首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 55 毫秒
1.
2.
A three year study to determine the influence of date of harvest and irrigation on yield and quality of the Pungo and Superior varieties showed large Size A yield increases as harvest was delayed from mid-June to mid-July. Increased yields resulted from irrigation each year except with the superior in 1966. Large yield increases resulted from irrigation in 1968. Plants of the Superior variety on non-irrigated plots were stunted early from low soil moisture in 1968 and did not recover as well as those of the Pungo following increases in soil moisture later in the season. The yields of Size B potatoes in general decreased with delayed harvest as the Size A potatoes increased. Irrigation had only a minor influence on yields of Size B potatoes. Total solids of the Size A potatoes as influenced by date of harvest and irrigation varied from year to year. In 1966 there was a consistent increase in total solids with delay in harvest, while results in 1967 and 1968 varied. This variation was associated with rainfall and soil moisture, with lower total solids at high soil moisture levels and higher total solids with low soil moisture. Overall, irrigation resulted in minor decreases in total solids.  相似文献   

3.
Intensive cultivation of rice and wheat in north-west India has resulted in air pollution from rice straw burning, soil degradation and declining groundwater resources. The retention of rice residues as a surface mulch could be beneficial for moisture conservation and yield, and for hence water productivity, in addition to reducing air pollution and loss of soil organic matter. Two field experiments were conducted in Punjab, India, to study the effects of rice straw mulch and irrigation scheduling on wheat growth, yield, water use and water productivity during 2006-2008. Mulching increased soil water content and this led to significant improvement in crop growth and yield determining attributes where water was limiting, but this only resulted in significant grain yield increase in two instances. There was no effect of irrigation treatment in the first year because of well-distributed rains. In the second year, yield decreased with decrease and delay in the number of irrigations between crown root initiation and grain filling. With soil matric potential (SMP)-based irrigation scheduling, the irrigation amount was reduced by 75 mm each year with mulch in comparison with no mulch, while maintaining grain yield. Total crop water use (ET) was not significantly affected by mulch in either year, but was significantly affected by irrigation treatment in the second year. Mulch had a positive or neutral effect on grain water productivity with respect to ET (WPET) and irrigation (WPI). Maximum WPI occurred in the treatment which received the least irrigation, but this was also the lowest yielding treatment. The current irrigation scheduling guidelines based on cumulative pan evaporation (CPE) resulted in sub-optimal irrigation (loss of yield) in one of the two years, and higher irrigation input and lower WPI of the mulched treatment in comparison with SMP-based irrigation scheduling. The results from this and other studies suggest that farmers in Punjab greatly over-irrigate wheat. Further field and modelling studies are needed to extrapolate the findings to a wider range of seasonal and site conditions, and to develop simple tools and guidelines to assist farmers to better schedule irrigation to wheat.  相似文献   

4.
In saline fields, irrigation management often requires understanding crop responses to soil moisture and salt content. Developing models for evaluating the effects of soil moisture and salinity on crop yield is important to the application of irrigation practices in saline soil. Artificial neural network (ANN) and multi-linear regression (MLR) models respectively with 10 (ANN-10, MLR-10) and 6 (ANN-6, MLR-6) input variables, including soil moisture and salinity at crop different growth stages, were developed to simulate the response of sunflower yield to soil moisture and salinity. A connection weight method is used to understand crop sensitivity to soil moisture and salt stress of different growth stages. Compared with MLRs, both ANN models have higher precision with RMSEs of 1.1 and 1.6 t ha−1, REs of 12.0% and 17.3%, and R2 of 0.84 and 0.80, for ANN-10 and ANN-6, respectively. The sunflower sensitivity to soil salinity varied with the different soil salinity ranges. For low and medium saline soils, sunflower yield was more sensitive at crop squaring stage, but for high saline soil at seedling stage. High soil moisture content could compensate the yield decrease resulting from salt stress regardless of salt levels at the crop sowing stage. The response of sunflower yield to soil moisture at different stages in saline soils can be understood through the simulated results of ANN-6. Overall, the ANN models are useful for investigating and understanding the relationship between crop yield and soil moisture and salinity at different crop growth stages.  相似文献   

5.
The neutron probe, infrared thermometry and crop water stress index (CWSI), and a computer-assisted irrigation scheduling method were evaluated in terms of their effect on tuber yield, tuber quality, and water use. The experiment was conducted during 1990 and 1991 near Othello, central Washington, using Russet Burbank potatoes grown in a silt loam soil. Irrigation treatments did not commence until after tuber initiation. In general, no differences in total number of tubers and total tuber yield resulted from the different scheduling methods. However, the canopy temperature method showed reduction in the yield of number one tubers in 1990. The least total irrigation water was applied during the growing season with the neutron probe method. Using CWSI values above 0.5 to 1.0 (scale 0 to 10) for two consecutive days as a threshold to schedule irrigations appeared to be adequate for potatoes grown in silt loam soils. However, shortcomings of infrared thermometry suggested that this method may not be practical for scheduling irrigation of potatoes.  相似文献   

6.
Brown rot can lead to considerable fruit losses in peach orchards and cultural practices likely to contend this major disease have to be promoted. In order to limit peach brown rot incidence in a three-year-old mid-season maturing peach orchard of the cultivar ’Ruby Bright’, four combinations of irrigation and soil management treatments were assessed: conventional (Conv) irrigation (I) and soil management (S) (ConvI+ConvS); modified (Mod) irrigation and soil management (ModI+ConvS); conventional irrigation and modified soil management (ConvI+ModS); and modified irrigation and soil management (ModI+ModS). Conventional irrigation and soil management in the tree row consisted of irrigation scheduling using tensiometer readings and herbicide use, respectively. Modified irrigation and soil management in the tree row consisted of water deprivation during stage III of fruit development and ground cover with white clover, respectively. For four consecutive years (2010–2013), in the conditions of the Middle Rhone Valley in France, the lowest and highest brown rot incidence were detected under (ModI+ModS) and (ConvI+ConvS), respectively, whereas brown rot incidence under (ModI+ConvS) and (ConvI+ModS) was intermediate. This lower brown rot incidence under the modified treatments occurred from one to two weeks before fruit maturity and was still observed for several days in post-harvest storage. Ground cover with white clover was shown to limit water availability in the soil after heavy rainfall compared to bare soil, probably limiting peach growth variations, well-known as a possible source of detrimental microcracks at the fruit surface. This suggests that under our conditions appropriate cultural practices, water deprivation and a clover crop cover in the tree row possibly decrease peach disease sensitivity, which might lead to the reduced use of pesticide sprays to control brown rot in the orchard.  相似文献   

7.
Russet Burbank potatoes grown on Owyhee silt loam were subjected to early-season moisture stress by delaying initiation of furrow irrigation up to seven weeks after planting. A range of water stress treatments from 4 to 7 weeks after planting resulted in reduced plant size, tuber number and total tuber weight per plant 8 1/2 weeks after planting. Early-season water stress resulting from delayed irrigation onset was associated with improved tuber quality at harvest. Plants water stressed before tuber initiation had fewer tubers with dark stem-end fry colors, reduced percentage of US No. 2 potatoes, and increased percentage and size of US No. 1 potatoes. Increasing duration of soil water potential below -60 kPa early in the season was associated with declining total yield in 1985 but not in 1986. To obtain optimum yield and processing quality, the first irrigation should be no sooner than full plant emergence.  相似文献   

8.
《Plant Production Science》2013,16(4):403-414
Abstract

Plants growing on soil with insufficient moisture need deep and dense roots to avoid water stress. In crop plants, the production of dry matter during ripening of grains is critically important for grain yield. We postulated that shoot growth would be suppressed but root growth would continue under an insufficient soil moisture condition before heading, while shoot growth would be more vigorous than root growth under a sufficient soil moisture condition. We anticipated that the plants growing under an insufficient soil moisture condition before heading would produce more dry matter and grain under an insufficient soil moisture condition during ripening. In order to examine our hypotheses and to determine the fundamental conditions for improving grain yield and efficient use of irrigated water under limited irrigation, we grew wheat plants (Triticum aestivum L., cv. Ayahikari) in pots (30 cm in diameter, 150 cm in height) with insufficient soil moisture (PD-D pots) or sufficient soil moisture (PW-D pots) for six weeks before heading followed by full irrigation, and then insufficient soil moisture condition during ripening. The growth of shoots was suppressed significantly but that of roots was not before heading in PD-D plants, with a higher resultant ratio of root to shoot than in PW-D plants. The former retained a high leaf water potential and, therefore, were able to produce more dry matter and grain during soil moisture depletion during ripening as compared with the latter plants. We also obtained similar results with field-grown plants.  相似文献   

9.
Varieties of Italian, perennial and Italian × perennial ryegrasses, tall fescue and cocksfoot were used to determine the effects of soil moisture on grass growth. Weather conditions were monitored and herbage accumulation, leaf extension rate, leaf appearance rate and tillering were recorded under natural (control), covered and irrigated treatments.
Water deficit reduced crop growth rate in the spring and drought was the major factor influencing crop growth rates in all varieties during the summer. The ryegrasses appeared most sensitive to drought, and particularly poor recovery growth was exhibited by the Italian ryegrass RvP and the hybrid ryegrass Snowdon.
Leaf extension rate and leaf appearance rate were both reduced by increasing soil water deficit. Herbage accumulation was increased by irrigation when potential soil water deficits were greater than 100 mm. When water deficits were large, irrigation increased leaf extension more than leaf appearance or tiller number. Increasing moisture deficit had a greater effect upon tiller number than on leaf extension.  相似文献   

10.
Sodic soils are characterized by high exchangeable sodium on exchange sites, soil pH greater than 8.5, relatively low electrical conductivity, low infiltration rate and dispersed clay. These characteristics restrict the capacity of soil to absorb water, resulting in poor infiltration. Evidently, these soils require application of irrigation water at shorter intervals for crop production. Thus, irrigation strategy for sodic soils differs from that of normal soils. An experiment to determine the suitable irrigation strategy along with methods of application namely: surface (farmer’s practice), sprinkler (double nozzle impact sprinkler), and low-energy water application device (LEWA) were initiated in the year 2012 for rice crop. Irrigation depths of 6 cm in case of surface method and 4 cm in case of sprinkler and LEWA methods were applied at each irrigation event. The irrigation events for rice were scheduled at 2-DAD (days after the disappearance of the ponded water), 3-DAD, and 4-DAD through surface method, and at daily, 1- and 2-day intervals (after initial ponding disappeared) by sprinkler and LEWA methods. Sprinkler and LEWA methods resulted in highest rice yield of 4.4 t ha?1 in irrigated plots at the 2-day interval which was at par with the highest yielding surface-irrigated plot scheduled at 2-DAD. At the same time, irrigation strategy of 2-day interval through sprinkler and LEWA methods registered water saving to the extent of 30–40% over 2-DAD under surface irrigation method. Results revealed that there could be substantial saving of water and energy (electricity and diesel) through the use of sprinkling devices for irrigating rice under sodic soil environments.  相似文献   

11.
In rice-based lowland areas in the Mekong region, the lack of full irrigation water availability for post-rice legume crops and the poor soil physical and chemical conditions are major constraints for development of sound rice/legume double cropping system. In order to improve legume productivity, use of rice straw mulch and various crop establishment methods were examined in two series of mungbean experiments in Cambodia where soils were coarse and strongly compacted. In one set of experiments conducted at four locations in the first year the effect of straw mulch, planting method (manual vs seed drill) and tillage method (conventional vs no-till) was examined. Another set of experiments were conducted in the second year at three locations with four levels of mulch under two planting densities. On average in year 1, mulching of rice straw at 1.5 t/ha increased mungbean crop establishment from 72 to 83%, reduced weed biomass from 164 to 123 kg/ha and increased yield from 228 to 332 kg/ha. Mulch was effective in conserving soil moisture, and even at maturity the mulched area had on average 1% higher soil moisture content. The amount of mulch between 1 and 2 t/ha did not show consistent effects in year 2, partly because some mulch treatments resulted in excessive soil moisture content and were not effective. Rice straw mulch had a significant effect on mungbean yield in 6 out of the 7 experiments conducted in two years, and mean yield increase was 35%. This yield advantage was attributed to better crop establishment, improved growth and reduced weed pressure, but in some cases only one or two of these factors were effective. On the other hand, planting method, tillage method and planting density had only small effects on mungbean yield in most experiments. Only in one location out of four tested, the no-till treatment produced significantly higher yield than the conventional method. Seed drill produced similar mungbean establishment and grain yield to the manual planting suggesting that the planter can be used to save the labour cost which is increasing rapidly in the Mekong region. Maximum root depth varied little with mulch or planting density, and was shallow (<20 cm) in all three locations where this character was determined. It is concluded that while rice straw mulch increased yield of mungbean following rice, the inability of mungbean roots to penetrate the hard pan is a major constraint for development of a sound rice/mungbean cropping system in the lowlands with compacted soils.  相似文献   

12.
In 1966 and 1967 the chipping quality of three potato varieties was studied using three moisture regumes, two nitrogen levels, and three harvest dates. Specific gravity and chip color of potatoes freshly harvested and of those stored 10 days, along with chip color differences between the two periods, were tested. Of the three varieties tested — Anoka, Kennebec, Irish Cobbler — Anoka§ specific gravity was least depressed by soil-moisture stress and its chip color least affected by time of chipping; all tubers, however, chipped darker after being stored. High soil temperatures were associated with low specific gravities and dark chips. In 1966 irrigation tended to lower soil temperature, resulting in lighter chip color for potatoes harvested from irrigated than from nonirrigated plots; also color was lighter at the first than at the later harvests. In 1967, when air temperatures were consistently lower and rainfall nearly adequate, chip color was lighter for potatoes harvester later in the season. Nitrogen levels did not influence chip color. Moisture regimes and varieties influenced mineral content of tubers more consistently for the two years than did harvest dates or nitrogen levels. Specific gravity did not correlate significantly with chip color.  相似文献   

13.
Influence of irrigation and nitrogen management on potato yield and quality   总被引:2,自引:0,他引:2  
The effects of irrigation, water and nitrogen management on yield and quality of the Russet Burbank cultivar are discussed relevant to developmental stages of growth. Recent research on the interactions of irrigation and nitrogen management on total and U.S. No. 1 yields and specific gravity are presented. Total and U.S. No. 1 yields decline with increasing soil moisture stress. Yield of U.S. No. 1 potatoes is particularly sensitive to short periods of irrigation deficit during tuber initiation. Total yield appears most sensitive to short periods of irrigation deficit during tuber bulking. Allocation of longer term irrigation deficits during years of limited water supply should be either a) avoided during mid-season tuber bulking, or b) uniformly distributed over the entire tuber bulking growth period. Yield increases with higher total available soil nitrogen under deficit irrigation, but the yield response diminishes as the amount of total seasonal water decreases. The influence of irrigation and nitrogen availability is also discussed for specific gravity and tuber maturity. Seasonal (split) nitrogen management is proposed as a method to improve yield, quality and nitrogen fertilizer use efficiency of indeterminant cultivars.  相似文献   

14.
玉米灌溉田土壤水分变化及其耗水规律研究   总被引:4,自引:1,他引:3  
以辽宁省主要旱地作物玉米为研究对象,研究了其灌溉田土壤水分变化及其耗水规律。在试验条件下,0~20 cm土层水分含量最低,整个玉米生育期内水分变化幅度最大;30~50 cm土层由于受长期耕作习惯等因素的影响土壤的黏滞度较高,保持较明显的水分梯度,并使50~90 cm土层水分变化与0~20 cm土层相比滞后1~3 d;90~120 cm土层土壤水分受根系影响较小,变化不大。玉米生育前期农田实际蒸散量和参考蒸散量均趋于不断增大,生育中期个别时段内由于受阴雨气候影响蒸散量有所减弱;参考蒸散量最大值出现在玉米播种后第46天左右,农田实际蒸散量最大值出现在玉米出苗后第96天左右,玉米生育后期两者逐渐减弱。玉米生育前期表层土壤棵间蒸发量占实际蒸散量的比重较大,生育中期棵间蒸发量受降雨和灌溉等因素影响,变化幅度较大,生育后期相对较小。随着玉米叶面积增加,作物系数不断增加,在播种后第81天左右作物系数达最大值,之后作物系数逐渐下降。  相似文献   

15.
陈选  王忠波  邵敏  张世伟  谭智湘 《玉米科学》2019,27(1):104-109,117
灌溉制度对土壤水盐分布具有密切的关系,土壤水盐的分布又直接影响着作物产量。为了正确合理配置和利用水资源,改善试验区生态环境,减小肇州地区土壤含盐量对玉米产量造成的危害,选择肇州县水利科学试验站作为试验地点,试验结合膜下滴灌,设置4个水平的灌溉定额(200、300、400和500 m~3/hm~2),灌水次数分别为2次、3次和4次,测定并分析不同土层深度处土壤含水率、土壤可溶性盐浓度和玉米产量的变化。结果表明,灌溉定额为400 m~3/hm~2、灌水次数为4次时,玉米产量达到最大,且根系部位抑盐效果较好,是肇州地区较为经济合理的灌溉制度。  相似文献   

16.
马铃薯氮肥施用技术的研究   总被引:2,自引:0,他引:2  
本文对马铃薯经济施肥量与土壤、前作、密度、灌溉等栽培条件的关系进行了定量研究。提供了以土测值并综合考虑其他因素的氮肥用量推荐表。还提供了一个根据基础产量或产量目标确定的氮肥用量简表,供无测土条件时应用。旱作时,种肥优于追肥;有灌溉条件时,结合现蕾期浇水深施追肥则优于种肥。深施追肥比表施肥(尿素)提高肥效10%。  相似文献   

17.
Adequate soil water is needed for satisfactory yield and quality of potato tubers. With sprinkler irrigation systems it is common practice to apply more water than the crop uses in order to maintain high soil water levels. A study was initiated to evaluate the response of Russet Burbank potatoes to a wide range of daily sprinkler irrigation rates when grown on two soilsa loam and a sand—differing in water holding capacity. The results from the two soils were very different. On the loam soil, yields generally increased with increased applications of water, up to the equivalent of 40 to 50% estimated Et. Irrigation treatment effect on percent No. 1 tubers was inconclusive. In 1978, percent No. 1 tubers increased with water applied up to about 70% estimated Et. In 1980, irrigation rates between the equivalent of about 20 and 80% estimated Et had little effect on tuber grade. Yields and percent No. 1 tubers were depressed at irrigation rates greater than about 80% estimated Et. On the sand, yields and percent No. 1 tubers increased with increased irrigation rates up to about 100% and 80% estimated Et, respectively. Tuber specific gravity was not affected to an important degree by irrigation treatment on either soil. These results indicate that a good crop of potatoes can be grown on a loam soil at daily irrigation rates considerably less than estimated Et rates, while such reductions will decrease yields and grade on a sandy soil.  相似文献   

18.
The application of nematicides resulted in increased potato yields, and populations ofPratylenchus penetrans were lower for 3 years after application; but longevity of benefits of fumigating potato fields varied with the kind and amount of nematicide, application methods and with growing conditions after fumigation. Fumigation of two fields in the fall of 1965 with Vorlex, Telone, D-D, and mixtures of chloropicrin with Telone or D-D resulted in 70% to 90% control of the meadow nematode,P. penetrans, after two crops in one field, and 50% to 70% control after three crops in another. Yield increases of Kennebec potatoes averaged 42% and 16% in successive crops in the first field and yield increases of Katahdin potatoes averaged 13%, 22% and 16% in three successive crops in the other field. Fumigation resulted in 30 to 70% less vascular browning in tubers in the first two crops but there was no effect in the third crop. There was no effect on black scurf in any crop. Root injury varied proportionally with populations ofP. penetrans in roots in 1967. Populations ofP. penetrans regained injurious levels in three other fields after one crop when abundant root growth in moist 1967 followed spring fumigation with Telone and D-D. Under poor conditions for sealing of the soil following fumigation in the spring of 1968, counts ofP. penetrans collected at different soil depths after fumigation showed excellent kill below 3 inches and poorer kill in the upper 2 inches of soil.  相似文献   

19.
Summary A lysimeter experiment was performed to study the optimal allocation of limited water supply in potatoes. Irrigation regimes equal to 40, 60 and 80% of maximum evapotranspiration (ET) were evenly applied over the crop cycle. Other treatments involved withholding 80 mm of irrigation, based on ET, beginning at each of three designated growth stages (tuber initiation, early and late tuber growth). An irrigated control treatment, restoring the entire ET, was included for comparison. Continuous drought stress reduced photosynthesis as irrigation volumes were reduced. Plant biomass and tuber yield decreased almost proportionally to water consumption, so that WUE was roughly constant. N uptake was highest in the control and in 80% ET treatment. Withholding water during tuberisation severely hindered plant physiological processes and penalized tuber yield. Reductions in photosynthesis, total biomass and yield were the greatest when drought was imposed during tuber initiation. The earliest stress resulted in the lowest WUE and N uptake. A new crop water stress index (SI) was proposed, which combines atmospheric demand for water and canopy temperature.  相似文献   

20.
‘Russet Burbank’ potatoes (Solarium tuberosum L.) were subjected to various levels of water application during the growing season. Water applied, rainfall, and soil water changes were measured at weekly intervals. Tuber yield and quality increased as water consumption increased from 300 mm to 650 mm. Evapotranspiration (ET) increased rapidly from plant emergence until early tuber bulking and declined gradually as plants matured. Comparing ET with pan evaporation provided coefficients (K) which changed in response to crop growth stages. K increased from 0.3 at emergence to over 0.8 during maximum leaf area and declined with crop maturity. The relationship between K and crop growth stage can be used with confidence in scheduling irrigation of potatoes in north central Oregon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号