts) than meadow fescue. The sward age significantly affected total DM production. In first‐year swards, there were no significant differences in total DM yield between tall fescue and meadow fescue but, in the second‐ and third‐year swards, tall fescue produced significantly higher DM yields than meadow fescue. The difference in yield profile between tall fescue and meadow fescue was similar in all the environments included in the study. DM yield for the first cut (kg DM ha–1) for tall fescue cv. Retu, in comparison with meadow fescue cultivars, was 2495 vs. 3099 (P < 0·001), 3735 vs. 3741 (NS, P=0·94) and 3553 vs. 3468 (NS, P=0·30) in the first‐, second‐ and third‐year swards respectively. The respective DM regrowth yields (second plus third cut) were: 6059 vs. 5416 (P < 0·001); 5445 vs. 4221 (P < 0·001); and 5580 vs. 4113 (P < 0·001) in first‐, second‐ and third‐year swards. Total DM yields per season for tall fescue vs. meadow fescue were (kg DM ha–1) 8554 vs. 8515 (NS, P=0·69), 9180 vs. 7962 (P < 0·001) and 9133 vs. 7581 (P < 0·001) in first‐, second‐ and third‐year swards respectively. Over the three‐year sward rotation period, which is common in Finland, tall fescue produced on average 12% higher DM yield than meadow fescue. Both tall fescue and meadow fescue suffered little winter damage in Finnish conditions; the differences between cultivars of the two species were small. The results indicated that tall fescue cv. Retu is a productive and persistent forage species suited to Finnish growing conditions.  相似文献   

4.
Warm‐season pasture residue may create problems for no‐till overseeding with cool‐season grasses in the USA Southern Plains. Removal of residue to facilitate overseeding, however, represents additional cost and labour that may not be available on small livestock farms. Field experiments were undertaken to assess the effects of above‐surface residues of warm‐season pasture averaging 1·62, 2·48 or 3·36 t DM ha?1 on establishment and herbage production of Italian ryegrass (Lolium multiflorum) or tall fescue (Festuca arundinacea) overseeded by broadcasting or by no‐till drilling into dormant warm‐season pasture. On average, no‐till drilling was more effective than broadcasting in establishing both grass species, but it was no more effective than broadcasting when used with the greatest amount of residue. Cool‐season grass production was increased by 0·16 when no‐till drilled, but combined yearly total herbage production of cool‐ and warm‐season grasses was increased by 0·07 when cool‐season grasses were established by broadcasting. Amount of residue at sowing did not significantly affect herbage yield of cool‐season grass, but increased residue in autumn resulted in a 0·16 increase in total herbage production in the year following sowing. Residue amount did not affect over‐winter survival of grass seedlings, and productivity benefits of increased residue are small compared with reduced harvest arising from underutilization of warm‐season pasture residue in autumn.  相似文献   

5.
The addition of cool‐season, tall fescue [Lolium arundinaceum (Schreb.) Darbysh.], to warm‐season, bermudagrass [Cynodon dactylon (L.) Pers.], pastures can improve forage productivity and nutritive value. Effects of four binary mixtures consisting of cv. Flecha (incompletely summer dormant) and cv. Jesup (summer active) tall fescue overseeded into established stands of cv. Russell and cv. Tifton 44 bermudagrass and three seasonal N treatments were evaluated on dry‐matter (DM) yield, crude protein (CP), in vitro true digestible DM (IVTDDM), acid detergent fibre (ADF) and neutral detergent fibre (NDF). Nitrogen‐timing treatments were 168 kg N ha?1 (as ammonium nitrate) split into three applications per season with an additional 8·6 t ha?1 of broiler litter (as‐is moisture basis) split into two applications varied to favour either tall fescue (in October and January), bermudagrass (in March and May) or both grasses (in January and March). Treatment effects were determined in samples of mixed herbage harvested in April, May, July, August and September of 2009 and 2010. Regardless of bermudagrass cultivar, herbage DM yield was greater (< 0·05) in Flecha–bermudagrass than Jesup–bermudagrass in July of both years and in August 2010. Nutritive value generally was greatest in Jesup–Tifton 44, based on high CP and IVTDDM, and low ADF and NDF. Averaged across mixtures, avoiding fertilizer N and litter applications beyond April increased (< 0·01) DM yield in April and May and IVTDDM in July (603 vs. 629 g kg?1; 2‐year average) and August (618 vs. 660 g kg?1) compared with applications in January–July. The timing of N and broiler litter applications on tall fescue–bermudagrass to favour growth of tall fescue appeared to increase fescue cover during the cool season and nutritive value of the mixed herbage during the warm season.  相似文献   

6.
Tall fescue (Festuca arundinacea Schreb.) is currently seldom used in the high‐rainfall (>600 mm) zone of south‐eastern Australia. To determine its potential to improve forage availability during the summer‐autumn feed‐deficit period, a field plot‐scale experiment with sheep evaluated a Continental cultivar of tall fescue (cv. Quantum) at Hamilton, Victoria, between September 2006 and January 2009. Four grazing treatments represented set stocking or rotational grazing at the two‐, three‐ or four‐leaf stage, in a completely randomized design with three replications. Grazing treatment effects on tall fescue tiller population dynamics, forage accumulation rates and consumption, sward nutritive value and botanical composition were measured. Results showed tall fescue can persist and support year‐round grazing by sheep, subject to water availability for summer growth from summer rain or on moisture retentive heavy soils. During the summer‐autumn (December–April) vegetative phase, grazing at the three‐leaf stage optimized forage consumption, with no difference in feed value or botanical composition between the grazing treatments during these months. During the reproductive phase (September–November), feed value was highest under set stocking and declined with the production of each successive leaf. Grazing at the three‐ or four‐leaf stage prevented winter weed invasion, but winter forage consumption was low in these treatments. Set stocking or grazing at the two‐leaf stage improved winter forage consumption rates, but these swards were invaded by winter growing weeds.  相似文献   

7.
A symbiosis between grasses and systemic fungal endophytes exists in both natural and agricultural grassland communities. Our objective was to examine the effects of systemic endophytes on the competitive ability of two agronomically important grass species: meadow fescue [Festuca pratensis (Huds.) syn. Schedonorus pratensis (Huds.) P. Beauv] and tall fescue [Festuca arundinacea (Schreb.) syn. Schedonorus phoenix (Scop.)]. Plants of meadow and tall fescue were grown for 48 days in replacement series of interspecific mixture with a legume (red clover, Trifolium pratense L.) in different nutrient environments in a greenhouse. Neither of the grass species gained endophyte‐promoted competitive advantage over red clover in grass–clover mixtures. Endophyte infection increased the growth of meadow fescue monocultures by 89% compared to endophyte‐free monocultures in high‐nutrient soils, but plant competition or the cost of endophyte infection to the meadow fescue decreased the yield in resource‐limited conditions. On average, endophyte‐infected and endophyte‐free meadow fescues produced 0·15 and 0·17 g, and 0·14 and 0·14 g dry biomass per plant in mixtures with red clover in high‐ and low‐nutrient soils respectively. In contrast to meadow fescue, endophyte‐promoted growth of tall fescue monocultures was not detected. Endophyte‐infected and endophyte‐free tall fescue monocultures produced 0·76 and 0·95 g biomass per pot, respectively, in the high‐nutrient environment. Endophyte infection can increase the performance of the host grass, but the positive effects depend on the host species, the species composition and soil nutrient availability.  相似文献   

8.
Pasture managers seek to balance leaf appearance with utilization to sustain sward productivity while meeting livestock nutritional needs. Achieving this in silvopasture must account for the influence of light and defoliation on tillering. We determined tiller production, as a function of light availability and clipping height, for two forage grasses adapted to cool, humid temperate conditions of the Appalachian region of the USA. Tiller production of cocksfoot (orchard grass) (Dactylis glomerata L.) and tall fescue (Festuca arundinacea Schreb.) was greatest in unshaded and least in shaded sites, irrespective of residual clipping height. Juvenile plants produced more than twice as many tillers as mature plants, with differences accentuated by site, reflecting a shift in reproductive and resource‐use strategies. Trends in tiller production were as follows: cocksfoot > tall fescue; 10‐cm > 5‐cm residual clipping height; and unshaded > partially shaded > densely shaded sites. Tiller production reaches maximum earlier in the woodlot site, regardless of species or clipping height, than at the unshaded site. Plants at the wooded site extended leaves quickly, sustaining herbage production, but had less non‐structural carbohydrate and fewer tillers. Cocksfoot, but not tall fescue, sustained leaf and tiller production in the shaded sites, suggesting that cocksfoot is suited for use in silvopasture in this region.  相似文献   

9.
Limited availability of herbage during the cool season creates a problem of a supply of nutrients for livestock producers throughout the southern Great Plains of the USA and, particularly, on small farms where resource constraints limit possible mitigating strategies. Six cool‐season grasses were individually sown into clean‐tilled ground, no‐till drilled into stubble of Korean lespedeza [Kummerowia stipulacea (Maxim) Makino] or no‐till over‐sown into dormant unimproved warm‐season pastures. The dry matter (DM) yields of mixtures of cool and warm‐season herbage species were measured to test their potential for increasing cool‐season herbage production in a low‐input pasture environment. Only mixtures containing Italian ryegrass (Lolium multiflorum Lam) produced greater year‐round DM yields than undisturbed warm‐season pasture with all establishment methods. When cool‐season grass was no‐till seeded into existing warm‐season pasture, there was on average a 0·61 kg DM increase in year‐round herbage production for each 1·0 kg DM of cool‐season grass herbage produced. Sowing into stubble of Korean lespedeza, or into clean‐tilled ground, required 700 or 1400 kg DM ha?1, respectively, of cool‐season production before the year‐round DM yield of each species equalled that of undisturbed warm‐season pasture. Productive pastures of perennial cool‐season grasses were not sustained beyond two growing seasons with tall wheatgrass [Elytrigia elongata (Host) Nevski], intermediate wheatgrass [Elytrigia intermedia (Host) Nevski] and a creeping wheatgrass (Elytrigia repens L.) × bluebunch wheatgrass [Pseudoroegneria spicata (Pursh)] hybrid. Lack of persistence and low productivity limit the usefulness of cool‐season perennial grasses for over‐seeding unimproved warm‐season pasture in the southern Great Plains.  相似文献   

10.
Perennial ryegrass/white clover swards have some limitations in temperate grazed dairying systems. This study tested the hypothesis that farmlets based on alternative species would be equally or more profitable than those perennial ryegrass‐based, and would produce more herbage in summer‐dry conditions. Six farmlets were established; three with perennial ryegrass‐ and three with tall fescue‐based swards. For each grass species, one farmlet was solely based on grass‐clover swards while the other two had either chicory‐red clover or lucerne crops planted on 20%–25% of the area. Animal‐ and herbage performance‐related variables were measured for 3 years, and calculated financial performance was evaluated. Using tall fescue improved total annual herbage yield compared with perennial ryegrass, but animal production and operating profit were lower. This was likely due to the reduced yield and nutritive value of tall fescue during spring and an associated decline in daily milksolids production. The deficit in spring milksolids production was never recovered, despite greater herbage production from tall fescue during summer/autumn. Incorporating chicory‐red clover or lucerne crops reduced both annual herbage and milksolids production. This reduced farm income, while increasing operating expenses as the farmlets required crop renewal and more purchased supplementary feed to maintain feed supply. Under the conditions of this study (i.e., partial irrigation, high nitrogen supply), changing the forage base from perennial ryegrass to tall fescue did not improve animal production or profitability, nor did incorporation of crops on 20%–25% of the farmlet area.  相似文献   

11.
To optimize yields of long‐chain fructans extracted from herbage, fructan concentrations and chromatographic profiles were compared in four cool‐season grasses extracted by different methods. In a preliminary study, extraction temperatures, pH prior to extract concentration, numbers of extractions, and tissue coarseness were varied to evaluate their effects on chromatographic profiles and quantities of total long‐chain fructan (degree of polymerization (DP) of ~7 or higher). Fructans were separated by anion‐exchange high‐performance liquid chromatography (HPLC) with pulsed amperometric detection (PAD). The identity of the putative fructan peaks was confirmed by acid hydrolysis of fructans to fructose. Tall fescue and bluegrass fructans were below the detection limits used in this study. Pooled timothy and cocksfoot data indicated that two or three extractions at the same temperature yielded similar amounts of fructans and that adjusting pH from 6 to 7 did not affect recovery. Replicated extractions of cocksfoot by four methods chosen from the preliminary study demonstrated that the least fructan was extracted from chopped cocksfoot at ambient temperature (P = 0·019). One C18 solid‐phase extraction cleanup step sufficed for analysis. The extraction method recommended is two boiling water extractions of either chopped or ground material. However, ground material extracted at ambient temperature is comparable in total fructan concentration and maximum DP.  相似文献   

12.
The agronomic value of Syn 1 tall fescue, a synthetic variety derived from North African parent material, was determined in three experiments. Herbage yield, sward purity and digestibility were measured under cutting treatments for incremental sward growth during autumn/winter, and for sward regrowths during autumn/winter, spring and a complete season. Similar data were obtained for sward regrowths during autumn/winter and spring under defoliation by grazing. Syn 1 was compared with several of the north-temperate region tall fescues, e.g. S170, Rozelle and Manade, also with S143 cocksfoot Syn 1 showed yield superiority in autumn/early winter when there were comparable populations of tall fescue. Under cutting management, Syn 1 swards thinned out rapidly because of lack of winter-hardiness and yields were depressed in the second season; the effects were worst under the winter foggage-type management. Under grazing, with probably less severe defoliation, Syn 1 swards maintained yields for an additional season, but thereafter failed to persist Syn 1 swards had low spring- and annual-yields. The yield advantage of Syn 1 in autumn/early winter was not sufficient to be of great agricultural value and with its shortcomings in winter-hardiness and annual yield, it was considered unsuitable for West of Scotiand conditions. The main value of plant material such as Syn 1 may lie in ccmferring autumn/winter growth potential to winter-hardy north-temperate tall fescues in a breeding programme.  相似文献   

13.
The effects of sowing date and nitrogen (N) fertilizer on the inter‐specific competition between dallisgrass (Paspalum dilatatum Poir.) and tall fescue (Festuca arundinacea Schreb.) in the humid Pampas of Argentina were investigated in two pot experiments where a constant soil moisture content was maintained. Tall fescue and dallisgrass seeds were sown either in the spring (October 2000) or in the autumn (March 2001) in mixed and mono‐specific stands with 0 or 100 kg N ha?1. In the spring, competition from tall fescue depressed dry‐matter (DM) yield of dallisgrass from 1·53 to 0·36 g DM per plant and tiller number from 9·4 to 3·7 tillers per plant in mixed and in mono‐specific stands, respectively, while tall fescue had 3–4 times higher DM yields in mixed stands. Leaf extension rate (LER) of tall fescue was higher (1·3 mm d?1) than that of dallisgrass (0·53 mm d?1). In the autumn, inter‐specific competition did not affect DM yield of dallisgrass and N fertilizer increased DM yield from 0·53 to 2·07 g DM per plant, tiller number from 6·8 to 14·2 tillers per plant and LER at the beginning of autumn from 1·2 to 2·12 mm d?1 in both species. As temperature decreased, LER was reduced in both species to 0·31 mm d?1 by late autumn. The number of leaves per tiller was not affected by treatment. Nitrogen fertilizer increased N concentration of above‐ground tissues of both species (18 g kg?1 DM in autumn and 20 g kg?1 DM in spring). It was concluded that a productive mixed pasture of dallisgrass and tall fescue can be obtained by sowing early in the autumn. The application of N fertilizer in this season is essential to ensure a high herbage yield and quality.  相似文献   

14.
As with other areas of the world, herbage production of cool‐season grasses in irrigated semi‐arid areas of the western USA at high elevation declines during summer. The use of warm‐season grasses during this period could be a possible way to ameliorate this decline in herbage production. The ability of twenty‐one grass cultivars, representing seven warm‐season grass species, to establish in the summer of 2005, as measured by stand frequency and herbage production, the potential for damage in winter under irrigated conditions in 2005–2006 and the stand frequency in 2006 at two sites in semi‐arid environments of the western USA was compared with that of a cultivar of each of six cool‐season grass species. Some warm‐season grass species, including switchgrass (Panicum virgatum), showed potential for use in this environment, based on their similar herbage production in 2005 and similar values of stand frequency in 2005 and 2006 to that of cool‐season grasses. All the cultivars of the warm‐season grass species suffered greater winter damage than did the cultivars of the cool‐season species. The higher winter damage to the species of warm‐season grasses did not correspond with a lower stand frequency in the second year.  相似文献   

15.
In Mediterranean areas, water use efficiency (WUE) is mainly increased by maximising crop growth during the rainy seasons. Perennial forage species have a number of advantages in comparison to the predominantly used annuals. They can utilize water from autumn to spring, while annuals need to be sown or to germinate from the soil seed bank. Under Mediterranean annual rainfall pattern, perennial plants must grow from autumn to spring and survive under summer aridity. Drought survival can impact water use efficiency through plant mortality and stand recovery after autumn rainfalls. In order to enhance knowledge of physiological and agronomic traits associated with WUE and persistence, a 3-year study was conducted at two Mediterranean sites, comparing a range of accessions of two perennial species, cocksfoot (Dactylis glomerata L.) and tall fescue (Lolium arundinaceum (Schreb.) Darbysh). Within the accessions of predominantly Mediterranean origin, we defined four major functional types, i.e. groups of accessions with similar response to summer drought. One type (FT1) is represented by the only cultivar of a semi-arid cocksfoot (Kasbah) that is completely summer dormant, with high persistence under the most arid situations but with low WUE. The type FT2 all cocksfoot cultivars (Currie, Delta-1, Jana, Medly, and Ottava) that are not or less summer dormant, with good perenniality and intermediate productivity at rainy seasons. The type FT3 includes the cultivars of tall fescue (Centurion, Flecha, Fraydo, and Tanit) that combine an incomplete summer dormancy, a deep rooting system and the highest WUE from autumn to spring. The type FT4 is represented by a cultivar of tall fescue (Sisa) with no summer dormancy, therefore less persistent and also less productive. Dehydration avoidance in tall fescue and cocksfoot and summer dormancy in cocksfoot were the main strategies contributing to persistence under summer drought. WUE in autumn was highly correlated with sward recovery after drought. Seasonal and total WUE were also highly correlated with biomass production over the same period and with depth and density of the root system. Parameterization of functional types of the major species of forage grasses will enhance future modelling work to test the effects of a range of environments and future climate scenarios.  相似文献   

16.
The influence of tall fescue ( Festuca arundinacea Schreb.) on germination and seedling growth of birdsfoot trefoil ( Lotus corniculatus L.) was evaluated during 1983-85 at Manhattan, Kansas. Studies were designed to evaluate tall fescue cv. Kentucky-31 for possible allelopathic compounds, determine the effects of tall fescue on the germination, seedling growth and yield of birdsfoot trefoil, and to characterize the chemical properties of tall fescue. Fescue produced allelopathic compounds, particularly during the spring and autumn months when it was actively growing. The greatest trefoil inhibition occurred with fescue plant extracts prepared during the autumn (September and October). The concentration of fescue extracts influenced trefoil germination, with greater inhibition as fescue concentration increased. In a sand medium under greenhouse conditions, fescue extracts prepared in spring and autumn reduced trefoil growth by 50 and 56%, respectively, with no inhibition during the summer months. Under field conditions, full strength fescue extracts reduced trefoil plant populations by 14 and 57% with spring and autumn prepared extracts, respectively. Fescue competition reduced sod-seeded trefoil plants per unit area by 17 and 31% for spring and autumn seeding, respectively. Full strength fescue extracts reduced trefoil seedling growth by an average of 37%, and trefoil dry matter yields by 53%.  相似文献   

17.
Pasture herbage is a major source of minerals for livestock in pasture‐based production systems. Herbage mineral concentrations vary throughout the growing season, whereas mineral supplementation to livestock is often constant. The study objectives were to analyse the seasonal variation in herbage mineral concentrations in tall fescue [Schedonorus phoenix (Scop.) Holub]‐based pasture with regard to beef cattle mineral requirements and to create a statistical model to predict variation in herbage mineral concentrations across the growing season. Pasture herbage was analysed from 12 grazing systems in Virginia to determine its mineral concentration from April to October of 2008–2012. The pasture herbage, grown without fertilization, contained adequate macronutrient concentrations to meet the requirements of dry beef cows through the growing season and the requirements of lactating beef cows in April. Phosphorus supplementation appeared to be unnecessary for dry beef cows given adequate concentrations in pasture herbage. A model using month of harvest, soil moisture and relative humidity explained 75% of the variation in an aggregated mineral factor. The 90% prediction intervals indicated that N, P, K, S and Cu concentrations could be predicted within 1·35, 0·08, 0·80 and 0·07% and 3·83 mg kg?1 respectively. Prediction of herbage mineral concentrations could help to improve livestock health, reduce costs to producers and limit nutrient losses to the environment.  相似文献   

18.
Two experiments were carried out on a tall fescue sward in two periods of spring 1994 and on a tall wheatgrass sward in autumn 2001 and spring 2003 to analyse the effect of sward surface height on herbage mass, leaf area index and leaf tissue flows under continuous grazing. The experiment on tall fescue was conducted without the application of fertilizer and the experiment with tall wheatgrass received 20 kg P ha?1 and a total of 100 kg N ha?1 in two equal dressings applied in March (autumn) and end of July (mid‐winter). Growth and senescence rates per unit area increased with increasing sward surface height of swards of both species. Maximum estimated lamina growth rates were 28 and 23 kg DM ha?1 d?1 for the tall fescue in early and late spring, respectively, and 25 and 36 kg DM ha?1 d?1 for tall wheatgrass in autumn and spring respectively. In the tall fescue sward, predicted average proportions of the current growth that were lost to senescence in early and late spring were around 0·40 for the sward surface heights of 30–80 mm, and increased to around 0·60 for sward surface heights over 130 mm. In the tall wheatgrass sward the corresponding values during spring increased from around 0·40 to 0·70 for sward surface heights between 80 and 130 mm. During autumn, senescence losses exceeded growth at sward surface heights above 90 mm. These results show the low efficiency of extensively managed grazing systems when compared with the high‐input systems based on perennial ryegrass.  相似文献   

19.
A disadvantage of tall fescue (Festuca arundinacea Schreb.) is its low voluntary intake, resulting in suboptimal performance under grazing. Ideally, selection for this trait is done using grazing animals, but their use in plant breeding programmes is costly and laborious. Repeatable, stable and quantifiable traits linked to animal preference could ease tall fescue breeding. We established a trial to find relationships between the grazing preference of sheep and sward‐ and plant‐related traits. Seventeen genotypes were studied in swards. Sheep grazing preference, pre‐grazing sward height (SH), leaf softness, leaf blade length, width, colour and shear strength, and concentration of fibre, silica, digestible organic matter (DOM) and water‐soluble carbohydrate (WSC) were quantified throughout the growing season. The traits with the strongest correlation with sheep preference were DOM, SH, leaf colour, leaf width and WSC. Leaf softness, silica content and leaf shear strength were not correlated with sheep preference. We conclude that DOM is the trait that offers the best prospects for contributing to progress in tall fescue plant breeding for both intake and feeding value.  相似文献   

20.
Tall fescue pastures have an increasing potential to be used worldwide. The purpose of this study was to test the ability and flexibility of the model DairyMod to represent herbage mass accumulation (HMA) of tall fescue pastures from Argentina under several environmental conditions, including different seasons, fertilizer nitrogen levels and irrigation. Species‐specific responses were obtained by customizing particular parameters (i.e. number of living leaves per tiller, leaf appearance interval, optimum plant N concentration and the response of leaf gross photosynthesis to temperature). Additionally, a simulation experiment to compare the model assumption that optimum N concentration stays constant through HMA with the application of a reference critical N dilution curve verified for temperate forage grasses (N% = 4·8 HMA?0·32) was conducted. Application of DairyMod simulated with reasonable accuracy the HMA of tall fescue pastures under a wide range of climatic and management conditions; however, the model tended to underestimate HMA where pastures grew under high N availability. The use of a reference critical N curve substantially improved this bias, indicating that a further analysis on the N issue of the model is necessary. Results from this study provide support for further evaluations of the model under other scenarios and conditions. An upgrade of the model to improve simulation of N nutrition is suggested to enhance its performance to predict growth dynamics at high N availabilities as well as its value to address the effectiveness of N‐management practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号